multiple face detection and recognition added

This commit is contained in:
Somdev Das 2025-02-05 13:36:40 +05:30
parent ca38b7c7f4
commit d50ac4ed64

View File

@ -8,6 +8,7 @@ import { Camera } from "lucide-react";
import { useToast } from "@/hooks/use-toast";
const MODEL_URL = "https://cdn.jsdelivr.net/npm/@vladmandic/face-api/model";
const PADDING = 50; // Padding around face in pixels
const RealtimeFaceDetection = () => {
const webcamRef = useRef<Webcam>(null);
@ -35,9 +36,42 @@ const RealtimeFaceDetection = () => {
loadModels();
}, [toast]);
const extractFaceWithPadding = (
video: HTMLVideoElement,
box: faceapi.Box
): HTMLCanvasElement => {
const canvas = document.createElement("canvas");
const context = canvas.getContext("2d");
// Calculate padded dimensions
const x = Math.max(0, box.x - PADDING);
const y = Math.max(0, box.y - PADDING);
const width = Math.min(video.videoWidth - x, box.width + 2 * PADDING);
const height = Math.min(video.videoHeight - y, box.height + 2 * PADDING);
canvas.width = width;
canvas.height = height;
if (context) {
// Extract face region with padding
context.drawImage(
video,
x,
y,
width,
height, // Source coordinates
0,
0,
width,
height // Destination coordinates
);
}
return canvas;
};
const detectFace = async () => {
if (!webcamRef.current || !webcamRef.current.video || !canvasRef.current)
return;
if (!webcamRef.current?.video || !canvasRef.current) return;
const video = webcamRef.current.video;
const canvas = canvasRef.current;
@ -45,7 +79,6 @@ const RealtimeFaceDetection = () => {
if (!context) return;
// Set canvas size to match video
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
context.clearRect(0, 0, canvas.width, canvas.height); // Clear previous drawings
@ -54,46 +87,28 @@ const RealtimeFaceDetection = () => {
context.translate(canvas.width, 0); // Move the origin to the right side of the canvas
context.scale(-1, 1); // Flip the context horizontally
// Detect face
// Detect all faces
const detections = await faceapi
.detectSingleFace(video, new faceapi.TinyFaceDetectorOptions())
.detectAllFaces(video, new faceapi.TinyFaceDetectorOptions())
.withFaceLandmarks()
.withFaceDescriptor();
.withFaceDescriptors();
if (detections) {
// Draw bounding box
const { x, y, width, height } = detections.detection.box;
context.strokeStyle = "red"; // Box color
context.lineWidth = 3;
context.strokeRect(x, y, width, height);
for (const detection of detections) {
// Draw box for visualization
const { box } = detection.detection;
context.strokeStyle = "#00FF00";
context.lineWidth = 2;
context.strokeRect(box.x, box.y, box.width, box.height);
// Capture the face as an image
const imageCanvas = document.createElement("canvas");
const imageContext = imageCanvas.getContext("2d");
if (imageContext) {
imageCanvas.width = video.videoWidth;
imageCanvas.height = video.videoHeight;
// Mirror the image context as well
imageContext.translate(imageCanvas.width, 0);
imageContext.scale(-1, 1);
imageContext.drawImage(
video,
0,
0,
imageCanvas.width,
imageCanvas.height
);
// Convert to Blob and send
imageCanvas.toBlob((blob) => {
if (blob) {
sendFaceDataToAPI(blob);
}
}, "image/jpeg");
}
// Extract face with padding and send to API
const faceCanvas = extractFaceWithPadding(video, box);
faceCanvas.toBlob(
(blob) => {
if (blob) sendFaceDataToAPI(blob);
},
"image/jpeg",
0.95
);
}
};
@ -106,7 +121,7 @@ const RealtimeFaceDetection = () => {
`${process.env.NEXT_PUBLIC_BASE_URL}/search`,
{
method: "POST",
body: formData, // Send multipart/form-data
body: formData,
}
);
@ -125,13 +140,8 @@ const RealtimeFaceDetection = () => {
const startDetection = () => {
if (!isModelLoaded) return;
setIsDetecting(true);
const interval = setInterval(detectFace, 1000);
setTimeout(() => {
clearInterval(interval);
setIsDetecting(false);
}, 100000); // Stops detection after 10 seconds
setInterval(detectFace, 300);
};
return (
<div className="max-w-3xl mx-auto">
<div className="relative">