2025-02-04 20:04:05 +05:30

158 lines
4.6 KiB
TypeScript

"use client";
import { useEffect, useRef, useState } from "react";
import Webcam from "react-webcam";
import * as faceapi from "face-api.js";
import { Button } from "@/components/ui/button";
import { Camera } from "lucide-react";
import { useToast } from "@/hooks/use-toast";
const MODEL_URL = "https://cdn.jsdelivr.net/npm/@vladmandic/face-api/model";
const RealtimeFaceDetection = () => {
const webcamRef = useRef<Webcam>(null);
const canvasRef = useRef<HTMLCanvasElement>(null);
const [isModelLoaded, setIsModelLoaded] = useState(false);
const [isDetecting, setIsDetecting] = useState(false);
const { toast } = useToast();
useEffect(() => {
const loadModels = async () => {
try {
await faceapi.nets.tinyFaceDetector.loadFromUri(MODEL_URL);
await faceapi.nets.faceLandmark68Net.loadFromUri(MODEL_URL);
await faceapi.nets.faceRecognitionNet.loadFromUri(MODEL_URL);
setIsModelLoaded(true);
} catch (error) {
console.error("Error loading models:", error);
toast({
title: "Error",
description: "Failed to load face detection models.",
variant: "destructive",
});
}
};
loadModels();
}, [toast]);
const detectFace = async () => {
if (!webcamRef.current || !webcamRef.current.video || !canvasRef.current)
return;
const video = webcamRef.current.video;
const canvas = canvasRef.current;
const context = canvas.getContext("2d");
if (!context) return;
// Set canvas size to match video
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
context.clearRect(0, 0, canvas.width, canvas.height); // Clear previous drawings
// Mirror the canvas context to match the mirrored video
context.translate(canvas.width, 0); // Move the origin to the right side of the canvas
context.scale(-1, 1); // Flip the context horizontally
// Detect face
const detections = await faceapi
.detectSingleFace(video, new faceapi.TinyFaceDetectorOptions())
.withFaceLandmarks()
.withFaceDescriptor();
if (detections) {
// Draw bounding box
const { x, y, width, height } = detections.detection.box;
context.strokeStyle = "red"; // Box color
context.lineWidth = 3;
context.strokeRect(x, y, width, height);
// Capture the face as an image
const imageCanvas = document.createElement("canvas");
const imageContext = imageCanvas.getContext("2d");
if (imageContext) {
imageCanvas.width = video.videoWidth;
imageCanvas.height = video.videoHeight;
// Mirror the image context as well
imageContext.translate(imageCanvas.width, 0);
imageContext.scale(-1, 1);
imageContext.drawImage(
video,
0,
0,
imageCanvas.width,
imageCanvas.height
);
// Convert to Blob and send
imageCanvas.toBlob((blob) => {
if (blob) {
sendFaceDataToAPI(blob);
}
}, "image/jpeg");
}
}
};
const sendFaceDataToAPI = async (imageBlob: Blob) => {
try {
const formData = new FormData();
formData.append("image", imageBlob, "face.jpg");
const response = await fetch(
`${process.env.NEXT_PUBLIC_BASE_URL}/search`,
{
method: "POST",
body: formData, // Send multipart/form-data
}
);
const data = await response.json();
toast({ title: data?.name, description: data.message });
} catch (error) {
console.error("Error sending face data:", error);
toast({
title: "Error",
description: "Failed to send face data.",
variant: "destructive",
});
}
};
const startDetection = () => {
if (!isModelLoaded) return;
setIsDetecting(true);
const interval = setInterval(detectFace, 1000);
setTimeout(() => {
clearInterval(interval);
setIsDetecting(false);
}, 100000); // Stops detection after 10 seconds
};
return (
<div className="max-w-3xl mx-auto">
<div className="relative">
<Webcam ref={webcamRef} mirrored className="w-full rounded-lg" />
<canvas
ref={canvasRef}
className="absolute top-0 left-0 w-full h-full"
/>
</div>
<div className="mt-6 flex justify-center">
<Button
onClick={startDetection}
disabled={!isModelLoaded || isDetecting}
>
<Camera className="mr-2 h-4 w-4" />
{isDetecting ? "Detecting..." : "Start Realtime Detection"}
</Button>
</div>
</div>
);
};
export default RealtimeFaceDetection;