|
|
@ -0,0 +1,70 @@ |
|
|
|
# import pickle |
|
|
|
|
|
|
|
# # Load the pickle file |
|
|
|
# with open("face_store.pkl", "rb") as f: |
|
|
|
# data = pickle.load(f) |
|
|
|
|
|
|
|
# # Print the data for inspection |
|
|
|
# print(data) |
|
|
|
|
|
|
|
|
|
|
|
# import json |
|
|
|
# import numpy as np |
|
|
|
|
|
|
|
# def convert_ndarray(obj): |
|
|
|
# """Recursively convert numpy.ndarray to list in a data structure.""" |
|
|
|
# if isinstance(obj, np.ndarray): |
|
|
|
# return obj.tolist() |
|
|
|
# elif isinstance(obj, list): |
|
|
|
# return [convert_ndarray(item) for item in obj] |
|
|
|
# elif isinstance(obj, dict): |
|
|
|
# return {key: convert_ndarray(value) for key, value in obj.items()} |
|
|
|
# else: |
|
|
|
# return obj |
|
|
|
|
|
|
|
# # Assuming `data` contains numpy arrays |
|
|
|
# # data = { |
|
|
|
# # "name": "example", |
|
|
|
# # "embedding": np.array([1.0, 2.0, 3.0]), |
|
|
|
# # "nested": { |
|
|
|
# # "another_array": np.array([4.0, 5.0]) |
|
|
|
# # } |
|
|
|
# # } |
|
|
|
|
|
|
|
# # Convert `data` to JSON-serializable format |
|
|
|
# data_serializable = convert_ndarray(data) |
|
|
|
|
|
|
|
# # Save as JSON |
|
|
|
# with open("data.json", "w") as json_file: |
|
|
|
# json.dump(data_serializable, json_file, indent=4) |
|
|
|
|
|
|
|
# print("JSON file saved successfully!") |
|
|
|
|
|
|
|
|
|
|
|
import pickle |
|
|
|
import json |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
# Function to convert non-serializable objects (like numpy arrays) to a serializable format |
|
|
|
def convert_to_serializable(data): |
|
|
|
if isinstance(data, np.ndarray): |
|
|
|
return data.tolist() # Convert ndarray to list |
|
|
|
elif isinstance(data, dict): # If data is a dictionary, recursively convert values |
|
|
|
return {key: convert_to_serializable(value) for key, value in data.items()} |
|
|
|
elif isinstance(data, list): # If data is a list, recursively convert items |
|
|
|
return [convert_to_serializable(item) for item in data] |
|
|
|
else: |
|
|
|
return data # For other types, return as is |
|
|
|
|
|
|
|
# Load the pickle file |
|
|
|
with open("face_store.pkl", "rb") as f: |
|
|
|
data = pickle.load(f) |
|
|
|
|
|
|
|
# Convert the data to a JSON-serializable format |
|
|
|
data_serializable = convert_to_serializable(data) |
|
|
|
|
|
|
|
# Save to a JSON file |
|
|
|
with open("face_store.json", "w") as json_file: |
|
|
|
json.dump(data_serializable, json_file, indent=4) |
|
|
|
|
|
|
|
print("Data has been saved to face_store.json") |