import faiss import numpy as np import pickle from pathlib import Path from typing import List, Optional, Tuple class FaceStore: def __init__(self, dimension: int = 512): # 512 for ArcFace self.dimension = dimension # Use cosine similarity instead of L2 distance self.index = faiss.IndexFlatIP(dimension) # Inner Product = Cosine similarity for normalized vectors self.face_data = [] self.store_path = Path("face_store.pkl") self.index_path = Path("face_index.faiss") self.load_if_exists() def load_if_exists(self): if self.store_path.exists() and self.index_path.exists(): # Load face data with open(self.store_path, 'rb') as f: self.face_data = pickle.load(f) # Load FAISS index self.index = faiss.read_index(str(self.index_path)) def save(self): # Save face data with open(self.store_path, 'wb') as f: pickle.dump(self.face_data, f) # Save FAISS index faiss.write_index(self.index, str(self.index_path)) def normalize_embedding(self, embedding: np.ndarray) -> np.ndarray: """L2 normalize the embedding""" embedding = embedding.astype(np.float32) # Reshape to 2D if needed if embedding.ndim == 1: embedding = embedding.reshape(1, -1) # L2 normalize faiss.normalize_L2(embedding) return embedding def add_face(self, name: str, embedding: np.ndarray) -> None: # Normalizing the embedding before adding normalized_embedding = self.normalize_embedding(embedding) self.face_data.append({"name": name, "embedding": normalized_embedding.flatten()}) self.index.add(normalized_embedding) self.save() print(f"Added face for {name}. Total faces: {self.index.ntotal}") def search_face(self, embedding: np.ndarray, threshold: float = 0.5) -> Optional[Tuple[str, float]]: if self.index.ntotal == 0: return None # Normalizing the query embedding normalized_embedding = self.normalize_embedding(embedding) # Searching using cosine similarity similarities, indices = self.index.search(normalized_embedding, 1) similarity = similarities[0][0] print(f"Best match similarity: {similarity}, threshold: {threshold}") # For cosine similarity, higher is better and max is 1.0 so we can optimize and keep on checking if similarity > threshold: matched_face = self.face_data[indices[0][0]] # Similarity is already between 0 and 1 for cosine return matched_face["name"], float(similarity) return None