import faiss
|
|
import numpy as np
|
|
import pickle
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple
|
|
|
|
class FaceStore:
|
|
def __init__(self, dimension: int = 512): # 512 for ArcFace
|
|
self.dimension = dimension
|
|
# Use cosine similarity instead of L2 distance
|
|
self.index = faiss.IndexFlatIP(dimension) # Inner Product = Cosine similarity for normalized vectors
|
|
self.face_data = []
|
|
self.store_path = Path("face_store.pkl")
|
|
self.index_path = Path("face_index.faiss")
|
|
self.load_if_exists()
|
|
|
|
def load_if_exists(self):
|
|
if self.store_path.exists() and self.index_path.exists():
|
|
# Load face data
|
|
with open(self.store_path, 'rb') as f:
|
|
self.face_data = pickle.load(f)
|
|
# Load FAISS index
|
|
self.index = faiss.read_index(str(self.index_path))
|
|
|
|
def save(self):
|
|
# Save face data
|
|
with open(self.store_path, 'wb') as f:
|
|
pickle.dump(self.face_data, f)
|
|
# Save FAISS index
|
|
faiss.write_index(self.index, str(self.index_path))
|
|
|
|
def normalize_embedding(self, embedding: np.ndarray) -> np.ndarray:
|
|
"""L2 normalize the embedding"""
|
|
embedding = embedding.astype(np.float32)
|
|
# Reshape to 2D if needed
|
|
if embedding.ndim == 1:
|
|
embedding = embedding.reshape(1, -1)
|
|
# L2 normalize
|
|
faiss.normalize_L2(embedding)
|
|
return embedding
|
|
|
|
def add_face(self, name: str, embedding: np.ndarray) -> None:
|
|
# Normalizing the embedding before adding
|
|
normalized_embedding = self.normalize_embedding(embedding)
|
|
self.face_data.append({"name": name, "embedding": normalized_embedding.flatten()})
|
|
self.index.add(normalized_embedding)
|
|
self.save()
|
|
print(f"Added face for {name}. Total faces: {self.index.ntotal}")
|
|
|
|
def search_face(self, embedding: np.ndarray, threshold: float = 0.5) -> Optional[Tuple[str, float]]:
|
|
if self.index.ntotal == 0:
|
|
return None
|
|
|
|
# Normalizing the query embedding
|
|
normalized_embedding = self.normalize_embedding(embedding)
|
|
|
|
# Searching using cosine similarity
|
|
similarities, indices = self.index.search(normalized_embedding, 1)
|
|
similarity = similarities[0][0]
|
|
|
|
print(f"Best match similarity: {similarity}, threshold: {threshold}")
|
|
|
|
# For cosine similarity, higher is better and max is 1.0 so we can optimize and keep on checking
|
|
if similarity > threshold:
|
|
matched_face = self.face_data[indices[0][0]]
|
|
# Similarity is already between 0 and 1 for cosine
|
|
return matched_face["name"], float(similarity)
|
|
return None
|