NET Microservice
Architecture for
Containerized .NE
Applications

EDITION v1.0

DOWNLOAD available at: https://aka.ms/microservicesebook

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams
A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the
written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book,
including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or
should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group
of companies.

Mac and macOS are trademarks of Apple Inc.
The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

Co-Authors: Editors:
Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp. Mike Pope
Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp. Steve Hoag

Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft

Participants and reviewers:

Jeffrey Ritcher, Partner Software Eng, Azure team, Microsoft Dylan Reisenberger, Architect and Dev Lead at Polly
Jimmy Bogard, Chief Architect at Headspring Steve Smith, Software Craftsman & Trainer at ASPSmith Ltd.
Udi Dahan, Founder & CEO, Particular Software lan Cooper, Coding Architect at Brighter

Jimmy Nilsson, Co-founder and CEO of Factor10 Unai Zorrilla, Architect and Dev Lead at Plain Concepts
Glenn Condron, Sr. Program Manager, ASP.NET team Eduard Tomas, Dev Lead at Plain Concepts

Mark Fussell, Principal PM Lead, Azure Service Fabric team, Microsoft Ramon Tomas, Developer at Plain Concepts

Diego Vega, PM Lead, Entity Framework team, Microsoft David Sanz, Developer at Plain Concepts

Barry Dorrans, Sr. Security Program Manager Javier Valero, Chief Operating Officer at Grupo Solutio
Rowan Miller, Sr. Program Manager, Microsoft Pierre Millet, Sr. Consultant, Microsoft

Ankit Asthana, Principal PM Manager, .NET team, Microsoft Michael Friis, Product Manager, Docker Inc

Scott Hunter, Partner Director PM, .NET team, Microsoft Charles Lowell, Software Engineer, VS CAT team, Microsoft

https://aka.ms/microservicesebook

Contents

Introduction 1

About this guide

What this guide does not cover

WhO SHOUIA USE ThisS GUILE ...ttt sttt 2
HOW 10 USE ThiS QUITE ceceeeeeie bbb e 2
Related microservice and container-based reference application: eShopOnContainers.........cc...ccoooenrnene. 2
SENA US YOUT FEEADACK! ...ttt bbbt 2
Introduction to Containers and Docker 3
WL IS DOCKET?...ooeireirceiinc ittt eeses s s s kbbb 4
Comparing Docker containers with virtual Machings........c...covinrinnrineeeei s 5
DOCKET tEIMNINOIOGY ..veerrierrieeireire ettt ettt e 6
Docker containers, images, anNd FEQISIIIES ..ottt sttt 7
Choosing Between .NET Core and .NET Framework for Docker Containers 9
GENETAI GUILANCE ... ettt bbbt skt 9
When to choose .NET Core for DOCKer CONTAINEIS. ...t esisesssssessssseessssessssessssnseses 10
Developing and deploying Cross PlatfOrm ...t ss st senns 10
Using containers for new ("green-field”) Projects..... e sssesssssssssssesnees 10
Creating and deploying microservices 0N CONTAINEISoovwureereeneeerneiene e isseeesesssessseesseesssesssssnees 10
Deploying high density in SCalable SYSTEMS ...t 11
When to choose .NET Framework for DOcker CONTAINETS..........ovveeeereineceieeeineeesiseeesissessiseesisesssssesssseeens 11
Migrating existing applications directly to a Docker CoONtainer..........cocveineeneinesesee e 12
Using third-party .NET libraries or NuGet packages not available for .NET Corecccouuvermeveernncnnen. 12
Using.NET technologies not available for INET COre ... sssesssseessssesssessnees 12

Using a platform or API that does not support .NET Core

Decision table: .NET frameworks to use for Docker

What OS to target With \NET CONTAINEIS.......oiieerierieiecieeee e
OFficial .INET DOCKET IMAGES ..ouvvrrrverriiriiesiiesiieesis s sssse st sttt ss s sssss sttt st ssnssen 15
.NET Core and Docker image optimizations for development versus productionccoe.ceevves 16
Architecting Container- and Microservice-Based Applications 18
VISION ottt e e e 18
CoNtAINET AESIGN PIINCIPIES oottt sttt 18
Containerizing MonNOlithiC @PPIICAtIONS ... 19
Deploying a monolithic application @s @ CONTAINET ... 21

Publishing a single-container-based application to Azure APP SEIVICeneerneevnneceineceineeens 21

State and data in DOCKEr @PPIICATIONS ...ttt sttt sttt st 22
SErVICE-0MENTEA ArCHITECIUE.....oovee ettt 24
MICTOSEIVICES @ICHITECIUIE .ovceeieeecici ettt et 25
Data SOVEreigNty PEI MICIOSEIVICE ...ttt sssessse st st sss s ss s 27
The relationship between microservices and the Bounded Context pattern ..., 28
Logical architecture versus physical archit@CtUIe ...t 29
Challenges and solutions for distributed data management...........cnecnecececeseseses 30
Identifying domain-model boundaries for each MiCroSErviCe.........o.oviverrvceervnsiisseiesessesseessenesenne 35
Direct client-to-microservice communication versus the APl Gateway pattern ..., 38
CommuNication DETWEEN MICTOSEIVICES ...ttt ettt 42
Creating composite Ul based on microservices, including visual Ul shape and layout generated by
MUILIPIE MICTOSEIVICES ..ottt sttt 53
Resiliency and high availability in MICrOSEIVICES ...ttt 55
Health management and diagnostics iN MICTOSEIVICEScov.rvrierneierneiieeiie st sssess st sssenns 55

Orchestrating microservices and multi-container applications for high scalability and availability ... 58

Using container-based orchestrators in MiCroSOft AZUIE ... 60
USING AZUIE CONTAINET SEIVICE w.couueeriireieeeeieeeie sttt ss st bbbt 60
USING AZUIE SEIVICE FADIIC oottt sttt sttt 62
Stateless versus stateful MICTOSEIVICES ...ttt 65
Development Process for Docker-Based Applications 67
VESTON 1ottt ettt s 88 67
Development environment fOr DOCKEr @PPS ... iuivriireriiesiseiesisesssssssssssssesssessssssssssssssssssssssssssssssssssnes 67
Development tool chOIiCeS: IDE OF @AItON ...t 67
.NET languages and frameworks for DOCKEr CONTAINETSccoo.orirmrierrriirneireeieessesisssie s ssssssssnees 68
Development WOrkflow for DOCKET @PPS ...ttt sss st st ssnens 68
Workflow for developing Docker container-based applicationsccoc.oeorenneinnrinnrinnsinnsisssissseenens 68
Simplified workflow when developing containers with Visual StUdiocoocoeineeenrieneceneirnreeis 79
Using PowerShell commands in a Dockerfile to set up Windows Containers............ccoveeeneeenecerneennees 80
Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano
Server Hosts 82
VISTON ettt s 82
AAPPIICATION TOU ettt e e e 83
DIOCKET SUPPOIT oottt sttt et ees 84
TrOUDIESNOOTING oottt 86
StOPPING DOCKET CONTAINEIS ...ovveereeeeee ettt sttt 86
AddiNG DOCKET 10 YOUT PrOJECES ...oueerreerreeeeieeeese ettt st ss sttt et 86
Migrating Legacy Monolithic .NET Framework Applications to Windows Containers 87
VISION ettt et s e 87

Benefits of containerizing a monolithic application

Possible migration paths

AAPPIICATION TOU oottt e e 89
LITEING @NA SNITEING coovviii sttt sttt 91
Getting data from the existing catalog .NET COre MiCrOSEIVICEcovvvivrivereeereieseiessiessees e ssssssnsees 93
Development and production ENVIFONMENTS ... sssessssssssssssssssssssssssssessssssssssssanees 93

Designing and Developing Multi-Container and Microservice-Based .NET Applications 94
Vision

Designing a microservice-oriented application

Application specifications

DEVEIOPMENT EEAM CONTEXT ..uvrvevereeeeeeee it ess st sttt ettt

Choosing an architecture

Benefits of a microservice-based solutioncccceveevieeane

Downsides of a microservice-based solution

External versus internal architecture and design Patterns ... 99
The new world: multiple architectural patterns and polyglot microservices.........covneenneenneennees 101
Creating a simple data-driven CRUD MICTOSEIVICEvueuueeemeeeieeeseeiseeesneeeseseeessesssseessessssesssssssessssssssnees 102
Designing a Simple CRUD MICIOSEIVICEuriurerrreiereieeeeeesesssssssesssssssss s ssssssssssssssssssssssssssssssssssssssnsssns 102
Implementing a simple CRUD microservice With ASP.INET COr€.......covirrmrrenreenneeiineiisnssisssessssssssseeens 103
Generating Swagger description metadata from your ASP.NET Core Web APlcccooonvomnrcnnrrnnrenne. 110
Defining your multi-container application with docker-compose.ymlcocmnmrneenneenneeennecenneeens 114
Using a database server running as @ CONTAINET ... eesseee ettt ss st ss s sseeens 128
Implementing event-based communication between microservices (integration events).................... 132

Using message brokers and services buses for production systems

INEEGIATION EVENTS ...ttt bbbttt ettt

THE @UENT DUS ..ottt e bt

Testing ASP.NET Core Services and WeD @PPS ..o esssesssse sttt sssssssssssnssens
Tackling Business Complexity in a Microservice with DDD and CQRS Patterns............c.cccuce.... 153
VESTON 1ottt 888888t 153
Applying simplified CQRS and DDD patterns in @ MiCrOSEIVICEcovvurrvrreneeenreineiesessssesssssessessssssssssens 155
Applying CQRS and CQS approaches in a DDD microservice in eShopOnContainers............coucceeen. 156
CQRS and DDD patterns are not top-level archit@CtUres........ooneineineseeese e 157
Implementing reads/queries in @ CQRS MICIOSEIVICE ...t sssesssesssssssseeens 158
Using ViewModels specifically made for client apps, independent from domain model constraints
... 159
Using Dapper as a micro ORM 0 Perform QUETIES ...t essee s ssssessssesssesssessseeens 159
Dynamic and Static VIEWIMOELS ...ttt sttt sttt sttt snsees 160
Designing @ DDD-0rieNted MICTOSEIVICE. ...t ssse bbb 162

Keep the microservice context boundaries relatively Small ... 162

Layers iN DDD MICTOSEIVICESvvreerirerieeriseesisessisesssesessesssessssesisessssessssessssessssessssessssessssssssessasessssessssesssnesses 162
Designing a microservice domain MOEL. ... 167
The DOmMain ENtity PAtLEIN ...t 167
Implementing a microservice domain model With .NET COre ... 172
Domain model structure in a custom .NET Standard Library ... 172
Structuring aggregates in a custom .NET Standard Library ... 173
Implementing domain entities @s POCO ClaSSESc.wrrrricrieeerieesisessiessseeessessessisessssnessssnsessennes 173
Seedwork (reusable base classes and interfaces for your domain model)c..coovvoereenrrrnrirnrrnnnnnnn. 178
Repository contracts (interfaces) in the domain Model [aYer ... 180
IMPIEMENTING VAIUE ODJECES ..ottt 181
Value object implementation IN CH# ...t esise s s sssses s sss st esssesssens 182
Using Enumeration classes instead of C# language enumM tYPescoccermrennreenneesnnsesnesssnsssssssseeens 184
Designing validations in the domain MOdel [aYEr ... sssssaeeens 186
Implementing validations in the domain Model [ayer ... 187
Client-side validation (validation in the presentation 1ayers) ... 189
Domain events: design and impPlemMENtAtiON. ...ttt essseeees 191
WHat IS @ AOMAIN EVENT? ..ottt sttt bbbt 191
Domain events versus iNte@gration EVENTS ...ttt sessssss ettt sssssesssessens 191
[IMPIEMENTING OMAIN EVENTS ..ottt bbb s sttt 194
RAISING AOM@IN EVENTSooiiieeeeeie ittt sttt 195
Single transaction across aggregates versus eventual consistency across aggregates.................... 197
The domain event dispatcher: mapping from events to event handlers.........ccooeneninnecnscinnennees 199
How to SUDSCrDE t0 dOMAIN EVENTS.......c.ovivcicicriciec ettt eies 200
How to handle dOmain @VENTS..........oicncee ettt saes 200
CoNClUSIONS ON AOMAIN EVENTS. ...ttt 201
Designing the infrastructure PersiStENCE AYEN ...ttt eeeas 202
THE REPOSITOIY PATLEIN oottt ettt et 202
Implementing the infrastructure persistence layer with Entity Framework Core.........coomneernecenneeen. 206
Introduction to Entity FrameWork COre.. ..ttt ss s 206
Infrastructure in Entity Framework Core from a DDD PerspectiVe........cooenreerneeernreesesiesnssessssnssseenns 207
Implementing custom repositories with Entity Framework Core ..., 208
EF DbContext and 1UnitOfWork instance lifetime in your [0C container.........cooccoernmeenneeneeenecenneeens 211
The repository instance lifetime in your 10C CONAINET ...t sees e 211
TADIE MAPPING oottt s8Rt 212
Using NoSQL databases as a persistence infrastrUCTUre.........co..ovveineinniinsiees s ssssessssssssssesens 215
Designing the microservice application layer and Web APl ... 218

Using SOLID principles and Dependency INJECLIONooiiienrieneiinrireeereieeieseeesesssesssssssessssssse s ssessenes 218

Implementing the microservice application layer using the Web AP ..., 219

Using Dependency Injection to inject infrastructure objects into your application layer................. 219
Implementing the Command and Command Handler patterns........c..cnenerneeenseeneeneseseeesenes 223
The Command process pipeline: how to trigger a command handler..........oinninernninniennennn. 229
Implementing the command process pipeline with a mediator pattern (MediatR).......c.ccccccovvnrnence. 232
Applying cross-cutting concerns when processing commands with the Mediator and Decorator
PATEEINIS .ot 234
Implementing Resilient Applications 237
VISHON ottt bbb 237
HanNdliNG Partial fallUE ...ttt st 237
Strategies for handling Partial failUre ...ttt 239
Implementing retries with exponential Backoff ... s 240
Implementing the Circuit Breaker Pattern ...ttt st sssssseas 248
Using the ResilientHttpClient utility class from eShopONnCoNntainersco..covvrererennrenneensrenereeeens 250
Testing retries iN @SNOPONCONTAINEIS ...ttt sttt st ss s ss st sess s 251
Testing the circuit breaker in @ShOPONCONTAINETS. ...t seseeees 251
Adding a jitter strategy to the retry policy 253
Health MONItoring ..o 254
Implementing health checks in ASP.NET COre SEIVICESomvmrimmreermrerneiseeissessssessssssssssssssssssssssssssssssnsssns 254
USING WATCNAOGS ..ottt st s skt 258
Health checks When USING OFChESTIAtOrS ...ttt ettt ssseeas 259
Advanced monitoring: visualization, analysis, and @lerts ... 259
Securing .NET Microservices and Web Applications 260
Implementing authentication in .NET microservices and web applications.........cecverneeenecenecernecenneeens 260
Authenticating using ASP.NET COre [A@NTILY ... 261
Authenticating USING eXTErNal PrOVIAEIS. ... 262
Authenticating With DEArer TOKENS. ... 264
About authorization in .NET microservices and web applications.......c...coccoenrerrineinrinninsinsinssinsisnsenenes 267
Implementing role-based authorization 267
Implementing policy-based aUthOrZatION ...t eseeeas 268
Storing application secrets safely during developMENTt ... 270
Storing secrets in eNVIrONMENT Variables ... 270
Storing secrets using the ASP.NET Core Secret Manager ... sssssnns 271
Using Azure Key Vault to protect secrets at production time ... 271
Key Takeaways 273

vii

viii

SECTION

Introduction

Enterprises are increasingly realizing cost savings, solving deployment problems, and improving
DevOps and production operations by using containers. Microsoft has been releasing container
innovations for Windows and Linux by creating products like Azure Container Service and Azure
Service Fabric, and by partnering with industry leaders like Docker, Mesosphere, and Kubernetes.
These products deliver container solutions that help companies build and deploy applications at cloud
speed and scale, whatever their choice of platform or tools.

Docker is becoming the de facto standard in the container industry, supported by the most significant
vendors in the Windows and Linux ecosystems. (Microsoft is one of the main cloud vendors
supporting Docker.) In the future, Docker will probably be ubiquitous in any datacenter in the cloud or
on-premises.

In addition, the microservices architecture is emerging as an important approach for distributed
mission-critical applications. In a microservice-based architecture, the application is built on a
collection of services that can be developed, tested, deployed, and versioned independently.

About this guide

This guide is an introduction to developing microservices-based applications and managing them
using containers. It discusses architectural design and implementation approaches using .NET Core
and Docker containers. To make it easier to get started with containers and microservices, the guide
focuses on a reference containerized and microservice-based application that you can explore. The
sample application is available at the eShopOnContainers GitHub repo.

This guide provides foundational development and architectural guidance primarily at a development
environment level with a focus on two technologies: Docker and .NET Core. Our intention is that you
read this guide when thinking about your application design without focusing on the infrastructure
(cloud or on-premises) of your production environment. You will make decisions about your
infrastructure later, when you create your production-ready applications. Therefore, this guide is
intended to be infrastructure agnostic and more development-environment-centric.

After you have studied this guide, your next step would be to learn about production-ready
microservices on Microsoft Azure.

What this guide does not cover

This guide does not focus on the application lifecycle, DevOps, CI/CD pipelines, or team work. The
complementary guide Containerized Docker Application Lifecycle with Microsoft Platform and Tools
focuses on that subject. The current guide also does not provide implementation details on Azure
infrastructure, such as information on specific orchestrators.

1 Introduction

https://martinfowler.com/articles/microservices.html
https://github.com/dotnet/eShopOnContainers
https://aka.ms/dockerlifecycleebook

Additional resources

e Containerized Docker Application Lifecycle with Microsoft Platform and Tools (downloadable
eBook)
https://aka.ms/dockerlifecycleebook

Who should use this guide

We wrote this guide for developers and solution architects who are new to Docker-based application
development and to microservices-based architecture. This guide is for you if you want to learn how
to architect, design, and implement proof-of-concept applications with Microsoft development
technologies (with special focus on .NET Core) and with Docker containers.

You will also find this guide useful if you are a technical decision maker, such as an enterprise
architect, who wants an architecture and technology overview before you decide on what approach to
select for new and modern distributed applications.

How to use this guide

The first part of this guide introduces Docker containers, discusses how to choose between .NET Core
and the .NET Framework as a development framework, and provides an overview of microservices.
This content is for architects and technical decision makers who want an overview but who do not
need to focus on code implementation details.

The second part of the guide starts with the "Development process for Docker based applications”
section. It focuses on development and microservice patterns for implementing applications using
.NET Core and Docker. This section will be of most interest to developers and architects who want to
focus on code and on patterns and implementation details.

Related microservice and container-based reference
application: eShopOnContainers

The eShopOnContainers application is a reference app for .NET Core and microservices that is
designed to be deployed using Docker containers. The application consists of multiple subsystems,
including several e-store Ul front ends (a Web app and a native mobile app). It also includes the back-
end microservices and containers for all required server-side operations.

This microservice and container-based application source code is open source and available at the
eShopOnContainers GitHub repo.

Send us your feedback!

We wrote this guide to help you understand the architecture of containerized applications and
microservices in .NET. The guide and related reference application will be evolving, so we welcome
your feedback! If you have comments about how this guide can be improved, please send them to:

mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com

2 Introduction

https://aka.ms/dockerlifecycleebook
http://aka.ms/MicroservicesArchitecture
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback%20for%20.NET%20Container%20&%20Microservices%20Architecture%20book

SECTION

Introduction to Containers
and Docker

Containerization is an approach to software development in which an application or service, its
dependencies, and its configuration (abstracted as deployment manifest files) are packaged together
as a container image. The containerized application can be tested as a unit and deployed as a
container image instance to the host operating system (OS).

Just as shipping containers allow goods to be transported by ship, train, or truck regardless of the
cargo inside, software containers act as a standard unit of software that can contain different code
and dependencies. Containerizing software this way enables developers and IT professionals to
deploy them across environments with little or no modification.

Containers also isolate applications from each other on a shared OS. Containerized applications run
on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore have a
significantly smaller footprint than virtual machine (VM) images.

Each container can run a whole web application or a service, as shown in Figure 2-1. In this example,
Docker host is a container host, and App1, App2, Svc 1, and Svc 2 are containerized applications or
services.

Docker Host

oo R
= e

Figure 2-1. Multiple containers running on a container host

Another benefit of containerization is scalability. You can scale out quickly by creating new containers
for short-term tasks. From an application point of view, instantiating an image (creating a container) is
similar to instantiating a process like a service or web app. For reliability, however, when you run
multiple instances of the same image across multiple host servers, you typically want each container
(image instance) to run in a different host server or VM in different fault domains.

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the
whole application lifecycle workflow. The most important benefit is the isolation provided between
Dev and Ops.

3 Introduction to Containers and Docker

What is Docker?

Docker is an open-source project for automating the deployment of applications as portable, self-
sufficient containers that can run on the cloud or on-premises. Docker is also a company that
promotes and evolves this technology, working in collaboration with cloud, Linux, and Windows
vendors, including Microsoft.

Run anywhere

Windows Server Linux Vi) Service
Container Container 5 Provider

Docker

Figure 2-2. Docker deploys containers at all layers of the hybrid cloud

Docker image containers can run natively on Linux and Windows. However, Windows images can run
only on Windows hosts and Linux images can run only on Linux hosts, meaning host a server or a VM.

Developers can use development environments on Windows, Linux, or macOS. On the development
computer, the developer runs a Docker host where Docker images are deployed, including the app
and its dependencies. Developers who work on Linux or on the Mac use a Docker host that is Linux
based, and they can create images only for Linux containers. (Developers working on the Mac can edit
code or run the Docker CLI from macOS, but as of the time of this writing, containers do not run
directly on macOS.) Developers who work on Windows can create images for either Linux or Windows
Containers.

To host containers in development environments and provide additional developer tools, Docker
ships Docker Community Edition (CE) for Windows or for macOS. These products install the necessary
VM (the Docker host) to host the containers. Docker also makes available Docker Enterprise Edition
(EE), which is designed for enterprise development and is used by IT teams who build, ship, and run
large business-critical applications in production.

To run Windows Containers, there are two types of runtimes:

e Windows Server Containers provide application isolation through process and namespace
isolation technology. A Windows Server Container shares a kernel with the container host and
with all containers running on the host.

e Hyper-V Containers expand on the isolation provided by Windows Server Containers by
running each container in a highly optimized virtual machine. In this configuration, the kernel
of the container host is not shared with the Hyper-V Containers, providing better isolation.

4 Introduction to Containers and Docker

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://www.docker.com/community-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

The images for these containers are created the same way and function the same. The difference is in
how the container is created from the image—running a Hyper-V Container requires an extra
parameter. For details, see Hyper-V Containers.

Comparing Docker containers with virtual machines

Figure 2-3 shows a comparison between VMs and Docker containers.

Virtual Machines Docker Containers

App 3

App 1 App 2

Bins/Libs Bins/Libs Bins/Libs App 1 App 2 App 3

Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Container Engine
Hypervisor

Host Operating System Operating System

Infrastructure

CEd i B

Infrastructure

Virtual machines include the application, the | Containers include the application and all its

required libraries or binaries, and a full guest | dependencies. However, they share the OS kernel

operating system. Full virtualization requires with other containers, running as isolated

more resources than containerization. processes in user space on the host operating
system. (Except in Hyper-V containers, where each
container runs inside of a special virtual machine
per container.)

Figure 2-3. Comparison of traditional virtual machines to Docker containers

Because containers require far fewer resources (for example, they do not need a full OS), they are easy
to deploy and they start fast. This allows you to have higher density, meaning that it allows you to run
more services on the same hardware unit, thereby reducing costs.

As a side effect of running on the same kernel, you get less isolation than VMs.

The main goal of an image is that it makes the environment (dependencies) the same across different
deployments. This means that you can debug it on your machine and then deploy it to another
machine with the same environment guaranteed.

A container image is a way to package an app or service and deploy it in a reliable and reproducible
way. You could say that Docker is not only a technology, but also a philosophy and a process.

5 Introduction to Containers and Docker

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

When using Docker, you will not hear developers say, “It works on my machine, why not in
production?” They can simply say, “It runs on Docker,” because the packaged Docker application can
be executed on any supported Docker environment, and it will run the way it was intended to on all
deployment targets (Dev, QA, staging, production, etc.).

Docker terminology

This section lists terms and definitions you should be familiar with before getting deeper into Docker.
For further definitions, see the extensive glossary provided by Docker
(https://docs.docker.com/v1.11/engine/reference/glossary/).

Container image: A package with all the dependencies and information needed to create a container.
An image includes all the dependencies (such as frameworks) plus deployment and execution
configuration to be used by a container runtime. Usually, an image derives from multiple base images
that are layers stacked on top of each other to form the container’s filesystem. An image is immutable
once it has been created.

Container: An instance of a Docker image. A container represents the execution of a single
application, process, or service. It consists of the contents of a Docker image, an execution
environment, and a standard set of instructions. When scaling a service, you create multiple instances
of a container from the same image. Or a batch job can create multiple containers from the same
image, passing different parameters to each instance.

Tag: A mark or label you can apply to images so that different images or versions of the same image
(depending on the version number or the target environment) can be identified.

Dockerfile: A text file that contains instructions for how to build a Docker image.

Build: The action of building a container image based on the information and context provided by its
Dockerfile, plus additional files in the folder where the image is built. You can build images with the
Docker docker build command.

Repository (repo): A collection of related Docker images, labeled with a tag that indicates the image
version. Some repos contain multiple variants of a specific image, such as an image containing SDKs

(heavier), an image containing only runtimes (lighter), etc. Those variants can be marked with tags. A

single repo can contain platform variants, such as a Linux image and a Windows image.

Registry: A service that provides access to repositories. The default registry for most public images is
Docker Hub (owned by Docker as an organization). A registry usually contains repositories from
multiple teams. Companies often have private registries to store and manage images they've created.
Azure Container Registry is another example.

Docker Hub: A public registry to upload images and work with them. Docker Hub provides Docker
image hosting, public or private registries, build triggers and web hooks, and integration with GitHub
and Bitbucket.

Azure Container Registry: A public resource for working with Docker images and its components in
Azure. This provides a registry that is close to your deployments in Azure and that gives you control
over access, making it possible to use your Azure Active Directory groups and permissions.

6 Introduction to Containers and Docker

file:///C:/Users/v-mikepo/AppData/Roaming/Microsoft/Word/Docker
https://docs.docker.com/v1.11/engine/reference/glossary/
https://hub.docker.com/

Docker Trusted Registry (DTR): A Docker registry service (from Docker) that can be installed on-
premises so it lives within the organization’s datacenter and network. It is convenient for private
images that should be managed within the enterprise. Docker Trusted Registry is included as part of
the Docker Datacenter product. For more information, see Docker Trusted Registry (DTR).

Docker Community Edition (CE): Development tools for Windows and macOS for building, running,
and testing containers locally. Docker CE for Windows provides development environments for both
Linux and Windows Containers. The Linux Docker host on Windows is based on a Hyper-V virtual
machine. The host for Windows Containers is directly based on Windows. Docker CE for Mac is based
on the Apple Hypervisor framework and the xhyve hypervisor, which provides a Linux Docker host
virtual machine on Mac OS X. Docker CE for Windows and for Mac replaces Docker Toolbox, which
was based on Oracle VirtualBox.

Docker Enterprise Edition (EE): An enterprise-scale version of Docker tools for Linux and Windows
development.

Compose: A command-line tool and YAML file format with metadata for defining and running multi-
container applications. You define a single application based on multiple images with one or more
.yml files that can override values depending on the environment. After you have created the
definitions, you can deploy the whole multi-container application with a single command (docker-
compose up) that creates a container per image on the Docker host.

Cluster: A collection of Docker hosts exposed as if it were a single virtual Docker host, so that the
application can scale to multiple instances of the services spread across multiple hosts within the
cluster. Docker clusters can be created with Docker Swarm, Mesosphere DC/OS, Kubernetes, and
Azure Service Fabric. (If you use Docker Swarm for managing a cluster, you typically refer to the
cluster as a swarm instead of a cluster.)

Orchestrator: A tool that simplifies management of clusters and Docker hosts. Orchestrators enable
you to manage their images, containers, and hosts through a command line interface (CLI) or a
graphical Ul. You can manage container networking, configurations, load balancing, service discovery,
high availability, Docker host configuration, and more. An orchestrator is responsible for running,
distributing, scaling, and healing workloads across a collection of nodes. Typically, orchestrator
products are the same products that provide cluster infrastructure, like Mesosphere DC/OS,
Kubernetes, Docker Swarm, and Azure Service Fabric.

Docker containers, images, and registries

When using Docker, a developer creates an app or service and packages it and its dependencies into
a container image. An image is a static representation of the app or service and its configuration and
dependencies.

To run the app or service, the app’s image is instantiated to create a container, which will be running
on the Docker host. Containers are initially tested in a development environment or PC.

Developers should store images in a registry, which acts as a library of images and is needed when
deploying to production orchestrators. Docker maintains a public registry via Docker Hu ; other
vendors provide registries for different collections of images. Alternatively, enterprises can have a
private registry on-premises for their own Docker images.

7 Introduction to Containers and Docker

https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://github.com/mist64/xhyve
https://hub.docker.com/

Basic taxonomy in Docker

A Registry
Stores many
static images

Images
Static, persisted container image

i Image-instance running
; an app process (service/web)

Figure 2-4. Taxonomy of Docker terms and concepts

Figure 2-4 shows how images and registries in Docker relate to other components. It also shows the
multiple registry offerings from vendors.

|
)

Hosted Docker
Registry

— On-premises

Docker Trusted (‘n’ private organizations)

Registry on-prem.

Docker Hub
Registry

—_—

Docker Trusted
Registry on-cloud

Azure Container
Registry
| Public Cloud

(specific vendors)

AWS Container
Registry

Google
Container
Registry

Quay
Registry

Other Cloud

Putting images in a registry lets you store static and immutable application bits, including all their
dependencies at a framework level. Those images can then be versioned and deployed in multiple

environments and therefore provide a consistent deployment unit.

Private image registries, either hosted on-premises or in the cloud, are recommended when:

e Your images must not be shared publicly due to confidentiality.

e You want to have minimum network latency between your images and your chosen
deployment environment. For example, if your production environment is Azure cloud, you
probably want to store your images in Azure Container Registry so that network latency will
be minimal. In a similar way, if your production environment is on-premises, you might want
to have an on-premises Docker Trusted Registry available within the same local network.

Introduction to Containers and Docker

SECTION 3

Choosing Between .NET
Core and .NET Framework
for Docker Containers

There are two supported frameworks for building server-side containerized Docker applications with
.NET: .NET Framework and .NET Core. They share many.NET platform components, and you can share
code across the two. However, there are fundamental differences between them, and which
framework you use will depend on what you want to accomplish. This section provides guidance on
when to choose each framework.

General guidance

This section provides a summary of when to choose .NET Core or .NET Framework. We provide more
details about these choices in the sections that follow.

You should use .NET Core for your containerized Docker server application when:

e You have cross-platform needs. For example, you want to use both Linux and Windows
Containers.

e Your application architecture is based on microservices.

e You need to start containers fast and want a small footprint per container to achieve better
density or more containers per hardware unit in order to lower your costs.

In short, when you create new containerized .NET applications, you should consider.NET Core as the
default choice. It has many benefits and fits best with the containers philosophy and style of working.

An additional benefit of using .NET Core is that you can run side by side .NET versions for applications
within the same machine. This benefit is more important for servers or VMs that do not use
containers, because containers isolate the versions of .NET that the app needs. (As long as they are
compatible with the underlying OS.)

You should use .NET Framework for your containerized Docker server application when:

e Your application currently uses .NET Framework and has strong dependencies on Windows.

e You need to use Windows APIs that are not supported by .NET Core.

e You need to use third-party .NET libraries or NuGet packages that are not available for .NET
Core.

9 Choosing Between .NET Core and .NET Framework for Docker Containers

https://www.microsoft.com/net/download/framework
https://www.microsoft.com/net/download/core

Using .NET Framework on Docker can improve your deployment experiences by minimizing
deployment issues. This “lift and shift” scenario is important for “"dockerizing” legacy applications (at
least, those that are not based on microservices).

When to choose .NET Core for Docker containers

The modularity and lightweight nature of .NET Core makes it perfect for containers. When you deploy
and start a container, its image is far smaller with .NET Core than with .NET Framework. In contrast, to
use .NET Framework for a container, you must base your image on the Windows Server Core image,
which is a lot heavier than the Windows Nano Server or Linux images that you use for .NET Core.

Additionally, .NET Core is cross-platform, so you can deploy server apps with Linux or Windows
container images. However, if you are using the full .NET Framework, you can only deploy images
based on Windows Server Core.

The following is a more detailed explanation of why to choose .NET Core.

Developing and deploying cross platform

Clearly, if your goal is to have an application (web app or service) that can run on multiple platforms
supported by Docker (Linux and Windows), the right choice is .NET Core, because .NET Framework
only supports Windows.

.NET Core also supports macOS as a development platform. However, when you deploy containers to
a Docker host, that host must (currently) be based on Linux or Windows. For example, in a
development environment, you could use a Linux VM running on a Mac.

Visual Studio provides an integrated development environment (IDE) for Windows. Visual Studio for
Mac is an evolution of Xamarin Studio running in macOS, but as of the time of this writing, it still does
not support Docker development. You can also use Visual Studio Code (VS Code) on macOS, Linux,
and Windows. VS Code fully supports .NET Core, including IntelliSense and debugging. Because VS
Code is a lightweight editor, you can use it to develop containerized apps on the Mac in conjunction
with the Docker CLI and the .NET Core CLI (dotnet cli). You can also target .NET Core with most third-
party editors like Sublime, Emacs, vi, and the open-source OmniSharp project, which also provides
IntelliSense support. In addition to the IDEs and editors, you can use the .NET Core command-line
tools (dotnet CLI) for all supported platforms.

Using containers for new (“green-field”) projects

Containers are commonly used in conjunction with a microservices architecture, although they can
also be used to containerize web apps or services that follow any architectural pattern. You can use
.NET Framework on Windows Containers, but the modularity and lightweight nature of .NET Core
makes it perfect for containers and microservices architectures. When you create and deploy a
container, its image is far smaller with .NET Core than with .NET Framework.

Creating and deploying microservices on containers

You could use the full .NET framework for microservices-based applications (without containers) when
using plain processes, because .NET Framework is already installed and shared across processes.
However, if you are using containers, the image for .NET Framework (Windows Server Core plus the

10 Choosing Between .NET Core and .NET Framework for Docker Containers

https://www.visualstudio.com/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/

full .NET Framework within each image) is probably too heavy for a microservices-on-containers
approach.

In contrast, .NET Core is the best candidate if you are embracing a microservices-oriented system that
is based on containers, because .NET Core is lightweight. In addition, its related container images,
either the Linux image or the Windows Nano image, are lean and small.

A microservice is meant to be as small as possible: to be light when spinning up, to have a small
footprint, to have a small Bounded Context, to represent a small area of concerns, and to be able to
start and stop fast. For those requirements, you will want to use small and fast-to-instantiate container
images like the .NET Core container image.

A microservices architecture also allows you to mix technologies across a service boundary. This
enables a gradual migration to .NET Core for new microservices that work in conjunction with other
microservices or with services developed with Node js, Python, Java, GolLang, or other technologies.

There are many orchestrators you can use when targeting microservices and containers. For large and
complex microservice systems being deployed as Linux containers, Azure Container Service has
multiple orchestrator offerings (Mesos DC/OS, Kubernetes, and Docker Swarm), which makes it a
good choice. You can also use Azure Service Fabric for Linux, which supports Docker Linux containers.
(At the time of this writing, this offering was still in preview. Check the Azure Service Fabric for the
latest status.)

For large and complex microservice systems being deployed as Windows Containers, most
orchestrators are currently in a less mature state. However, you currently can use Azure Service Fabric
for Windows Containers, as well as Azure Container Service. Azure Service Fabric is well established for
running mission-critical Windows applications.

All these platforms support .NET Core and make them ideal for hosting your microservices.

Deploying high density in scalable systems

When your container-based system needs the best possible density, granularity, and performance,
.NET Core and ASP.NET Core are your best options. ASP.NET Core is up to ten times faster than
ASP.NET in the full .NET Framework, and it leads other popular industry technologies for
microservices, such as Java servlets, Go, and Nodejs.

This is especially relevant for microservices architectures, where you could have hundreds of
microservices (containers) running. With ASP.NET Core images (based on the .NET Core runtime) on
Linux or Windows Nano, you can run your system with a much lower number of servers or VMs,
ultimately saving costs in infrastructure and hosting.

When to choose .NET Framework for Docker
containers

While .NET Core offers significant benefits for new applications and application patterns, .NET
Framework will continue to be a good choice for many existing scenarios.

11 Choosing Between .NET Core and .NET Framework for Docker Containers

https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-overview
https://azure.microsoft.com/en-us/services/service-fabric/

Migrating existing applications directly to a Docker container

You might want to use Docker containers just to simplify deployment, even if you are not creating
microservices. For example, perhaps you want to improve your DevOps workflow with Docker—
containers can give you better isolated test environments and can also eliminate deployment issues
caused by missing dependencies when you move to a production environment. In cases like these,
even if you are deploying a monolithic application, it makes sense to use Docker and Windows
Containers for your current .NET Framework applications.

In most cases, you will not need to migrate your existing applications to .NET Core; you can use
Docker containers that include the full .NET Framework. However, a recommended approach is to use
.NET Core as you extend an existing application, such as writing a new service in ASP.NET Core.

Using third-party .NET libraries or NuGet packages not available for
.NET Core

Third-party libraries are quickly embracing the .NET Standard, which enables code sharing across all
.NET flavors, including .NET Core. With the .NET Standard Library 2.0, this will be even easier, because
the .NET Core API surface will become significantly bigger. Your .NET Core applications will be able to
directly use existing .NET Framework libraries.

Be aware that whenever you run a library or process based on the full .NET Framework, because of its
dependencies on Windows, the container image used for that application or service will need to be
based on a Windows Container image.

Using.NET technologies not available for .NET Core

Some .NET Framework technologies are not available in the current version of .NET Core (version 1.1
as of this writing). Some of them will be available in later .NET Core releases (.NET Core 2), but others
do not apply to the new application patterns targeted by .NET Core and might never be available.

The following list shows most of the technologies that are not available in .NET Core 1.1:

e ASP.NET Web Forms. This technology is only available on .NET Framework. Currently there are
no plans to bring ASP.NET Web Forms to .NET Core.

e ASP.NET Web Pages. This technology is slated to be included in a future .NET Core release, as
explained in the .NET Core roadmap.

e ASP.NET SignalR. As of the .NET Core 1.1 release (November 2016), ASP.NET SignalR is not
available for ASP.NET Core (neither client nor server). There are plans to include it in a future
release, as explained in the .NET Core roadmap. A preview is available at the Server-side and
Client Library GitHub repositories.

e WHCEF services. Even when a WCF-Client library is available to consume WCF services from .NET
Core (as of early 2017), the WCF server implementation is only available on .NET Framework.
This scenario is being considered for future releases of .NET Core.

e Workflow-related services. Windows Workflow Foundation (WF), Workflow Services (WCF +
WEF in a single service), and WCF Data Services (formerly known as ADO.NET Data Services)
are only available on .NET Framework. There are currently no plans to bring them to .NET
Core.

12 Choosing Between .NET Core and .NET Framework for Docker Containers

https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/aspnet/SignalR-Server
https://github.com/aspnet/SignalR-Client-Net
https://github.com/dotnet/wcf

e Language support. As of the release of Visual Studio 2017, Visual Basic and F# do not have
tooling support for .NET Core, but this support is planned for updated versions of Visual
Studio.

In addition to the technologies listed in the official .NET Core roadmap, other features might be
ported to .NET Core. For a full list, look at the items tagged as port-to-core on the CoreFX GitHub site.
Note that this list does not represent a commitment from Microsoft to bring those components to
.NET Core—the items simply capture requests from the community. If you care about any of the
components listed above, consider participating in the discussions on GitHub so that your voice can
be heard. And if you think something is missing, please file a new issue in the CoreFX repository.

Using a platform or API that does not support .NET Core

Some Microsoft or third-party platforms do not support .NET Core. For example, some Azure services
provide an SDK that is not yet available for consumption on .NET Core. This is temporary, because all
Azure services will eventually use .NET Core. For example, the Azure DocumentDB SDK for .NET Core
was released as a preview on November 16, 2016, but it is now generally available (GA) as a stable
version.

In the meantime, you can always use the equivalent REST API from the Azure service instead of the
client SDK.

Additional resources

e _NET Core Guide
https://docs.microsoft.com/en-us/dotnet/articles/core/index

e Porting from .NET Framework to .NET Core
https://docs.microsoft.com/en-us/dotnet/articles/core/porting/index

e _NET Framework on Docker Guide
https://docs.microsoft.com/en-us/dotnet/articles/framework/docker/

e _NET Components Overview
https://docs.microsoft.com/en-us/dotnet/articles/standard/components

13 Choosing Between .NET Core and .NET Framework for Docker Containers

https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/1.2.1
https://docs.microsoft.com/en-us/dotnet/articles/core/index
https://docs.microsoft.com/en-us/dotnet/articles/core/porting/index
https://docs.microsoft.com/en-us/dotnet/articles/framework/docker/
https://docs.microsoft.com/en-us/dotnet/articles/standard/components

Decision table: .NET frameworks to use for Docker

The following decision table summarizes whether to use .NET Framework or .NET Core. Remember
that for Linux containers, you need Linux-based Docker hosts (VMs or servers) and that for Windows
Containers you need Windows Server based Docker hosts (VMs or servers).

Linux containers

Windows Containers

Architecture / App Type

Microservices on containers .NET Core .NET Core

Monolithic app .NET Core .NET Framework
.NET Core

Best-in-class performance and .NET Core .NET Core

scalability

Windows Server legacy app -- .NET Framework

("brown-field") migration to

containers

New container-based .NET Core .NET Core

development (“green-field”)

ASP.NET Core .NET Core .NET Core (recommended)

.NET Framework

ASP.NET 4 (MVC 5, Web API 2,
and Web Forms)

.NET Framework

SignalR services

.NET Core (future release)

.NET Framework

.NET Core (future release)

WCF, WF, and other legacy

WCEF in .NET Core (in the

.NET Framework

(eventually all Azure services
will provide client SDKs for
.NET Core)

frameworks roadmap)))
WCF in .NET Core (in the
roadmap)
Consumption of Azure services .NET Core .NET Framework

.NET Core

(eventually all Azure services
will provide client SDKs for
.NET Core)

14

Choosing Between .NET Core and .NET Framework for Docker Containers

What OS to target with .NET containers

Given the diversity of operating systems supported by Docker and the differences between .NET
Framework and .NET Core, you should target a specific OS and specific versions depending on the
framework you are using. For instance, in Linux there are many distros available, but only few of them
are supported in the official .NET Docker images (like Debian and Alpine). For Windows you can use
Windows Server Core or Nano Server; these versions of Windows provide different characteristics (like
[IS versus a self-hosted web server like Kestrel) that might be needed by .NET Framework or NET Core.

In Figure 3-1 you can see the possible OS version depending on the .NET framework used.

What OS to target with .NET containers

. C tible with
.NET Framework Windows e
s
3.5, 4.x Server Core Larger Image

C_Ioud Optimized,

WindOWS Container OS
Kestrel
Nano Server Smaller, Faster Start
Time

Debian, Alpine, etc.
Kestrel

Smaller, Faster Start
Time

Figure 3-1. Operating systems to target depending on versions of the .NET framework

You can also create your own Docker image in cases where you want to use a different Linux distro or
where you want an image with versions not provided by Microsoft. For example, you might create an
image with ASP.NET Core running on the full NET Framework and Windows Server Core, which is a
not-so-common scenario for Docker.

When you add the image name to your Dockerfile file, you can select the operating system and
version depending on the tag you use, as in the following examples.

microsoft/dotnet:1.1-runtime .NET Core 1.1 runtime-only on Linux
microsoft/dotnet:1.1-runtime- .NET Core 1.1 runtime-only on Windows Nano
nanoserver Server

Official .NET Docker images

The Official NET Docker images are Docker images created and optimized by Microsoft. They are
publicly available in the Microsoft repositories on Docker Hub. Each repository can contain multiple

15 Choosing Between .NET Core and .NET Framework for Docker Containers

https://hub.docker.com/u/microsoft/

images, depending on .NET versions, and depending on the OS and versions (Linux Debian, Linux
Alpine, Windows Nano Server, Windows Server Core, etc.).

Microsoft's vision for .NET repositories is to have granular and focused repos, where a repo represents
a specific scenario or workload. For instance, the microsoft/aspnetcore images should be used when
using ASP.NET Core on Docker, because those ASP.NET Core images provide additional optimizations
so containers can start faster.

On the other hand, the .NET Core images (microsoft/dotnet) are intended for console apps based on
.NET Core. For example, batch processes, Azure WebJobs, and other console scenarios should use
.NET Core. Those images do not include the ASP.NET Core stack, resulting in a smaller container
image.

Most image repos provide extensive tagging to help you select not just a specific framework version,
but also to choose an OS (Linux distro or Windows version).

For further information about the official NET Docker images provided by Microsoft, see the .NET
Docker Images summary.

.NET Core and Docker image optimizations for development versus
production

When building Docker images for developers, Microsoft focused on the following main scenarios:

e Images used to develop and build .NET Core apps.
e Images used to run .NET Core apps.

Why multiple images? When developing, building, and running containerized applications, you usually
have different priorities. By providing different images for these separate tasks, Microsoft helps
optimize the separate processes of developing, building, and deploying apps.

During development and build

During development, what is important is how fast you can iterate changes, and the ability to debug
the changes. The size of the image is not as important as the ability to make changes to your code
and see the changes quickly. Some of our tools, like yo docker for Visual Studio Code, use the
development ASP.NET Core image (microsoft/aspnetcore-build) during development; you could even
use that image as a build container. When building inside a Docker container, the important aspects
are the elements that are needed in order to compile your app. This includes the compiler and any
other .NET dependencies, plus web development dependencies like npm, Gulp, and Bower.

Why is this type of build image important? You do not deploy this image to production. Instead, it is
an image you use to build the content you place into a production image. This image would be used
in your continuous integration (Cl) environment or build environment. For instance, rather than
manually installing all your application dependencies directly on a build agent host (a VM, for
example), the build agent would instantiate a .NET Core build image with all the dependencies
required to build the application. Your build agent only needs to know how to run this Docker image.
This simplifies your Cl environment and makes it much more predictable.

16 Choosing Between .NET Core and .NET Framework for Docker Containers

https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/
https://aka.ms/dotnetdockerimages
https://aka.ms/dotnetdockerimages
https://github.com/Microsoft/generator-docker
https://hub.docker.com/r/microsoft/aspnetcore-build/

In production

What is important in production is how fast you can deploy and start your containers based on a
production .NET Core image. Therefore, the runtime-only image based on microsoft/aspnetcore is
small so that it can travel quickly across the network from your Docker registry to your Docker hosts.
The contents are ready to run, enabling the fastest time from starting the container to processing
results. In the Docker model, there is no need for compilation from C# code, as there is when you run
dotnet build or dotnet publish when using the build container.

In this optimized image you put only the binaries and other content needed to run the application.
For example, the content created by dotnet publish contains only the compiled .NET binaries,
images, .js, and .css files. Over time, you will see images that contain pre-jitted packages.

Although there are multiple versions of the .NET Core and ASP.NET Core images, they all share one or
more layers, including the base layer. Therefore, the amount of disk space needed to store an image is
small; it consists only of the delta between your custom image and its base image. The result is that it

is quick to pull the image from your registry.

When you explore the .NET image repositories at Docker Hub, you will find multiple image versions
classified or marked with tags. These help decide which one to use, depending on the version you
need, like those in the following table:

microsoft/aspnetcore:1.1 ASFT.N.ET ;ore, with. runtime only and ASP.NET Core
optimizations, on Linux
microsoft/aspnetcore-build:1.0-1.1 ASP.NET Core, with SDKs included, on Linux
microsoft/dotnet:1.1-runtime .NET Core 1.1, with runtime only, on Linux
microsoft/dotnet:1.1-runtime-deps .NET Core 1..1, with runtime .and framework.
dependencies for self-contained apps, on Linux
microsoft/dotnet:1.1.0-sdk-msbuild .NET Core 1.1 with SDKs included, on Linux

17 Choosing Between .NET Core and .NET Framework for Docker Containers

https://hub.docker.com/r/microsoft/aspnetcore/

SECTION

Architecting Container-
and Microservice-Based
Applications

Vision
Microservices offer great benefits but also raise huge new challenges. Microservice architecture patterns
are fundamental pillars when creating a microservice-based application.

Earlier in this guide, you learned basic concepts about containers and Docker. That was the minimum
information you need in order to get started with containers. Although, even when containers are
enablers and a great fit for microservices, they are not mandatory for a microservice architecture and
many architectural concepts in this architecture section could be applied without containers, too.
However, this guidance focuses on the intersection of both due to the already introduced importance
of containers.

Enterprise applications can be complex and are often composed of multiple services instead of a
single service-based application. For those cases, you need to understand additional architectural
approaches, such as the microservices and certain domain-driven design (DDD) patterns plus
container orchestration concepts. Note that this chapter describes not just microservices on
containers, but any containerized application, as well.

Container design principles

In the container model, a container image instance represents a single process. By defining a
container image as a process boundary, you can create primitives that can be used to scale the
process or to batch it.

When you design a container image, you will see an ENTRYPOINT definition in the Dockerfile. This
defines the process whose lifetime controls the lifetime of the container. When the process completes,
the container lifecycle ends. Containers might represent long-running processes like web servers, but
can also represent short-lived processes like batch jobs, which formerly might have been
implemented as Azure WebJobs.

If the process fails, the container ends, and the orchestrator takes over. If the orchestrator was
configured to keep five instances running and one fails, the orchestrator will create another container
instance to replace the failed process. In a batch job, the process is started with parameters. When the
process completes, the work is complete.

18 Architecting Container- and Microservice-Based Applications

https://docs.docker.com/engine/reference/builder/
https://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/

You might find a scenario where you want multiple processes running in a single container. For that
scenario, since there can be only one entry point per container, you could run a script within the
container that launches as many programs as needed. For example, you can use Supervisor or a
similar tool to take care of launching multiple processes inside a single container. However, even
though you can find architectures that hold multiple processes per container, that approach it is not
very common.

Containerizing monolithic applications

You might want to build a single, monolithically deployed web application or service and deploy it as
a container. The application itself might not be internally monolithic, but structured as several
libraries, components, or even layers (application layer, domain layer, data-access layer, etc.).
Externally, however, it is a single container—a single process, a single web application, or a single
service.

To manage this model, you deploy a single container to represent the application. To scale up, you
just add more copies with a load balancer in front. The simplicity comes from managing a single
deployment in a single container or VM.

App 1 =1 Container A monolithic application has

most of its functionality within
a single process/container that
is componentized with internal

layers or libraries.

Host 1
(Server/VM)
Host 2 Scales out by cloning
(Server/VM) the app/container on
multiple servers/VMs
Host 3
(Server/VM)

Need to deploy Coarse-grained
the full density of
application applications

Figure 4-1. Example of the architecture of a containerized monolithic application

You can include multiple components, libraries, or internal layers in each container, as illustrated in
Figure 4-1. However, this monolithic pattern might conflict with the container principle “a container
does one thing, and does it in one process”, but might be ok for some cases.

The downside of this approach becomes evident if the application grows, requiring it to scale. If the
entire application can scale, it is not really a problem. However, in most cases, just a few parts of the
application are the choke points that requiring scaling, while other components are used less.

19 Architecting Container- and Microservice-Based Applications

http://supervisord.org/

For example, in a typical e-commerce application, you likely need to scale the product information
subsystem, because many more customers browse products than purchase them. More customers use
their basket than use the payment pipeline. Fewer customers add comments or view their purchase
history. And you might have only a handful of employees, that need to manage the content and
marketing campaigns. If you scale the monolithic design, all the code for these different tasks is
deployed multiple times and scaled at the same grade.

There are multiple ways to scale an application—horizontal duplication, splitting different areas of the
application, and partitioning similar business concepts or data. But, in addition to the problem of
scaling all components, changes to a single component require complete retesting of the entire
application, and a complete redeployment of all the instances.

However, the monolithic approach is common, because the development of the application is initially
easier than for microservices approaches. Thus, many organizations develop using this architectural
approach. While some organizations have had good enough results, others are hitting limits. Many
organizations designed their applications using this model because tools and infrastructure made it
too difficult to build service oriented architectures (SOA) years ago, and they did not see the need—
until the application grew.

From an infrastructure perspective, each server can run many applications within the same host and
have an acceptable ratio of efficiency in resources usage, as shown in Figure 4-2.

Host)IE‘ % m

(Server/VM

Figure 4-2. Monolithic approach: Host running multiple apps, each app running as a container

Monolithic applications in Microsoft Azure can be deployed using dedicated VMs for each instance.
Additionally, using Azure VM Scale Sets, you can easily scale the VMs. Azure App Service can also run
monolithic applications and easily scale instances without requiring you to manage the VMs. Since
2016, Azure App Services can run single instances of Docker containers as well, simplifying
deployment.

As a QA environment or a limited production environment, you can deploy multiple Docker host VMs
and balance them using the Azure balancer, as shown in Figure 4-3. This lets you manage scaling with
a coarse-grain approach, because the whole application lives within a single container.

¢ Microsoft
> Azure

Host 1 (VM)
/@ Ror 8
Browser or r Host 2 (VM)
Client app '!EI n (:\ or ==
Host 3 (VM)
= G

Figure 4-3. Example of multiple hosts scaling up a single container application

20 Architecting Container- and Microservice-Based Applications

https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

Deployment to the various hosts can be managed with traditional deployment techniques. Docker
hosts can be managed with commands like docker run or docker-compose performed manually, or
through automation such as continuous delivery (CD) pipelines.

Deploying a monolithic application as a container

There are benefits to using containers to manage monolithic application deployments. Scaling
container instances is far faster and easier than deploying additional VMs. Even if you use VM Scale
Sets, VMs take time to start. When deployed as traditional application instances instead of containers,
the configuration of the application is managed as part of the VM, which is not ideal.

Deploying updates as Docker images is far faster and network efficient. Docker images typically start
in seconds, which speeds rollouts. Tearing down a Docker image instance is as easy as issuing a
docker stop command, and typically completes in less than a second.

Because containers are immutable by design, you never need to worry about corrupted VMs. In
contrast, update scripts for a VM might forget to account for some specific configuration or file left on
disk.

While monolithic applications can benefit from Docker, we are touching only on the benefits.
Additional benefits of managing containers come from deploying with container orchestrators, which
manage the various instances and lifecycle of each container instance. Breaking up the monolithic
application into subsystems that can be scaled, developed, and deployed individually is your entry
point into the realm of microservices.

Publishing a single-container-based application to Azure App Service

Whether you want to get validation of a container deployed to Azure or when an application is simply
a single-container application, Azure App Service provides a great way to provide scalable single-
container-based services. Using Azure App Service is simple. It provides great integration with Git to
make it easy to take your code, build it in Visual Studio, and deploy it directly to Azure.

x
Create App Service ﬁ‘ Microsoft .
Host your web and mobile applications, REST APIs, and more in Azure cesardliimicrasoft com
T e
Services FrontEndWebSiteASPNETCare
Subscription
CADD Connect 2016 Demos
Resource Group
bikesharing360
App Service Plan
FromtEndWekSitePlan® v
Azure
. Cantainer Registry
Container bikeshering (outhcentralus)
Registry
Clicking the Create button will create the following Azure resources
Explore additional Azure services
App Service - FrontEndWebSiteASPNETCare
App Service Plan - FrontEndWebSitePlan
If you have removed your spanding limit or you are using Pay as You Go, there may be monetary impact if you provisien additional resources
Learn More

Figure 4-4. Publishing a single-container application to Azure App Service from Visual Studio

21 Architecting Container- and Microservice-Based Applications

Without Docker, if you needed other capabilities, frameworks, or dependencies that are not supported
in Azure App Service, you had to wait until the Azure team updated those dependencies in App
Service. Or you had to switch to other services like Azure Service Fabric, Azure Cloud Services, or even
VMs, where you had further control and you could install a required component or framework for
your application.

Container support in Visual Studio 2017 gives you the ability to include whatever you want in your
application environment, as shown in Figure 4-4. Since you are running it in a container, if you add a
dependency to your application, you can include the dependency in your Dockerfile or Docker image.

As also shown in Figure 4-4, the publish flow pushes an image through a container registry. This can
be the Azure Container Registry (a registry close to your deployments in Azure and secured by Azure
Active Directory groups and accounts), or any other Docker registry, like Docker Hub or an on-
premises registry.

State and data in Docker applications

In most cases, you can think of a container as an instance of a process. A process does not maintain
persistent state. While a container can write to its local storage, assuming that an instance will be
around indefinitely would be like assuming that a single location in memory will be durable. Container
images, like processes, should be assumed to have multiple instances or that they will eventually be
killed; if they're managed with a container orchestrator, it should be assumed that they might get
moved from one node or VM to another.

Docker provides a feature named the overlay file system. This implements a copy-on-write task that
stores updated information to the root file system of the container. That information is in addition to
the original image on which the container is based. If the container is deleted from the system, those
changes are lost. Therefore, while it is possible to save the state of a container within its local storage,
designing a system around this would conflict with the premise of container design, which by default
is stateless.

The following solutions are used to manage persistent data in Docker applications:

e Data volumes that mount to the host.

e Data volume containers that provide shared storage across containers using an external
container.

e Volume plugins that mount volumes to remote services, providing long-term persistence.

e Remote data sources like SQL or NoSQL databases, or cache services like Redis.

e Azure Storage, which provides geo-distributable storage, providing a good long-term
persistence solution for containers.

The following provides more detail about these options.

Data volumes are directories mapped from the host OS to directories in containers. When code in the
container has access to the directory, that access is actually to a directory on the host OS. This
directory is not tied to the lifetime of the container itself, and the directory can be accessed from code
running directly on the host OS or by another container that maps the same host directory to itself.
Thus, data volumes are designed to persist data independently of the life of the container. If you
delete a container or an image from the Docker host, the data persisted in the data volume is not
deleted. The data in a volume can be accessed from the host OS as well.

22 Architecting Container- and Microservice-Based Applications

https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/#creating-and-mounting-a-data-volume-container
https://docs.docker.com/engine/tutorials/dockervolumes/
https://redis.io/
https://azure.microsoft.com/en-us/documentation/services/storage/

Data volume containers are an evolution of regular data volumes. A data volume container is a
simple container that has one or more data volumes within it. The data volume container provides
access to containers from a central mount point. This method of data access is convenient because it
abstracts the location of the original data. Other than that, its behavior is similar to that of a regular
data volume, so data is persisted in this dedicated container independently of the lifecycle of the
application’s containers.

As shown in Figure 4-5, regular Docker volumes can be stored outside of the containers themselves
but within the physical boundaries of the host server or VM. However, Docker containers cannot
access a volume from one host server or VM to another. In other words, with these volumes, it is not
possible to manage data shared between containers that run on different Docker hosts

o Microsoft

Azure
I:El Stateless
container

Data Stateless
Volume SQL DB
container
—
Browser or
Client app
DocDB

Stateless

container

Stateless
Data Volume Container container

Figure 4-5. Data volumes and external data sources for container-based applications

In addition, when Docker containers are managed by an orchestrator, containers might “move”
between hosts, depending on the optimizations performed by the cluster. Therefore, it is not
recommended that you use data volumes for business data. But they are a good mechanism to work
with trace files, temporal files, or similar that will not impact business data consistency.

Volume plugins like Flocker provide data access across all hosts in a cluster. While not all volume
plugins are created equally, volume plugins typically provide externalized persistent reliable storage
from immutable containers.

Remote data sources and cache tools like Azure SQL Database, Azure Document DB, or a remote
cache like Redis can be used in containerized applications the same way they are used when
developing without containers. This is a proven way to store business application data.

Azure Storage. Business data usually will need to be placed in external resources or databases, like
relational databases or No-SQL databases like Azure Storage and DocDB. Azure Storage, in concrete,
provides the following services in the cloud:

23 Architecting Container- and Microservice-Based Applications

https://clusterhq.com/flocker/

e Blob storage stores unstructured object data. A blob can be any type of text or binary data,
such as document or media files (images, audio, and video files). Blob storage is also referred
to as Object storage.

e File storage offers shared storage for legacy applications using standard SMB protocol. Azure
virtual machines and cloud services can share file data across application components via
mounted shares. On-premises applications can access file data in a share via the File service
REST API.

e Table storage stores structured datasets. Table storage is a NoSQL key-attribute data store,
which allows rapid development and fast access to large quantities of data.

Relational databases and No-SQL databases. There are many choices for external databases, from
relational databases like SQL Server, PostgreSQL, Oracle, or No-SQL databases like Azure DocDB,
MongoDB, etc. These databases are not going to be explained as part of this guide since they are in a
completely different subject.

Service-oriented architecture

Service-oriented architecture (SOA) was an overused term and has meant different things to different
people. But as a common denominator, SOA means that you structure your application by
decomposing it into multiple services (most commonly as HTTP services) that can be classified as
different types like subsystems or tiers.

Those services can now be deployed as Docker containers, which solves deployment issues, because
all the dependencies are included in the container image. However, when you need to scale up SOA
applications, you might have scalability and availability challenges if you are deploying based on
single Docker hosts. This is where Docker clustering software or an orchestrator will help you out, as
explained in later sections where we describe deployment approaches for microservices.

Docker containers are useful (but not required) for both traditional service-oriented architectures and
the more advanced microservices architectures.

Microservices derive from SOA, but SOA is different from microservices architecture. Features like big
central brokers, central orchestrators at the organization level, and the Enterprise Service Bus (ESB) are
typical in SOA. But in most cases these are anti-patterns in the microservice community. In fact, some
people argue that “The microservice architecture is SOA done right.”

This guide focuses on microservices, because an SOA approach is less prescriptive than the
requirements and techniques used in a microservice architecture. If you know how to build a
microservice-based application, you also know how to build a simpler service-oriented application.

24 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/Enterprise_service_bus

Microservices architecture

As the name implies, a microservices architecture is an approach to building a server application as a
set of small services. Each service runs in its own process and communicates with other processes
using protocols such as HTTP/HTTPS, WebSockets, or AMQP. Each microservice implements a specific
end-to-end domain or business capability within a certain context boundary, and each must be
developed autonomously and be deployable independently. Finally, each microservice should own its
related domain data model and domain logic (sovereignty and decentralized data management)
based on different data storage technologies (SQL, NoSQL) and different programming languages.

What size should a microservice be? When developing a microservice, size should not be the
important point. Instead, the important point should be to create loosely coupled services so you
have autonomy of development, deployment, and scale, for each service. Of course, when identifying
and designing microservices, you should try to make them as small as possible as long as you do not
have too many direct dependencies with other microservices. More important than the size of the
microservice is the internal cohesion it must have and its independence from other services.

Why a microservices architecture? In short, it provides long-term agility. Microservices enable better
maintainability in complex, large, and highly-scalable systems by letting you create applications based
on many independently deployable services that each have granular and autonomous lifecycles.

As an additional benefit, microservices can scale out independently. Instead of having a single
monolithic application that you must scale out as a unit, you can instead scale out specific
microservices. That way, you can scale just the functional area that needs more processing power or
network bandwidth to support demand, rather than scaling out other areas of the application that do
not need to be scaled. That means cost savings because you need less hardware.

Monolithic deployment approach Microservices application approach
A traditional application has App * A microservice application App 1 App 2
most of its functionality within a segregates functionality into Ir——i———\\] ; ’i”“\'
few processes that are separate smaller services. ! i | i
componentized with layers and - Scales out by deploying each i ! i . !
libraries. service independently with |) .]
Scales by cloning the app on multiple instances across S e
multiple servers/VMs servers/VMs

<]

Coarse-grained IEI
density of

~
E] apps/services

Need to deploy

He]

=

the full

application

Figure 4-6. Monolithic deployment versus the microservices approach

25 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

As Figure 4-6 shows, the microservices approach allows agile changes and rapid iteration of each
microservice, because you can change specific, small areas of complex, large, and scalable
applications.

Architecting fine-grained microservices-based applications enables continuous integration and
continuous delivery practices. It also accelerates delivery of new functions into the application. Fine-
grained composition of applications also allows you to run and test microservices in isolation, and to
evolve them autonomously while maintaining clear contracts between them. As long as you do not
change the interfaces or contracts, you can change the internal implementation of any microservice or
add new functionality without breaking other microservices.

The following are important aspects to enable success in going into production with a microservices-
based system:

e Monitoring and health checks of the services and infrastructure.

e Scalable infrastructure for the services (that is, cloud and orchestrators).

e Security design and implementation at multiple levels: authentication, authorization, secrets
management, secure communication, etc.

e Rapid application delivery, usually with different teams focusing on different microservices.

e DevOps and CI/CD practices and infrastructure.

Of these, only the first three are covered or introduced in this guide. The last two points, which are
related to application lifecycle, are covered in the additional Containerized Docker Application
Lifecycle with Microsoft Platform and Tools eBook.

Additional resources

e Mark Russinovich. Microservices: An application revolution powered by the cloud
https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-
cloud/

e Martin Fowler. Microservices
http://www.martinfowler.com/articles/microservices.html

e Martin Fowler. Microservice Prerequisites
http://martinfowler.com/bliki/MicroservicePrerequisites.html

e Jimmy Nilsson. Chunk Cloud Computing
https://www.infoq.com/articles/CCC-Jimmy-Nilsson

e Cesar de la Torre. Containerized Docker Application Lifecycle with Microsoft Platform and Tools
(downloadable eBook)
https://aka.ms/dockerlifecycleebook

26 Architecting Container- and Microservice-Based Applications

https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook
https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/
http://www.martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
https://www.infoq.com/articles/CCC-Jimmy-Nilsson
https://aka.ms/dockerlifecycleebook

Data sovereignty per microservice

An important rule for microservices architecture is that each microservice must own its domain data
and logic. Just as a full application owns its logic and data, so must each microservice own its logic
and data under an autonomous lifecycle, with independent deployment per microservice.

This means that the conceptual model of the domain will differ between subsystems or microservices.
Consider enterprise applications, where customer relationship management (CRM) applications,
transactional purchase subsystems, and customer support subsystems each call on unique customer
entity attributes and data, and where each employs a different Bounded Context (BC).

This principle is similar in domain-driven design (DDD), where each Bounded Context or autonomous
subsystem or service must own its domain model (data plus logic and behavior). Each DDD Bounded
Context correlates to one business microservice (one or several services). (We expand on this point
about the Bounded Context pattern in the next section.)

On the other hand, the traditional (monolithic data) approach used in many applications is to have a
single centralized database or just a few databases. This is often a normalized SQL database that is
used for the whole application and all its internal subsystems, as shown in Figure 4-7.

Data in Traditional approach Data in Microservices approach
* Single monolithic database « Graph of interconnected microservices
» Tiers of specific technologies « State typically scoped to the microservice

+ Remote Storage for cold data
Web Tier

¥
=
)

Services Tier

Web presentation

apps services

Cache Tier E
)
: N \\I Statel
ateless
SQL DB : a I services
or l |

I

I

|

Stateful

No-
o-5QL services

\‘l ______ 7
Stateless services Each microservice
with owns its model/data!

separate store

Data Tier

_m
=5

Figure 4-7. Data sovereignty comparison: monolithic database versus microservices

The centralized database approach initially looks simpler and seems to enable reuse of entities in
different subsystems to make everything consistent. But the reality is you end up with huge tables
that serve many different subsystems, and that include attributes and columns that are not needed in
most cases. it is like trying to use the same physical map for hiking a short trail, taking a day-long car
trip, and learning geography.

A monolithic application with typically a single relational database has two important benefits: ACID
transactions and the SQL language, both working across all the tables and data related to your

27 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/Domain-driven_design
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

application. This approach provides a way to easily write a query that combines data from multiple
tables.

However, data access becomes much more complex when you move to a microservices architecture.
But even when ACID transactions can or should be used within a microservice or Bounded Context,
the data owned by each microservice is private to that microservice and can only be accessed via its
microservice API. Encapsulating the data ensures that the microservices are loosely coupled and can
evolve independently of one another. If multiple services were accessing the same data, schema
updates would require coordinated updates to all the services. This would break the microservice
lifecycle autonomy. But distributed data structures mean that you cannot make a single ACID
transaction across microservices. This in turn means you must use eventual consistency when a
business process spans multiple microservices. This is much harder to implement than simple SQL
joins; similarly, many other relational database features are not available across multiple microservices.

Going even further, different microservices often use different kinds of databases. Modern
applications store and process diverse kinds of data, and a relational database is not always the best
choice. For some use cases, a NoSQL database such as Azure DocumentDB or MongoDB might have a
more convenient data model and offer better performance and scalability than a SQL database like
SQL Server or Azure SQL Database. In other cases, a relational database is still the best approach.
Therefore, microservices-based applications often use a mixture of SQL and NoSQL databases, which
is sometimes called the polyglot persistence approach.

A partitioned, polyglot-persistent architecture for data storage has many benefits. These include
loosely coupled services and better performance, scalability, costs, and manageability. However, it can
introduce some distributed data management challenges, as we will explain in “Identifying domain-
model boundaries” later in this chapter.

The relationship between microservices and the Bounded Context
pattern

The concept of microservice derives from the Bounded Context (BC) pattern in domain-driven design
(DDD). DDD deals with large models by dividing them into multiple BCs and being explicit about their
boundaries. Each BC must have its own model and database; likewise, each microservice owns its related
data. In addition, each BC usually has its own ubiquitous language to help communication between
software developers and domain experts.

Those terms (mainly domain entities) in the ubiquitous language can have different names in different
Bounded Contexts, even when different domain entities share the same identity (that is, the unique ID
that is used to read the entity from storage). For instance, in a user-profile Bounded Context, the User
domain entity might share identity with the Buyer domain entity in the ordering Bounded Context.

A microservice is therefore like a Bounded Context, but it also specifies that it is a distributed service.
It is built as a separate process for each Bounded Context, and it must use the distributed protocols
noted earlier, like HTTP/HTTPS, WebSockets, or AMQP. The Bounded Context pattern, however, does
not specify whether the Bounded Context is a distributed service or if it is simply a logical boundary
(such as a generic subsystem) within a monolithic-deployment application.

It is important to highlight that defining a service for each Bounded Context is a good place to start.
But you do not have to constrain your design to it. Sometimes you must design a Bounded Context or

28 Architecting Container- and Microservice-Based Applications

http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design
http://martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

business microservice composed of several physical services. But ultimately, both patterns—Bounded
Context and microservice—are closely related.

DDD benefits from microservices by getting real boundaries in the form of distributed microservices.
But ideas like not sharing the model between microservices are what you also want in a Bounded
Context.

Additional resources

e Chris Richardson. Pattern: Database per service
http://microservices.io/patterns/data/database-per-service.html

e Martin Fowler. BoundedContext
http://martinfowler.com/bliki/BoundedContext.html

e Martin Fowler. PolyglotPersistence
http://martinfowler.com/bliki/PolyglotPersistence.html

e Alberto Brandolini. Strategic Domain Driven Design with Context Mapping
https://www.infog.com/articles/ddd-contextmapping

Logical architecture versus physical architecture

It is useful at this point to stop and discuss the distinction between logical architecture and physical
architecture, and how this applies to the design of microservice-based applications.

To begin, building microservices does not require the use of any specific technology. For instance,
Docker containers are not mandatory in order to create a microservice-based architecture. Those
microservices could also be run as plain processes. Microservices is a logical architecture.

Moreover, even when a microservice could be physically implemented as a single service, process, or
container (for simplicity’s sake, that is the approach taken in the initial version of eShopOnContainers),
this parity between business microservice and physical service or container is not necessarily required
in all cases when you build a large and complex application composed of many dozens or even
hundreds of services.

This is where there is a difference between an application’s logical architecture and physical
architecture. The logical architecture and logical boundaries of a system do not necessarily map one-
to-one to the physical or deployment architecture. It can happen, but it often does not.

Although you might have identified certain business microservices or Bounded Contexts, it does not
mean that the best way to implement them is always by creating a single service (such as an ASP.NET
Web API) or single Docker container for each business microservice. Having a rule saying each
business microservice has to be implemented using a single service or container is too rigid.

Therefore, a business microservice or Bounded Context is a logical architecture that might coincide (or
not) with physical architecture. The important point is that a business microservice or Bounded
Context must be autonomous by allowing code and state to be independently versioned, deployed,
and scaled.

As Figure 4-8 shows, the catalog business microservice could be composed of several services or
processes. These could be multiple ASP.NET Web API services or any other kind of services using
HTTP or any other protocol. More importantly, the services could share the same data, as long as
these services are cohesive with respect to the same business domain.

29 Architecting Container- and Microservice-Based Applications

http://microservices.io/patterns/data/database-per-service.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/PolyglotPersistence.html
https://www.infoq.com/articles/ddd-contextmapping
http://aka.ms/MicroservicesArchitecture

,~ Catalog business microservice

Web API

O |
Service \- SQL Server

Search database

O]

Service]

—_—— e -

Figure 4-8. Business microservice with several physical services

The services in the example share the same data model because the Web API service targets the same
data as the Search service. So, in the physical implementation of the business microservice, you are
splitting that functionality so you can scale each of those internal services up or down as needed.
Maybe the Web API service usually needs more instances than the Search service, or vice versa.)

In short, the logical architecture of microservices does not always have to coincide with the physical
deployment architecture. In this guide, whenever we mention a microservice, we mean a business or
logical microservice that could map to one or more services. In most cases, this will be a single service,
but it might be more.

Challenges and solutions for distributed data management

Challenge #1: How to define the boundaries of each microservice

Defining microservice boundaries is probably the first challenge anyone encounters. Each microservice
has to be a piece of your application and each microservice should be autonomous with all the
benefits and challenges that it conveys. But how do you identify those boundaries?

First, you need to focus on the application’s logical domain models and related data. You must try to
identify decoupled islands of data and different contexts within the same application. Each context
could have a different business language (different business terms). The contexts should be defined
and managed independently. The terms and entities used in those different contexts might sound
similar, but you might discover that in a particular context, a business concept with one is used for a
different purpose in another context, and might even have a different name. For instance, a user can
be referred as a user in the identity or membership context, as a customer in a CRM context, as a
buyer in an ordering context, and so forth.

The way you identify boundaries between multiple application contexts with a different domain for
each context is exactly how you can identify the boundaries for each business microservice and its
related domain model and data. You always attempt to minimize the coupling between those
microservices. This guide goes into more detail about this identification and domain model design in
the section Identifying domain-model boundaries for each microservice later.

Challenge #2: How to create queries that retrieve data from several microservices

A second challenge is how to implement queries that retrieve data from several microservices, while
avoiding chatty communication to the microservices from remote client apps. An example could be a
single screen from a mobile app that needs to show user information that is owned by the basket,

30 Architecting Container- and Microservice-Based Applications

catalog, and user identity microservices. Another example would be a complex report involving many
tables located in multiple microservices. The right solution depends on the complexity of the queries.
But in any case, you will need a way to aggregate information if you want to improve the efficiency in
the communications of your system. The most popular solutions are the following.

API Gateway. For simple data aggregation from multiple microservices that own different databases,
the recommended approach is an aggregation microservice referred to as an APl Gateway. However,
you need to be careful about implementing this pattern, because it can be a choke point in your
system, and it can violate the principle of microservice autonomy. To mitigate this possibility, you can
have multiple fined-grained AP| Gateways each one focusing on a vertical “slice” or business area of
the system. The APl Gateway pattern is explained in more detail in the section in the Using an API

Gateway later.

CQRS with query/reads tables. Another solution for aggregating data from multiple microservices is
the Materialized View pattern. In this approach, you generate, in advance (prepare denormalized data
before the actual queries happen), a read-only table with the data that is owned by multiple
microservices. The table has a format suited to the client app’s needs.

Consider something like the screen for a mobile app. If you have a single database, you might pull
together the data for that screen using a SQL query that performs a complex join involving multiple
tables. However, when you have multiple databases, and each database is owned by a different
microservice, you cannot query those databases and create a SQL join. Your complex query becomes
a challenge. You can address the requirement using a CQRS approach—you create a denormalized
table in a different database that is used just for queries. The table can be designed specifically for the
data you need for the complex query, with a one-to-one relationship between fields needed by your
application’s screen and the columns in the query table. It could also serve for reporting purposes.

This approach not only solves the original problem (how to query and join across microservices); it
also improves performance considerably when compared with a complex join, because you already
have the data that the application needs in the query table. Of course, using Command and Query
Responsibility Segregation (CQRS) with query/reads tables means additional development work, and
you will need to embrace eventual consistency. Nonetheless, requirements on performance and high
scalability in collaborative scenarios (or competitive scenarios, depending on the point of view) is
where you should apply CQRS with multiple databases.

“Cold data” in central databases. For complex reports and queries that might not require real-time
data, a common approach is to export your "hot data” (transactional data from the microservices) as
“cold data” into large databases that are used only for reporting. That central database system can be
a Big Data-based system, like Hadoop, a data warehouse like one based on Azure SQL Data
Warehouse, or even a single SQL database used just for reports (if size will not be an issue).

Keep in mind that this centralized database would be used only for queries and reports that do not
need real-time data. The original updates and transactions, as your source of truth, have to be in your
microservices data. The way you would synchronize data would be either by using event-driven
communication (covered in the next sections) or by using other database infrastructure import/export
tools. If you use event-driven communication, that integration process would be similar to the way
you propagate data as described earlier for CQRS query tables.

However, if your application design involves constantly aggregating information from multiple
microservices for complex queries, it might be a symptom of a bad design—a microservice should be

31 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
http://udidahan.com/2011/10/02/why-you-should-be-using-cqrs-almost-everywhere/

as isolated as possible from other microservices. (This excludes reports/analytics that always should
use cold-data central databases.) Having this problem often might be a reason to merge
microservices. You need to balance the autonomy of evolution and deployment of each microservice
with strong dependencies, cohesion, and data aggregation.

Challenge #3: How to achieve consistency across multiple microservices

As stated previously, the data owned by each microservice is private to that microservice and can only
be accessed using its microservice API. Therefore, a challenge presented is how to implement end-to-
end business processes while keeping consistency across multiple microservices.

To analyze this problem, let's look at an example from the eShopOnContainers reference application.
The Catalog microservice maintains information about all the products, including their stock level. The
Ordering microservice manages orders and must verify that a new order does not exceed the available
catalog product stock. (Or the scenario might involve logic that handles backordered products.) In a
hypothetical monolithic version of this application, the ordering subsystem could simply use an ACID
transaction to check the available stock, create the order in the Orders table, and update the available
stock in the Products table.

However, in a microservices- based application, the Order and Product tables are owned by their
respective microservices. No microservice should ever include databases owned by another
microservice in its own transactions or queries, as shown in Figure 4-9.

Ordering Catalog
microservice microservice

™\
Catalog.API }

(1> TStock | Nome

Ordering API

/
|

I

I

I

I

I

. I
| I
| I
| I
| I
| I
| I
| I
| I
\

Orderltems Table Products Table
\ in Ordering-DB / \ in Catalog-DB /
N (Remote SQL) _ N (Remote SQL) _

Databases are private per microservice

Figure 4-9. A microservice cannot directly access a table in another microservice

The Ordering microservice should not update the Products table directly, because the Products table
is owned by the Catalog microservice. To make an update to the Catalog microservice, the Ordering
microservice should only ever use asynchronous communication such as integration events (message
and event-based communication). This is how the eShopOnContainers reference application performs
this type of update.

As stated by the CAP theorem, you need to choose between availability and ACID strong consistency.
Most microservice-based scenarios demand availability and high scalability as opposed to strong
consistency. Mission-critical applications must remain up and running, and developers can work

32 Architecting Container- and Microservice-Based Applications

http://aka.ms/eshoponcontainers
http://aka.ms/eshoponcontainers
https://en.wikipedia.org/wiki/CAP_theorem

around strong consistency by using techniques for working with weak or eventual consistency. This is
the approach taken by most microservice-based architectures.

Moreover, ACID-style or two-phase commit transactions are not just against microservices principles;
most NoSQL databases (like Azure Document DB, MongoDB, etc.) do not support two-phase commit
transactions. However, maintaining data consistency across services and databases is essential. This
challenge is also related to the question of how to propagate changes across multiple microservices
when certain data needs to be redundant—for example, when you need to have the product's name
or description in the Catalog microservice and the Basket microservice.

A good solution for this problem is to use eventual consistency between microservices articulated
through event-driven communication and a publish-and-subscribe system. These topics are covered
in the section Asynchronous event-driven communication later in this guide.

Challenge #4: How to design communication across microservice boundaries

Communicating across microservice boundaries is a real challenge. In this context, communication
does not refer to what protocol you should use (HTTP and REST, AMQP, messaging, and so on).
Instead, it addresses what communication style you should use, and especially how coupled your
microservices should be. Depending on the level of coupling, when failure occurs, the impact of that
failure on your system will vary significantly.

In a distributed system like a microservices-based application, with so many artifacts moving around
and with distributed services across many servers or hosts, components will eventually fail. Partial
failure and even larger outages will occur, so you need to design your microservices and the
communication across them taking into account the risks common in this type of distributed system.

A popular approach is to implement HTTP (REST)- based microservices, due to their simplicity. An
HTTP-based approach is perfectly acceptable; the issue here is related to how you use it. If you use
HTTP requests and responses just to interact with your microservices from client applications or from
API Gateways, that is fine. But if create long chains of synchronous HTTP calls across microservices,
communicating across their boundaries as if the microservices were objects in a monolithic
application, your application will eventually run into problems.

For instance, imagine that your client application makes an HTTP API call to an individual microservice
like the Ordering microservice. If the Ordering microservice in turn calls additional microservices using
HTTP within the same request/response cycle, you are creating a chain of HTTP calls. It might sound
reasonable initially. However, there are important points to consider when going down this path:

e Blocking and low performance. Due to the synchronous nature of HTTP, the original request
will not get a response until all the internal HTTP calls are finished. Imagine if the number of
these calls increases significantly and at the same time one of the intermediate HTTP calls to a
microservice is blocked. The result is that performance is impacted, and the overall scalability
will be exponentially affected as additional HTTP requests increase.

e Coupling microservices with HTTP. Business microservices should not be coupled with other
business microservices. Ideally, they should not “know"” about the existence of other
microservices. If your application relies on coupling microservices as in the example, achieving
autonomy per microservice will be almost impossible.

e Failure in any one microservice. If you implemented a chain of microservices linked by HTTP
calls, when any of the microservices fails (and eventually they will fail) the whole chain of
microservices will fail. A microservice-based system should be designed to continue to work

33 Architecting Container- and Microservice-Based Applications

as well as possible during partial failures. Even if you implement client logic that uses retries
with exponential backoff or circuit breaker mechanisms, the more complex the HTTP call
chains are, the more complex it is implement a failure strategy based on HTTP.

In fact, if your internal microservices are communicating by creating chains of HTTP requests as
described, it could be argued that you have a monolithic application, but one based on HTTP between
processes instead of intraprocess communication mechanisms.

Therefore, in order to enforce microservice autonomy and have better resiliency, you should minimize
the use of chains of request/response communication across microservices. It is recommended that
you use only asynchronous interaction for inter-microservice communication, either by using
asynchronous message- and event-based communication, or by using HTTP polling independently of
the original HTTP request/response cycle.

The use of asynchronous communication is explained with additional details later in this guide in the
sections Asynchronous microservice integration enforces microservice's autonomy and Asynchronous
message-based communication.

Additional resources

e CAP theorem
https://en.wikipedia.org/wiki/CAP_theorem

e Eventual consistency
https://en.wikipedia.org/wiki/Eventual consistency

e Data Consistency Primer
https://msdn.microsoft.com/en-us/library/dn589800.aspx

e Martin Fowler. CQRS (Command and Query Responsibility Segregation)
http://martinfowler.com/bliki/CQRS.html

e Materialized View
https://msdn.microsoft.com/en-us/library/dn589782.aspx

e Charles Row. ACID vs. BASE: The Shifting pH of Database Transaction Processing
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

e Compensating Transaction
https://msdn.microsoft.com/en-us/library/dn589804.aspx

e Udi Dahan. Service Oriented Composition
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

34 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Eventual_consistency
https://msdn.microsoft.com/en-us/library/dn589800.aspx
http://martinfowler.com/bliki/CQRS.html
https://msdn.microsoft.com/en-us/library/dn589782.aspx
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://msdn.microsoft.com/en-us/library/dn589804.aspx
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

Identifying domain-model boundaries for each microservice

The goal when identifying model boundaries and size for each microservice is not to get to the most
granular separation possible, although you should tend toward small microservices if possible.
Instead, your goal should be to get to the most meaningful separation guided by your domain
knowledge. The emphasis is not on the size, but instead on business capabilities. In addition, if there is
clear cohesion needed for a certain area of the application based on a high number of dependencies,
that indicates the need for a single microservice, too. Cohesion is a way to identify how to break apart
or group together microservices. Ultimately, while you gain more knowledge about the domain, you
should adapt the size of your microservice, iteratively. Finding the right size is not a one-shot process.

Sam Newman, a recognized promoter of microservices and author of the book Building Microservices,
highlights that you should design your microservices based on the Bounded Context (BC) pattern
(part of domain-driven design), as introduced earlier. Sometimes, a BC could be composed of several
physical services, but not vice versa.

A domain model with specific domain entities applies within a concrete BC or microservice. A BC
delimits the applicability of a domain model and gives developer team members a clear and shared
understanding of what must be cohesive and what can be developed independently. These are the
same goals for microservices.

Another tool that informs your design choice is Conway'’s law, which states that an application will
reflect the social boundaries of the organization that produced it. But sometimes the opposite is
true—the company’s organization is formed by the software. You might need to reverse Conway's law
and build the boundaries the way you want the company to be organized, leaning toward business
process consulting.

In order to identify bounded contexts, a DDD pattern that can be used for this is the Context Mapping
pattern. With Context Mapping, you identify the various contexts in the application and their
boundaries. It is common to have a different context and boundary for each small subsystem, for
instance. The Context Map is a way to define and make explicit those boundaries between domains. A
BC is autonomous and includes the details of a single domain—details like the domain entities—and
defines integration contracts with other BCs. This is similar to the definition of a microservice: it is
autonomous, it implements certain domain capability, and it must provide interfaces. This is why
Context Mapping and the Bounded Context pattern are good approaches for identifying the domain
model boundaries of your microservices.

When designing a large application, you will see how its domain model can be fragmented — a
domain expert from the catalog domain will name entities differently in the catalog and inventory
domains than a shipping domain expert, for instance. Or the user domain entity might be different in
size and number of attributes when dealing with a CRM expert who wants to store every detail about
the customer than for an ordering domain expert who just needs partial data about the customer. It is
very hard to disambiguate all domain terms across all the domains related to a large application. But
the most important thing is that you should not try to unify the terms; instead, accept the differences
and richness provided by each domain. If you try to have a unified database for the whole application,
attempts at a unified vocabulary will be awkward and will not sound right to any of the multiple
domain experts. Therefore, BCs (implemented as microservices) will help you to clarify where you can
use certain domain terms and where you will need to split the system and create additional BCs with
different domains.

35 Architecting Container- and Microservice-Based Applications

http://samnewman.io/
http://samnewman.io/books/building_microservices/
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.infoq.com/articles/ddd-contextmapping
https://www.infoq.com/articles/ddd-contextmapping

You will know that you got the right boundaries and sizes of each BC and domain model if you have
few strong relationships between domain models, and you do not usually need to merge information
from multiple domain models when performing typical application operations.

Perhaps the best answer to the question of how big a domain model for each microservice should be
is the following: it should have an autonomous BC, as isolated as possible, that enables you to work
without having to constantly switch to other contexts (other microservice’s models). In Figure 4-10
you can see how multiple microservices (multiple BCs) each have their own model and how their
entities can be defined, depending on the specific requirements for each of the identified domains in
your application.

[dentifying a domain model per microservice or Bounded Context

Orders and Registration

Conferences Management

Assignments

Pricing and Marketing Payment Customer Service

Returns

il

Figure 4-10. Identifying entities and microservice model boundaries

Figure 4-10 illustrates a sample scenario related to an online conference management system. You
have identified several BCs that could be implemented as microservices, based on domains that
domain experts defined for you. As you can see, there are entities that are present just in a single
microservice model, like Payments in the Payment microservice. Those will be easy to implement.

However, you might also have entities that have a different shape but share the same identity across
the multiple domain models from the multiple microservices. For example, the User entity is identified
in the Conferences Management microservice. That same user, with the same identity, is the one
named Buyers in the Ordering microservice, or the one named Payer in the Payment microservice, and
even the one named Customer in the Customer Service microservice. This is because, depending on
the ubiquitous language that each domain expert is using, a user might have a different perspective
even with different attributes. The user entity in the microservice model named Conferences
Management might have most of its personal data attributes. However, that same user in the shape of
Payer in the microservice Payment or in the shape of Customer in the microservice Customer Service
might not need the same list of attributes.

A similar approach is illustrated in Figure 4-11.

36 Architecting Container- and Microservice-Based Applications

https://martinfowler.com/bliki/UbiquitousLanguage.html

Decomposing a traditional data model into multiple domain models

(One domain model per microservice or Bounded-Context) -
Conferences

public class User Management
[
8
FirstName
FirstName
LastName
Address
// Tens of attributes Company
e //etc
Traditional /. Models per
Entities Seat Bounded Context or
s " - H H
with "All — o microservice
Salar Description
possible
attributes public class Seat

{ Pricing
ID
Description
Price
// Tens of attributes
/.

/...

Buyer
D
Status

}

Figure 4-11. Decomposing traditional data models into multiple domain models

You can see how the user is present in the Conferences Management microservice model as the User
entity and is also present in the form of the Buyer entity in the Pricing microservice, with alternate
attributes or details about the user when it is actually a buyer. Each microservice or BC might not need
all the data related to a User entity, just part of it, depending on the problem to solve or the context.
For instance, in the Pricing microservice model, you do not need the address or the ID of the user, just
ID (as identity) and Status, which will have an impact on discounts when pricing the seats per buyer.

The Seat entity has the same name but different attributes in each domain model. However, Seat
shares identity based on the same ID, as happens with User and Buyer.

Basically, there is a shared concept of a user that exists in multiple services (domains), which all share
the identity of that user. But in each domain model there might be additional or different details
about the user entity. Therefore, there needs to be a way to map a user entity from one domain
(microservice) to another.

There are several benefits to not sharing the same user entity with the same number of attributes
across domains. One benefit is to reduce duplication, so that microservice models do not have any
data that they do not need. Another benefit is having a master microservice that owns a certain type
of data per entity so that updates and queries for that type of data are driven only by that
microservice.

37 Architecting Container- and Microservice-Based Applications

Direct client-to-microservice communication versus the APl Gateway
pattern

In a microservices architecture, each microservice exposes a set of (typically) fine-grained endpoints.
This fact can impact the client-to-microservice communication, as explained in this section.

Direct client-to-microservice communication

A possible approach is to use a direct client-to-microservice communication architecture. In this
approach, a client app can make requests directly to some of the microservices, as shown in Figure 4-
12.

Direct Client-To-Microservice communication
Architecture

Mobile PR @ ' ' e
App

Microservice 2

\Web AP !
|
|
!
y

Web

Figure 4-12. Using a direct client-to-microservice communication architecture

In this approach. each microservice has a public endpoint, sometimes with a different TCP port for each
microservice. An example of an URL for a particular service could be the following URL in Azure:

http://eshoponcontainers.westus.cloudapp.azure.com:88/

In a production environment based on a cluster, that URL would map to the load balancer used in the
cluster, which in turn distributes the requests across the microservices. In production environments,
you could have an Application Delivery Controller (ADC) like Azure Application Gateway between your
microservices and the Internet. This acts as a transparent tier that not only performs load balancing,
but secures your services by offering SSL termination. This improves the load of your hosts by
offloading CPU-intensive SSL termination and other routing duties to the Azure Application Gateway.
In any case, a load balancer and ADC are transparent from a logical application architecture point of
view.

A direct client-to-microservice communication architecture is good enough for a small microservice-
based application. However, when you build large and complex microservice-based applications (for
example, when handling dozens of microservice types), that approach faces possible issues. You need
to consider the following questions when developing a large application based on microservices:

38 Architecting Container- and Microservice-Based Applications

http://eshoponcontainers.westus.cloudapp.azure.com:88/
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-introduction

e How can client apps minimize the number of requests to the backend and reduce chatty
communication to multiple microservices?

Interacting with multiple microservices to build a single Ul screen increases the number of
roundtrips across the Internet. This increases latency and complexity on the Ul side. Ideally,
responses should be efficiently aggregated in the server side—this reduces latency, since
multiple pieces of data come back in parallel and some Ul can show data as soon as it is
ready.

e How can you handle cross-cutting concerns such as authorization, data transformations, and
dynamic request dispatching?

Implementing security and cross-cutting concerns like security and authorization on every
microservice can require significant development effort. A possible approach is to have those
services within the Docker host or internal cluster, in order to restrict direct access to them
from the outside, and to implement those cross-cutting concerns in a centralized place, like
an API Gateway.

e How can client apps communicate with services that use non-Internet-friendly protocols?

Protocols used on the server side (like AMQP or binary protocols) are usually not supported in
client apps. Therefore, requests must be performed through protocols like HTTP/HTTPS and
translated to the other protocols afterwards. A man-in-the-middle approach can help in this
situation.

e How can you shape a facade especially made for mobile apps?

The API of multiple microservices might not be well designed for the needs of different client
applications. For instance, the needs of a mobile app might be different than the needs of a
web app. For mobile apps, you might need to optimize even further so that data responses
can be more efficient. You might do this by aggregating data from multiple microservices and
returning a single set of data, and sometimes eliminating any data in the response that is not
needed by the mobile app. And, of course, you might compress that data. Again, a fagade or
APl in between the mobile app and the microservices can be convenient for this scenario.

Using an API Gateway

When you design and build large or complex microservice-based applications with multiple client
apps, a good approach to consider can be an APl Gateway. This is a service that provides a single
entry point for certain groups of microservices. It is similar to the Facade pattern from object-oriented
design, but in this case, it is part of a distributed system. The APl Gateway pattern is also sometimes
known as the “back end for the front end,” because you build it while thinking about the needs of the
client app.

Figure 4-13 shows how an API Gateway can fit into a microservice-based architecture.

39 Architecting Container- and Microservice-Based Applications

http://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/Facade_pattern

Using the API Gateway Service

Client Mobile App [== == == o oEm o Em S Em Em Em S Em S SR Em Em em = e e I
Backend

{ Microservice 1
} Web AP
I

API Gateway
JaRY| /e core

/ Web API
Container

JavaScript / ;\”gularﬁ

Traditional WebApp

Client WebApp MVC

ASPENET Core MVC
Conlainer

Browser RV

HTML L

Figure 4-13. Using the API Gateway pattern in a microservice-based architecture

In this example, the API Gateway would be implemented as a custom Web API service running as a
container.

You should implement several API Gateways so that you can have a different facade for the needs of
each client app. Each API Gateway can provide a different API tailored for each client app, possibly
even based on the client form factor or device by implementing specific adapter code which
underneath calls multiple internal microservices.

Since the API Gateway is actually an aggregator, you need to be careful with it. Usually it is not a good
idea to have a single APl Gateway aggregating all the internal microservices of your application. If it
does, it acts as a monolithic aggregator or orchestrator and violates microservice autonomy by
coupling all the microservices. Therefore, the APl Gateways should be segregated based on business
boundaries and not act as an aggregator for the whole application.

Sometimes a granular API Gateway can also be a microservice by itself, and even have a domain or
business name and related data. Having the APl Gateway's boundaries dictated by the business or
domain will help you to get a better design.

Granularity in the AP| Gateway tier can be especially useful for more advanced composite Ul
applications based on microservices, because the concept of a fine-grained APl Gateway is similar to
an Ul composition service. We discuss this later in the Creating composite Ul based on microservices.

Therefore, for many medium- and large-size applications, using a custom-built APl Gateway is usually
a good approach, but not as a single monolithic aggregator or unique central ASPI Gateway.

Another approach is to use a product like Azure APl Management as shown in Figure 4-14. This
approach not only solves your APl Gateway needs, but provides features like gathering insights from
your APIs. If you are using an APl management solution, an APl Gateway is only a component within
that full APl management solution.

40 Architecting Container- and Microservice-Based Applications

https://azure.microsoft.com/en-us/services/api-management/

API Gateway with Azure APl Management
Architecture

Azure APl Management
~ (" Microservice 1
I web API :
\ |
|
Developer \ Container A
Portal
" Microservice 2
Web AP| |
|
|
AP| Gateway Container A

Microservice 3
Web API

e

Client WebApp MVC

~
1
! |
ASPNET Core MVC | Publisher Portal S -
Container 1
1

Figure 4-14. Using Azure APl Management for your APl Gateway

The insights available from an APl Management system help you get an understanding of how your
APIs are being used and how they are performing. They do this by letting you view near real-time
analytics reports and identifying trends that might impact your business. Plus you can have logs about
request and response activity for further online and offline analysis.

With Azure APl Management, you can secure your APIs using a key, a token, and IP filtering. These
features let you enforce flexible and fine-grained quotas and rate limits, modify the shape and
behavior of your APIs using policies, and improve performance with response caching.

In this guide and the reference sample application (eShopOnContainers) we are limiting the
architecture to a simpler and custom-made containerized architecture in order to focus on plain
containers without using Paa$S products like Azure APl Management. But for large microservice-based
applications that are deployed into Microsoft Azure, we encourage you to review and adopt Azure API
Management as the base for your APl Gateways.

Drawbacks of the APl Gateway pattern

e The most important drawback is that when you implement an APl Gateway, you are coupling
that tier with the internal microservices. Coupling like this might introduce serious difficulties
for your application. (The cloud architect Clemens Vaster refers to this potential difficulty as
“the new ESB" in his "Messaging and Microservices" session from at GOTO 2016.)

e Using a microservices APl Gateway creates an additional possible point of failure.

e An AP| Gateway can introduce increased response time due to the additional network call.
However, this extra call usually has less impact than having a client interface that is too chatty
directly calling the internal microservices.

e The API Gateway can represent a possible bottleneck if it is not scaled out properly

e An API Gateway requires additional development cost and future maintenance if it includes
custom logic and data aggregation. Developers must update the APl Gateway in order to
expose each microservice's endpoints. Moreover, implementation changes in the internal

41 Architecting Container- and Microservice-Based Applications

https://www.youtube.com/watch?v=rXi5CLjIQ9k

microservices might cause code changes at the APl Gateway level. However, if the API
Gateway is just applying security, logging, and versioning (as when using Azure API
Management), this additional development cost might not apply.

e If the APl Gateway is developed by a single team, there can be a development bottleneck. This
is another reason why a better approach is to have several fined-grained APl Gateways that
respond to different client needs. You could also segregate the APl Gateway internally into
multiple areas or layers that are owned by the different teams working on the internal
microservices.

Additional resources

e Charles Richardson. Pattern: APl Gateway / Backend for Front-End
http://microservices.io/patterns/apigateway.html

e Azure APl Management
https://azure.microsoft.com/en-us/services/api-management/

e Udi Dahan. Service Oriented Composition
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

e Clemens Vasters. Messaging and Microservices at GOTO 2016 (video)
https://www.youtube.com/watch?v=rXi5CLjlQ9k

Communication between microservices

In a monolithic application running on a single process, components invoke one another using
language-level method or function calls. These can be strongly coupled if you are creating objects
with code (for example, new ClassName()), or can be invoked in a decoupled way if you are using
Dependency Injection by referencing abstractions rather than concrete object instances. Either way,
the objects are running within the same process. The biggest challenge when changing from a
monolithic application to a microservices-based application lies in changing the communication
mechanism. A direct conversion from in-process method calls into RPC calls to services will cause a
chatty and not efficient communication that will not perform well in distributed environments. The
challenges of designing distributed system properly are well enough known that there is even a canon
known as the The fallacies of distributed computing that lists assumptions that developers often make
when moving from monolithic to distributed designs.

There is not one solution, but several. One solution involves isolating the business microservices as
much as possible. You then use asynchronous communication between the internal microservices and
replace fine-grained communication that is typical in intra-process communication between objects
with coarser-grained communication. You can do this by grouping calls, and by returning data that
aggregates the results of multiple internal calls, to the client.

A microservices-based application is a distributed system running on multiple processes or services,
usually even across multiple servers or hosts. Each service instance is typically a process. Therefore,
services must interact using an inter-process communication protocol such as HTTP, AMQP, or a
binary protocol like TCP, depending on the nature of each service.

The microservice community promotes the philosophy of “smart endpoints and dumb pipes.” This
slogan encourages a design that is as decoupled as possible between microservices, and as cohesive
as possible within a single microservice. As explained earlier, each microservice owns its own data and
its own domain logic. But the microservices composing an end-to-end application are usually simply
choreographed by using REST communications rather than complex protocols such as WS-* and
flexible event-driven communications instead of centralized business-process-orchestrators.

42 Architecting Container- and Microservice-Based Applications

http://microservices.io/patterns/apigateway.html
https://azure.microsoft.com/en-us/services/api-management/
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/
https://www.youtube.com/watch?v=rXi5CLjIQ9k
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://simplicable.com/new/smart-endpoints-and-dumb-pipes

The two commonly used protocols are HTTP request/response with resource APIs (when querying
most of all), and lightweight asynchronous messaging when communicating updates across multiple
microservices. These are explained in more detail in the following sections.

Communication types

Client and services can communicate through many different types of communication, each one
targeting a different scenario and goals. Initially, those types of communications can be classified in
two axes.

The first axis is defining if the protocol is synchronous or asynchronous:

e Synchronous protocol. HTTP is a synchronous protocol. The client sends a request and waits
for a response from the service. That is independent of the client code execution that could
be synchronous (thread is blocked) or asynchronous (thread is not blocked, and the response
will reach a callback eventually). The important point here is that the protocol (HTTP/HTTPS) is
synchronous and the client code can only continue its task when it receives the HTTP server
response.

e Asynchronous protocol. Other protocols like AMQP (a protocol supported by many operating
systems and cloud environments) use asynchronous messages. The client code or message
sender usually does not wait for a response. It just sends the message as when sending a
message to a RabbitMQ queue or any other message broker.

The second axis is defining if the communication has a single receiver or multiple receivers:

e Single receiver. Each request must be processed by exactly one receiver or service. An
example of this communication is the Command pattern.

e Multiple receivers. Each request can be processed by zero to multiple receivers. This type of
communication must be asynchronous. An example is the publish/subscribe mechanism used
in patterns like Event-driven architecture. This is based on an event-bus interface or message
broker when propagating data updates between multiple microservices through events; it is
usually implemented through a service bus or similar artifact like Azure Service Bus by using
topics and subscriptions.

A microservice-based application will often use a combination of these communication styles. The
most common type is single-receiver communication with a synchronous protocol like HTTP/HTTPS
when invoking a regular Web API HTTP service. Microservices also typically use messaging protocols
for asynchronous communication between microservices.

These axes are good to know so you have clarity on the possible communication mechanisms, but
they are not the important concerns when building microservices. The asynchronous nature of client
thread execution not even the asynchronous nature of the selected protocol are the important points
when integrating microservices. What is important is being able to integrate your microservices
asynchronously while maintaining the independence of microservices, as explained in the following
section.

43 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://microservices.io/patterns/data/event-driven-architecture.html
https://azure.microsoft.com/en-us/services/service-bus/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

Asynchronous microservice integration enforce microservice’s autonomy

As mentioned, the important point when building a microservices-based application is the way you
integrate your microservices. Ideally, you should try to minimize the communication between the
internal microservices. The less communications between microservices, the better. But of course, in
many cases you will have to somehow integrate the microservices. When you need to do that, the
critical rule here is that the communication between the microservices should be asynchronous. That
does not mean that you have to use a specific protocol (for example, asynchronous messaging versus
synchronous HTTP). It just means that the communication between microservices should be done only
by propagating data asynchronously, but try not to depend on other internal microservices as part of
the initial service’s HTTP request/response operation.

If possible, never depend on synchronous communication (request/response) between multiple
microservices, not even for queries. The goal of each microservice is to be autonomous and available
to the client consumer, even if the other services that are part of the end-to-end application are down
or unhealthy. If you think you need to make a call from one microservice to other microservices (like
performing an HTTP request for a data query) in order to be able to provide a response to a client
application, you have an architecture that will not be resilient when some microservices fail.

Moreover, having dependencies between microservices (like performing HTTP requests between them
for querying data) not only makes your microservices not autonomous. In addition, their performance
will be impacted. The more you add synchronous dependencies (like query requests) between
microservices, the worse the overall response time will get for the client apps.

If your microservice needs to raise an additional action in another microservice, if possible, do not
perform that action synchronously and as part of the original microservice request and reply
operation. Instead, do it asynchronously (using asynchronous messaging or integration events,
queues, etc.). But, as much as possible, do not invoke the action synchronously as part of the original
synchronous request and reply operation.

And finally (and this is where most of the issues arise when building microservices), if your initial
microservice needs data that is originally owned by other microservices, do not rely on making
synchronous requests for that data. Instead, replicate or propagate that data (only the attributes you
need) into the initial service’s database by using eventual consistency (typically by using integration
events, as explained in upcoming sections).

As noted earlier in the section Identifying domain-model boundaries for each microservice,
duplicating some data across several microservices is not an incorrect design—on the contrary, when
doing that you can translate the data into the specific language or terms of that additional domain or
Bounded Context. For instance, in the eShopOnContainers application you have a microservice named
identity.api thatis in charge of most of the user's data with an entity named User. However, when
you need to store data about the user within the Ordering microservice, you store it as a different
entity named Buyer. The Buyer entity shares the same identity with the original User entity, but it
might have only the few attributes needed by the Ordering domain, and not the whole user profile.

You might use any protocol to communicate and propagate data asynchronously across microservices
in order to have eventual consistency. As mentioned, you could use integration events using an event
bus or message broker or you could even use HTTP by polling the other services instead. It does not
matter. The important rule is to not create synchronous dependencies between your microservices.

44 Architecting Container- and Microservice-Based Applications

http://aka.ms/MicroservicesArchitecture

The following sections explain the multiple communication styles you can consider using in a
microservice-based application.

Communication styles

There are many protocols and choices you can use for communication, depending on the
communication type you want to use. If you are using a synchronous request/response-based
communication mechanism, protocols such as HTTP and REST approaches are the most common,
especially if you are publishing your services outside the Docker host or microservice cluster. If you
are communicating between services internally (within your Docker host or microservices cluster) you
might also want to use binary format communication mechanisms (like Service Fabric remoting or
WCF using TCP and binary format). Alternatively, you can use asynchronous, message-based
communication mechanisms such as AMQP.

There are also multiple message formats like JSON or XML, or even binary formats, which can be more
efficient. If your chosen binary format is not a standard, it is probably not a good idea to publicly
publish your services using that format. You could use a non-standard format for internal
communication between your microservices. You might do this when communicating between
microservices within your Docker host or microservice cluster (Docker orchestrators or Azure Service
Fabric), or for proprietary client applications that talk to the microservices.

Request/response communication with HTTP and REST

When a client uses request/response communication, it sends a request to a service, then the service
processes the request and sends back a response. Request/response communication is especially well
suited for querying data for a real-time Ul (a live user interface) from client apps. Therefore, in a
microservice architecture you will probably use this communication mechanism for most queries, as
shown in Figure 4-15.

Request/Response Communication for Live Queries and Updates
HTTP and REST based Services

e

Catalog Microservice

Web AP/
m‘_ m SQL Server
container

Container / I

[Backend

e

/" Basket Microservice
| Web AP

I m% Redis cache

I\ Container Vi

Figure 4-15. Using HTTP request/response communication (synchronous or asynchronous)

Web AP/

Request/Response

|
[
y HTTP
|
[

When a client uses request/response communication, it assumes that the response will arrive in a
short time, typically less than a second, or a few seconds at most. For delayed responses, you need to
implement asynchronous communication based on messaging patterns and messaging technologies,
which is a different approach that we explain in the next section.

A popular architectural style for request/response communication is REST. This approach is based on,
and tightly coupled to, the HTTP protocol, embracing HTTP verbs like GET, POST, and PUT. REST is the

45 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/messaging
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

most commonly used architectural communication approach when creating services. You can
implement REST services when you develop ASP.NET Core Web API services.

There is additional value when using HTTP REST services as your interface definition language. For
instance, if you use Swagger metadata to describe your service API, you can use tools that generate
client stubs that can directly discover and consume your services.

Additional resources

e Martin Fowler. Richardson Maturity Model. A description of the REST model.
http://martinfowler.com/articles/richardsonMaturityModel.html
e Swagger. The official site.

http://swagger.io/

Push and real-time communication based on HTTP

Another possibility (usually for different purposes than REST) is a real-time and one-to-many
communication with higher-level frameworks such as ASP.NET SignalR and protocols such as
WebSockets.

As Figure 4-16 shows, real-time HTTP communication means that you can have server code pushing
content to connected clients as the data becomes available, rather than having the server wait for a
client to request new data.

Push and real-time communication based on HTTP
One-to-many communication

_______________ ~ N mEE IE IS O EE O O . . -

/" Client-1 WebApp SPA™
lf PP } | Back end !
| ' |
| |
| e
| I SignalR service hub
/ I < I(9 : I
> E . Service : I
Client-2 WebApp SPA I X7 ivesssge |
| | \ocommunieate, __ _____ A |
I
| ' I
I | |
: P : I I
l\\ JavaScript / Angularjs)/ - |

Figure 4-16. One-to-one real-time asynchronous message communication

Since communication is in real time, client apps show the changes almost instantly. This is usually
handled by a protocol such as WebSockets, using many WebSockets connections (one per client). A
typical example is when a service communicates a change in the score of a sports game to many
client web apps simultaneously.

Asynchronous message-based communication

Asynchronous messaging and event-driven communication are critical when propagating changes
across multiple microservices and their related domain models. As mentioned earlier in the discussion

46 Architecting Container- and Microservice-Based Applications

http://swagger.io/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://swagger.io/
https://www.asp.net/signalr
https://en.wikipedia.org/wiki/WebSocket

microservices and Bounded Contexts (BCs), models (User, Customer, Product, Account, etc.) can mean
different things to different microservices or BCs. That means that when changes occur, you need
some way to reconcile changes across the different models. A solution is eventual consistency and
event-driven communication based on asynchronous messaging.

When using messaging, processes communicate by exchanging messages asynchronously. A client
makes a command or a request to a service by sending it a message. If the service needs to reply, it
sends a different message back to the client. Since it is a message-based communication, the client
assumes that the reply will not be received immediately, and that there might be no response at all.

A message is composed by a header (metadata such as identification or security information) and a
body. Messages are usually sent through asynchronous protocols like AMQP.

The preferred infrastructure for this type of communication in the microservices community is a
lightweight message broker, which is different than the large brokers and orchestrators used in SOA.
In a lightweight message broker, the infrastructure is typically “"dumb,” acting only as a message
broker, with simple implementations such as RabbitMQ or a scalable service bus in the cloud like
Azure Service Bus. In this scenario, most of the “smart” thinking still lives in the endpoints that are
producing and consuming messages—that is, in the microservices.

Another rule you should try to follow, as much as possible, is to use only asynchronous messaging
between the internal services, and to use synchronous communication (such as HTTP) only from the
client apps to the front-end services (APl Gateways plus the first level of microservices).

There are two kinds of asynchronous messaging communication: single receiver message-based
communication, and multiple receivers message-based communication. In the following sections we
provide details about them.

Single-receiver message-based communication

Message-based asynchronous communication with a single receiver means there is point-to-point
communication that delivers a message to exactly one of the consumers that is reading from the
channel, and that the message is processed just once. However, there are special situations. For
instance, in a cloud system that tries to automatically recover from failures, the same message could
be sent multiple times. Due to network or other failures, the client has to be able to retry sending
messages, and the server has to implement an operation to be idempotent in order to process a
particular message just once.

Single-receiver message-based communication is especially well suited for sending asynchronous
commands from one microservice to another as shown in Figure 4-17 that illustrates this approach.

Once you start sending message-based communication (either with commands or events), you should
avoid mixing message-based communication with synchronous HTTP communication.

47 Architecting Container- and Microservice-Based Applications

Single receiver message-based communication
(i.e. Message-based Commands)

I Back end |
| {/ Basket Microservice \‘ [/ Ordering Microservice |
| | 3) [|
I | m V/eb API I CreateOrder | service I I

I | ConvertToOrder] ! command I R |

comman ! | - |

: I AsyncENiessage : I I
| : (2) | Get basket data | ' ! ! |
1 | | - |

| Cache | | - Database ,' |
I \\\ ’ //’ \\ // I
I Message based communication for certain asynchronous commands |

Figure 4-17. A single microservice receiving an asynchronous message

Note that when the commands come from client applications, they can be implemented as HTTP
synchronous commands. You should use message-based commands when you need higher scalability
or when you are already in a message-based business process.

Multiple-receivers message-based communication

As a more flexible approach, you might also want to use a publish/subscribe mechanism so that your
communication from the sender will be available to additional subscriber microservices or to external
applications. Thus, it helps you to follow the open/closed principle in the sending service. That way,
additional subscribers can be added in the future without the need to modify the sender service.

When you use a publish/subscribe communication, you might be using an event bus interface to
publish events to any subscriber.

Asynchronous event-driven communication

When using asynchronous event-driven communication, a microservice publishes an integration event
when something happens within its domain and another microservice needs to be aware of it, like a
price change in a product catalog microservice. Additional microservices subscribe to the events so
they can receive them asynchronously. When that happens, the receivers might update their own
domain entities, which can cause more integration events to be published. This publish/subscribe
system is usually performed by using an implementation of an event bus. The event bus can be
designed as an abstraction or interface, with the API that is needed to subscribe or unsubscribe to
events and to publish events. The event bus can also have one or more implementations based on any
inter-process and messaging broker, like a messaging queue or service bus that supports
asynchronous communication and a publish/subscribe model.

If a system uses eventual consistency driven by integration events, it is recommended that this
approach be made completely clear to the end user. The system should not use an approach that

48 Architecting Container- and Microservice-Based Applications

https://en.wikipedia.org/wiki/Open/closed_principle

mimics integration events, like SignalR or polling systems from the client. The end user and the
business owner have to explicitly embrace eventual consistency in the system and realize that in many
cases the business does not have any problem with this approach, as long as it is explicit.

As noted earlier in the Challenges and solutions for distributed data management section, you can use
integration events to implement business tasks that span multiple microservices. Thus you will have
eventual consistency between those services. An eventually consistent transaction is made up of a
collection of distributed actions. At each action, the related microservice updates a domain entity and
publishes another integration event that raises the next action within the same end-to-end business
task.

An important point is that you might want to communicate to multiple microservices that are
subscribed to the same event. To do so, you can use publish/subscribe messaging based on event-
driven communication, as shown in Figure 4-18. This publish/subscribe mechanism is not exclusive to
the microservice architecture. It is similar to the way Bounded Contexts in DDD should communicate,
or to the way you propagate updates from the write database to the read database in the Command
and Query Responsibility Segregation (CQRS) architecture pattern. The goal is to have eventual

consistency between multiple data sources across your distributed system.

Asynchronous event-driven communication
Multiple receivers

ettt

I Backend I
| (" Basket microservice 0 |
|
| : u Database as I I
77777777777777777777777 | 4 |
| ’ “"User-Profile Mlcroserwce \\\ L “Service . Cache)
e —
I } o Web API Service o : UserUpdated event - Buyer info I
| UpdateUser | Event Bus |
I | command UserUpdated euenl: (Publish/subscribe channel)
} (Publish Action) | E UserUpdated event - Buyer info I
I | DB update : _________________________ -
} | " Ordering Microservice \‘ |
| | Database } : |
[\ i ' —-[m] Database | |
N - " | |
| \Sevice” ST L 2|
| Eventual consistency across microservices based on event-driven async communication

Figure 4-18. Asynchronous event-driven message communication

Your implementation will determine what protocol to use for event-driven, message-based
communications. AMQP can help achieve reliable queued communication.

When you use an event bus, you might want to use an abstraction level (like an event bus interface)
based on a related implementation in classes with code using the APl from a message broker like
RabbitMQ or a service bus like Azure Service Bus with Topics. Alternatively, you might want to use a
higher-level service bus like NServiceBus, MassTransit, or Brighter to articulate your event bus and
publish/subscribe system.

49

Architecting Container- and Microservice-Based Applications

http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://www.rabbitmq.com/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

A note about messaging technologies for production systems

The messaging technologies available for implementing your abstract event bus are at different levels.
For instance, products like RabbitMQ (a messaging broker transport) and Azure Service Bus sit at a
lower level than other products like, NServiceBus, MassTransit, or Brighter, which can work on top of
RabbitMQ and Azure Service Bus. Your choice depends on how many rich features at the application
level and out-of-the-box scalability you need for your application. For implementing just a proof-of-
concept event bus for your development environment, as we have done in the eShopOnContainers
sample, a simple implementation on top of RabbitMQ running on a Docker container might be
enough.

However, for mission-critical and production systems that need hyper-scalability, you might want to
evaluate Azure Service Bus. For high-level abstractions and features that make the development of
distributed applications easier, we recommend that you evaluate other commercial and open-source
service buses, such as NServiceBus, MassTransit, and Brighter. Of course, you can build your own
service-bus features on top of lower-level technologies like RabbitMQ and Docker. But that plumbing
work might cost too much for a custom enterprise application.

Resiliently publishing to the event bus

A challenge when implementing an event-driven architecture across multiple microservices is how to
atomically update state in the original microservice while resiliently publishing its related integration
event into the event bus, somehow based on transactions. The following are a few ways to accomplish
this, although there could be additional approaches as well.

e Using a transactional (DTC-based) queue like MSMQ. (However, this is a legacy approach.)

e Using transaction log mining.

e Using full Event Sourcing pattern.

e Using the Outbox pattern: a transactional database table as a message queue that will be the
base for an event-creator component that would create the event and publish it.

Additional topics to consider when using asynchronous communication are message idempotence
and message deduplication. These topics are covered in the section Implementing event-based
communication between microservices (integration events) later in this guide.

Additional resources

e Event Driven Messaging
http://soapatterns.org/design patterns/event driven messaging

e Publish/Subscribe Channel
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

e Udi Dahan. Clarified CQRS
http://udidahan.com/2009/12/09/clarified-cqgrs/

e Command and Query Responsibility Segregation (CQRS)
https://msdn.microsoft.com/en-us/library/dn568103.aspx

e Communicating Between Bounded Contexts
https://msdn.microsoft.com/en-us/library/jj591572.aspx

e Eventual consistency
https://en.wikipedia.org/wiki/Eventual consistency

e Jimmy Bogard. Refactoring Towards Resilience: Evaluating Coupling
https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

50 Architecting Container- and Microservice-Based Applications

http://www.scoop.it/t/sql-server-transaction-log-mining
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://gistlabs.com/2014/05/the-outbox/
http://soapatterns.org/design_patterns/event_driven_messaging
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://udidahan.com/2009/12/09/clarified-cqrs/
https://msdn.microsoft.com/en-us/library/dn568103.aspx
https://msdn.microsoft.com/en-us/library/jj591572.aspx
https://en.wikipedia.org/wiki/Eventual_consistency
https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

Creating, evolving, and versioning microservice APIs and contracts

A microservice APl is a contract between the service and its clients. You will be able to evolve a
microservice independently only if you do not break its APl contract, which is why the contract is so
important. If you change the contract, it will impact your client applications or your APl Gateway.

The nature of the API definition depends on which protocol you are using. For instance, if you are
using messaging (like AMQP), the API consists of the message types. If you are using HTTP and
RESTful services, the API consists of the URLs and the request and response JSON formats.

However, even if you are thoughtful about your initial contract, a service APl will need to change over
time. When that happens—and especially if your API is a public APl consumed by multiple client
applications—you typically cannot force all clients to upgrade to your new API contract. You usually
need to incrementally deploy new versions of a service in a way that both old and new versions of a
service contract are running simultaneously. Therefore, it is important to have a strategy for your
service versioning.

When the API changes are small, like if you add attributes or parameters to your AP, clients that use
an older API should switch and work with the new version of the service. You might be able to provide
default values for any missing attributes that are required, and the clients might be able to ignore any
extra response attributes.

However, sometimes you need to make major and incompatible changes to a service API. Because
you might not be able to force client applications or services to upgrade immediately to the new
version, a service must support older versions of the API for some period. If you are using an HTTP-
based mechanism such as REST, one approach is to embed the API version number in the URL or into
a HTTP header. Then you can decide between implementing both versions of the service
simultaneously within the same service instance, or deploying different instances that each handle a
version of the API. A good approach for this is the Mediator pattern (for example, MediatR library) to
decouple the different implementation versions into independent handlers.

Finally, if you are using a REST architecture, Hypermedia is the best solution for versioning your
services and allowing evolvable APIs.

Additional resources

e Scott Hanselman. ASP.NET Core RESTful Web API versioning made easy
http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

e Versioning a RESTful web API
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-
web-api

¢ Roy Fielding. Versioning, Hypermedia, and REST
https://www.infog.com/articles/roy-fielding-on-versioning

51 Architecting Container- and Microservice-Based Applications

https://www.amqp.org/
https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/jbogard/MediatR
https://www.infoq.com/articles/mark-baker-hypermedia
http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://www.infoq.com/articles/roy-fielding-on-versioning

Microservices addressability and the service registry

Each microservice has a unique name (URL) that is used to resolve its location. Your microservice
needs to be addressable wherever it is running. If you have to think about which computer is running
a particular microservice, things can go bad quickly. In the same way that DNS resolves a URL to a
particular computer, your microservice needs to have a unique name so that its current location is
discoverable. Microservices need addressable names that make them independent from the
infrastructure that they are running on. This implies that there is an interaction between how your
service is deployed and how it is discovered, because there needs to be a service registry. In the same
vein, when a computer fails, the registry service must be able to indicate where the service is now
running.

The service registry pattern is a key part of service discovery. The registry is a database containing the
network locations of service instances. A service registry needs to be highly available and up to date.
Clients could cache network locations obtained from the service registry. However, that information
eventually goes out of date and clients can no longer discover service instances. Consequently, a
service registry consists of a cluster of servers that use a replication protocol to maintain consistency.

In some microservice deployment environments (called clusters, to be covered in a later section),
service discovery is built-in. For example, within an Azure Container Service environment, Kubernetes
and DC/OS with Marathon can handle service instance registration and deregistration. They also run a
proxy on each cluster host that plays the role of server-side discovery router. Another example is
Azure Service Fabric, which also provides a service registry through its out-of-the-box Naming Service.

Note that there is certain overlap between the service registry and the API gateway pattern, which
helps solve this problem as well. For example, the Service Fabric Reverse Proxy is a type of
implementation of an APl Gateway that is based on the Service Fabrice Naming Service and that helps
resolve address resolution to the internal services.

Additional resources

e Chris Richardson. Pattern: Service registry
http://microservices.io/patterns/service-registry.html,xu

e AuthO. The Service Registry
https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

e Gabriel Schenker. Service discovery
https://lostechies.com/gabrielschenker/2016/01/27/service-discovery/

52 Architecting Container- and Microservice-Based Applications

http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/service-registry.html
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy
http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/service-registry.html
https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/
https://lostechies.com/gabrielschenker/2016/01/27/service-discovery/

Creating composite Ul based on microservices, including visual Ul
shape and layout generated by multiple microservices

Microservices architecture often starts with the server side handling data and logic. However, a more
advanced approach is to design your application Ul based on microservices as well. That means
having a composite Ul produced by the microservices, instead of having microservices on the server
and just a monolithic client app consuming the microservices. With this approach, the microservices
you build can be complete with both logic and visual representation.

Figure 4-19 shows the simpler approach of just consuming microservices from a monolithic client
application. Of course, you could have an ASP.NET MVC service in between producing the HTML and
JavaScript. The figure is a simplification that highlights that you have a single (monolithic) client Ul
consuming the microservices, which just focus on logic and data and not on the Ul shape (HTML and
JavaScript).

Monolithic Ul consuming microservices

| Backend Microservices

-

'
! Web API

1
|
I
|
|
I
|
|
I
|
|
I
|
|
o rS~— Sy P P
I
I Monalithic Ul Visual layout
I i S
| shapes and styles are defined in
I the client app, not depending
\\ an the microservices

~

Web AP

Figure 4-19. A monolithic Ul application consuming back-end microservices

In contrast, a composite Ul is precisely generated and composed by the microservices themselves.
Some of the microservices drive the visual shape of specific areas of the Ul. The key difference is that
you have client Ul components (TS classes, for example) based on templates, and the data-shaping-Ul
ViewModel for those templates comes from each microservice.

At client application start-up time, each of the client Ul components (TypeScript classes, for example)
registers itself with an infrastructure microservice capable of providing ViewModels for a given
scenario. If the microservice changes the shape, the Ul changes also.

Figure 4-20 shows a version of this composite Ul approach. This is simplified, because you might have
other microservices that are aggregating granular parts based on different techniques—it depends on
whether you are building a traditional web approach (ASP.NET MVC) or an SPA (Single Page
Application).

53 Architecting Container- and Microservice-Based Applications

Composite Ul generated by microservices

U —

Composite Ul > Backend Microservices
~ Ul Composition __JsoN /
e Microservice 1 I DIOS e [E— }
Books at Amazon } (Ul Composition 7 |
| ! Microservice2 | |
TL & w e X 255 4‘?‘ Fein ____Container __J I
1

~7 Ul Composition __JSON
Microservice 3 DTOs

“ul Composition |
Microservice 4 :
I

Ul Composition Y 5oy
Microservice 5

\
m | (" Ul Composition) |
J | Microservice 6 | ‘

|

|

|

/I Compo: ld
ViewMoleI

Figure 4-20. Example of a composite Ul application shaped by back-end microservices

Other internal
microservices

~

Each of those Ul composition microservices would be similar to a small APl Gateway. But in this case
each is responsible for a small Ul area.

A composite Ul approach that is driven by microservices can be more challenging or less so,
depending on what Ul technologies you are using. For instance, you will not use the same techniques
for building a traditional web application that you use for building an SPA or for native mobile app (as
when developing Xamarin apps, which can be more challenging for this approach).

The eShopOnContainers sample application uses the monolithic Ul approach for multiple reasons.

First, it is an introduction to microservices and containers. A composite Ul is more advanced but also
requires further complexity when designing and developing the Ul. Second, eShopOnContainers also
provides a native mobile app based on Xamarin, which would make it more complex on the client C#

side.

However, we encourage you to use the following references to learn more about composite Ul based
on microservices.

Additional resources

54

Composite Ul using ASP.NET (Particular’'s Workshop)
https://github.com/Particular/Workshop.Microservices/tree/master/demos/CompositeUl-MVC
Ruben Oostinga. The Monolithic Frontend in the Microservices Architecture
http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/

Mauro Servienti. The secret of better Ul composition
https://particular.net/blog/secret-of-better-ui-composition

Viktor Farcic. Including Front-End Web Components Into Microservices
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-
microservices/

Managing Frontend in the Microservices Architecture
http://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

Architecting Container- and Microservice-Based Applications

__________________________ e — — — = = = ———— -

|
\
il
il
i
il
i
il
i
|
|
i
il
il
il
il
I

‘I

http://aka.ms/MicroservicesArchitecture
https://github.com/Particular/Workshop.Microservices/tree/master/demos/CompositeUI-MVC
http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/
https://particular.net/blog/secret-of-better-ui-composition
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
http://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

Resiliency and high availability in microservices

Dealing with unexpected failures is one of the hardest problems to solve, especially in a distributed

system. Much of the code that developers write involves handling exceptions, and this is also where
the most time is spent in testing. The problem is more involved than writing code to handle failures.
What happens when the machine where the microservice is running fails? Not only do you need to

detect this microservice failure (a hard problem on its own), but you also need something to restart
your microservice.

A microservice needs to be resilient to failures and to be able to restart often on another machine for
availability. This resiliency also comes down to the state that was saved on behalf of the microservice,
where the microservice can recover this state from, and whether the microservice can restart
successfully. In other words, there needs to be resiliency in the compute capability (the process can
restart at any time) as well as resilience in the state or data (no data loss, and the data remains
consistent).

The problems of resiliency are compounded during other scenarios, such as when failures occur
during an application upgrade. The microservice, working with the deployment system, needs to
determine whether it can continue to move forward to the newer version or instead roll back to a
previous version to maintain a consistent state. Questions such as whether enough machines are
available to keep moving forward and how to recover previous versions of the microservice need to
be considered. This requires the microservice to emit health information so that the overall application
and orchestrator can make these decisions.

In addition, resiliency is related to how cloud-based systems must behave. As mentioned, a cloud-
based system must embrace failures and must try to automatically recover from them. For instance, in
case of network or container failures, client apps or client services must have a strategy to retry
sending messages or to retry requests, since in many cases failures in the cloud are partial. The
Implementing Resilient Applications section in this guide addresses how to handle partial failure. It
describes techniques like retries with exponential backoff or the Circuit Breaker pattern in .NET Core
by using libraries like Polly, which offers a large variety of policies to handle this subject.

Health management and diagnostics in microservices

It may seem obvious, and it is often overlooked, but a microservice must report its health and
diagnostics. Otherwise, there is little insight from an operations perspective. Correlating diagnostic
events across a set of independent services and dealing with machine clock skews to make sense of
the event order is challenging. In the same way that you interact with a microservice over agreed-
upon protocols and data formats, there is a need for standardization in how to log health and
diagnostic events that ultimately end up in an event store for querying and viewing. In a microservices
approach, it is key that different teams agree on a single logging format. There needs to be a
consistent approach to viewing diagnostic events in the application.

Health checks

Health is different from diagnostics. Health is about the microservice reporting its current state to take
appropriate actions. A good example is working with upgrade and deployment mechanisms to
maintain availability. Although a service might currently be unhealthy due to a process crash or
machine reboot, the service might still be operational. The last thing you need is to make this worse
by performing an upgrade. The best approach is to do an investigation first or allow time for the

55 Architecting Container- and Microservice-Based Applications

https://github.com/App-vNext/Polly

microservice to recover. Health events from a microservice help us make informed decisions and, in
effect, help create self-healing services.

In the Implementing health checks in ASP.NET Core services section of this guide, we explain how to
use a new ASP.NET HealthChecks library in your microservices so they can report their state to a
monitoring service to take appropriate actions.

Using diagnostics and logs event streams

Logs provide information about how an application or service is running, including exceptions,
warnings, and simple informational messages. Usually, each log is in a text format with one line per
event, although exceptions also often show the stack trace across multiple lines.

In monolithic server-based applications, you can simply write logs to a file on disk (a logfile) and then
analyze it with any tool. Since application execution is limited to a fixed server or VM, it generally is
not too complex to analyze the flow of events. However, in a distributed application where multiple
services are executed across many nodes in an orchestrator cluster, being able to correlate distributed
events is a challenge.

A microservice-based application should not try to store the output stream of events or logfiles by
itself, and not even try to manage the routing of the events to a central place. It should be
transparent, meaning that each process should just write its event stream to a standard output that
underneath will be collected by the execution environment infrastructure where it is running. An
example of these event stream routers is Microsoft.Diagnostic.EventFlow, which collects event streams
from multiple sources and publishes it to output systems. These can include simple standard output
for a development environment or cloud systems like Application Insights, OMS (for on-premises
applications), and Azure Diagnostics. There are also good third-party log analysis platforms and tools
that can search, alert, report, and monitor logs, even in real time, like Splunk.

Orchestrators managing health and diagnostics information

When you create a microservice-based application, you need to deal with complexity. Of course, a
single microservice is simple to deal with, but dozens or hundreds of types and thousands of
instances of microservices is a complex problem. It is not just about building your microservice
architecture—you also need high availability, addressability, resiliency, health, and diagnostics if you
intend to have a stable and cohesive system.

Your microservices

Lifecycle Independent Independent Always On Resource Stateless/
Mgmt Scaling Updates Availability Efficient Stateful

Microservice Platform

(Orchestrators/Clusters)

Figure 4-21. A Microservice Platform is fundamental for an application’s health management

56 Architecting Container- and Microservice-Based Applications

https://github.com/Azure/diagnostics-eventflow
https://azure.microsoft.com/en-us/services/application-insights/
https://github.com/Azure/diagnostics-eventflow#oms-operations-management-suite
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/azure-diagnostics
http://www.splunk.com/goto/Splunk_Log_Management?ac=ga_usa_log_analysis_phrase_Mar17&_kk=logs%20analysis&gclid=CNzkzIrex9MCFYGHfgodW5YOtA

The complex problems shown in Figure 4-21 are very hard to solve by yourself. Development teams
should focus on solving business problems and building custom applications with microservice-based
approaches. They should not focus on solving complex infrastructure problems; if they did, the cost of
any microservice-based application would be huge. Therefore, there are microservice-oriented
platforms, referred to as orchestrators or microservice clusters, that try to solve the hard problems of
building and running a service and using infrastructure resources efficiently. This reduces the
complexities of building applications that use a microservices approach.

Different orchestrators might sound similar, but the diagnostics and health checks offered by each of
them differ in features and state of maturity, sometimes depending on the OS platform, as explained
in the next section.

Additional resources

e The Twelve-Factor App. XI. Logs: Treat logs as event streams
https://12factor.net/logs

e Microsoft Diagnostic EventFlow Library. GitHub repo.
https://github.com/Azure/diagnostics-eventflow

e What is Azure Diagnostics
https://docs.microsoft.com/en-us/azure/azure-diagnostics

e Connect Windows computers to the Log Analytics service in Azure
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-windows-agents

e Logging What You Mean: Using the Semantic Logging Application Block
https://msdn.microsoft.com/en-us/library/dn440729(v=pandp.60).aspx

e Splunk. Official site.
http://www.splunk.com

e EventSource Class. API for events tracing for Windows (ETW)
https://msdn.microsoft.com/en-us/library/system.diagnostics.tracing.eventsource(v=vs.110).aspx

57 Architecting Container- and Microservice-Based Applications

https://12factor.net/logs
https://github.com/Azure/diagnostics-eventflow
https://docs.microsoft.com/en-us/azure/azure-diagnostics
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-windows-agents
https://msdn.microsoft.com/en-us/library/dn440729(v=pandp.60).aspx
http://www.splunk.com/
https://msdn.microsoft.com/en-us/library/system.diagnostics.tracing.eventsource(v=vs.110).aspx

Orchestrating microservices and multi-container
applications for high scalability and availability

Using orchestrators for production-ready applications is essential if your application is based on
microservices or simply split across multiple containers. As introduced previously, in a microservice-
based approach, each microservice owns its model and data so that it will be autonomous from a
development and deployment point of view. But even if you have a more traditional application that is
composed of multiple services (like SOA), you will also have multiple containers or services comprising
a single business application that need to be deployed as a distributed system. These kinds of systems
are complex to scale out and manage; therefore, you absolutely need an orchestrator if you want to
have a production-ready and scalable multi-container application.

Figure 4-22 illustrates deployment into a cluster of an application composed of multiple microservices
(containers).

Composed Docker Applications in a Cluster

+ For eacl_w service insta_nce you use one container App 1 App 2 My Docker Images
» Docker images/containers are "units of deployment”

images/co @ o_
» A container is an instance of a Docker Image 1ol I mm
g B Sl
/

+ A host (VM/server) handles many containers [l m [l.’]
7ﬁﬁservice;”” T

@ mm@ Official Docker Images
https://hub.docker.com
KeNx 1, o,
=Ha A

! Cluster of
! Containers

et MR

Figure 4-22. A cluster of containers

It looks like a logical approach. But how are you handling load-balancing, routing, and orchestrating
these composed applications?

The Docker CLI meets the needs of managing one container on one host, but it falls short when it
comes to managing multiple containers deployed on multiple hosts for more complex distributed
applications. In most cases, you need a management platform that will automatically start containers,
suspend them or shut them down when needed, and ideally also control how they access resources
like the network and data storage.

58 Architecting Container- and Microservice-Based Applications

To go beyond the management of individual containers or very simple composed apps and move
toward larger enterprise applications with microservices, you must turn to orchestration and clustering

platforms.

From an architecture and development point of view, if you are building large enterprise composed of
microservices-based applications, it is important to understand the following platforms and products
that support advanced scenarios:

Clusters and orchestrators. When you need to scale out applications across many Docker hosts, as
when a large microservice-based application, it is critical to be able to manage all those hosts as a
single cluster by abstracting the complexity of the underlying platform. That is what the container
clusters and orchestrators provide. Examples of orchestrators are Docker Swarm, Mesosphere DC/OS,
Kubernetes (the first three available through Azure Container Service) and Azure Service Fabric.

Schedulers. Scheduling means to have the capability for an administrator to launch containers in a
cluster so they also provide a Ul. A cluster scheduler has several responsibilities: to use the cluster’s
resources efficiently, to set the constraints provided by the user, to efficiently load-balance containers
across nodes or hosts, and to be robust against errors while providing high availability.

The concepts of a cluster and a scheduler are closely related, so the products provided by different
vendors often provide both sets of capabilities. The following list shows the most important platform
and software choices you have for clusters and schedulers. These clusters are generally offered in

public clouds like Azure.

Software platforms for container clustering, orchestration, and scheduling

Docker Swarm

&

Docker Swarm lets you cluster and schedule Docker containers. By using
Swarm, you can turn a pool of Docker hosts into a single, virtual Docker
host. Clients can make API requests to Swarm the same way they do to
hosts, meaning that Swarm makes it easy for applications to scale to
multiple hosts.

Docker Swarm is a product from Docker, the company.

Docker v1.12 or later can run native and built-in Swarm Mode.

Mesosphere DC/OS

&

Mesosphere Enterprise DC/OS (based on Apache Mesos) is a production-
ready platform for running containers and distributed applications.

DC/OS works by abstracting a collection of the resources available in the
cluster and making those resources available to components built on top
of it. Marathon is usually used as a scheduler integrated with DC/OS.

Google Kubernetes

Kubernetes is an open-source product that provides functionality that
ranges from cluster infrastructure and container scheduling to
orchestrating capabilities. It lets you automate deployment, scaling, and
operations of application containers across clusters of hosts.

Kubernetes provides a container-centric infrastructure that groups
application containers into logical units for easy management and
discovery.

59

Architecting Container- and Microservice-Based Applications

Azure Service Fabric Service Fabric is a Microsoft microservices platform for building

machines. By default, Service Fabric deploys and activates services as
processes, but Service Fabric can deploy services in Docker container
images. More importantly, you can mix services in processes with
services in containers in the same application.

applications. It is an orchestrator of services and creates clusters of
’
‘J

As of May 2017, the feature of Service Fabric that supports deploying
services as Docker containers is in preview state.

Service Fabric services can be developed in many ways, from using
the Service Fabric programming models to deploying guest executables

as well as containers. Service Fabric supports prescriptive application
models like stateful services and Reliable Actors.

Using container-based orchestrators in Microsoft Azure

Several cloud vendors offer Docker containers support plus Docker clusters and orchestration support,
including Microsoft Azure, Amazon EC2 Container Service, and Google Container Engine. Microsoft
Azure provides Docker cluster and orchestrator support through Azure Container Service (ACS), as
explained in the next section.

Another choice is to use Microsoft Azure Service Fabric (a microservices platform), which also supports
Docker based on Linux and Windows Containers. Service Fabric runs on Azure or any other cloud, and

also runs on—premises.

Using Azure Container Service

A Docker cluster pools multiple Docker hosts and exposes them as a single virtual Docker host, so you
can deploy multiple containers into the cluster. The cluster will handle all the complex management
plumbing, like scalability, health, and so forth. Figure 4-23 represents how a Docker cluster for
composed applications maps to Azure Container Service (ACS).

ACS provides a way to simplify the creation, configuration, and management of a cluster of virtual
machines that are preconfigured to run containerized applications. Using an optimized configuration
of popular open-source scheduling and orchestration tools, ACS enables you to use your existing
skills or draw on a large and growing body of community expertise to deploy and manage container-
based applications on Microsoft Azure.

Azure Container Service optimizes the configuration of popular Docker clustering open source tools
and technologies specifically for Azure. You get an open solution that offers portability for both your
containers and your application configuration. You select the size, the number of hosts, and the
orchestrator tools, and Container Service handles everything else.

60 Architecting Container- and Microservice-Based Applications

https://azure.microsoft.com/en-us/documentation/articles/service-fabric-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-cluster-resource-manager-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-existing-app/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-anywhere/

Azure Container Service (ACS) 53

Mesos DC/OS cluster Kubernetes cluster Docker Swarm cluster
& ncios "
B =i Bz 2
WK@!O@ S By mm@ Loz
xox o1k X (O] 1K X
- Kexts; o Kex e
—=ale] ﬁo
o= e x xgex"> T
TR TR

Figure 4-23. Clustering choices in Azure Container Service

ACS leverages Docker images to ensure that your application containers are fully portable. It supports
your choice of open-source orchestration platforms like DC/OS (powered by Apache Mesos),
Kubernetes (originally created by Google), and Docker Swarm, to ensure that these applications can
be scaled to thousands or even tens of thousands of containers.

The Azure Container service enables you to take advantage of the enterprise-grade features of Azure
while still maintaining application portability, including at the orchestration layers.

& oc/os '&

-

299

&%

09

B

299

Figure 4-24. Orchestrators in ACS

As shown in Figure 4-24, Azure Container Service is simply the infrastructure provided by Azure in
order to deploy DC/OS, Kubernetes or Docker Swarm, but ACS does not implement any additional
orchestrator. Therefore, ACS is not an orchestrator as such, only an infrastructure that leverages
existing open-source orchestrators for containers.

From a usage perspective, the goal of Azure Container Service is to provide a container hosting
environment by using popular open-source tools and technologies. To this end, it exposes the
standard API endpoints for your chosen orchestrator. By using these endpoints, you can leverage any
software that can talk to those endpoints. For example, in the case of the Docker Swarm endpoint, you

61 Architecting Container- and Microservice-Based Applications

might choose to use the Docker command-line interface (CLI). For DC/OS, you might choose to use
the DC/OS CLI.

Getting started with Azure Container Service

To begin using Azure Container Service, you deploy an Azure Container Service cluster from the Azure
portal by using an Azure Resource Manager template or the CLI. Available templates include Docker
Swarm, Kubernetes, and DC/OS. The quickstart templates can be modified to include additional or
advanced Azure configuration. For more information on deploying an Azure Container Service cluster,
see Deploy an Azure Container Service cluster on the Azure website.

There are no fees for any of the software installed by default as part of ACS. All default options are
implemented with open-source software.

ACS is currently available for Standard A, D, DS, G, and GS series Linux virtual machines in Azure. You
are charged only for the compute instances you choose, as well as the other underlying infrastructure
resources consumed, such as storage and networking. There are no incremental charges for ACS itself.

Additional resources

e Introduction to Docker container hosting solutions with Azure Container Service
https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/
e Docker Swarm overview
https://docs.docker.com/swarm/overview/
e Swarm mode overview
https://docs.docker.com/engine/swarm/
e Mesosphere DC/OS Overview
https://docs.mesosphere.com/1.7/overview/
o Kubernetes. The official site.
http://kubernetes.io/

Using Azure Service Fabric

Azure Service Fabric arose from Microsoft's transition from delivering box products, which were
typically monolithic in style, to delivering services. The experience of building and operating large
services at scale, such as Azure SQL Database, Azure Document DB, Azure Service Bus, or Cortana’s
Backend, shaped Service Fabric. The platform evolved over time as more and more services adopted
it. Importantly, Service Fabric had to run not only in Azure but also in standalone Windows Server
deployments.

The aim of Service Fabric is to solve the hard problems of building and running a service and utilizing
infrastructure resources efficiently, so that teams can solve business problems using a microservices
approach.

Service Fabric provides two broad areas to help you build applications that use a microservices
approach:

e A platform that provides system services to deploy, scale, upgrade, detect, and restart failed
services, discover service location, manage state, and monitor health. These system services in
effect enable many of the characteristics of microservices described previously.

e Programming APIs, or frameworks, to help you build applications as microservices: reliable
actors and reliable services. Of course, you can choose any code to build your microservice,

62 Architecting Container- and Microservice-Based Applications

https://azure.microsoft.com/documentation/articles/xplat-cli-install/
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-swarm
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-swarm
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-kubernetes
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-dcos
https://azure.microsoft.com/en-us/documentation/articles/container-service-deployment/
https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/swarm/
https://docs.mesosphere.com/1.7/overview/
http://kubernetes.io/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework

but these APIs make the job more straightforward, and they integrate with the platform at a
deeper level. This way you can get health and diagnostics information, or you can take
advantage of reliable state management.

Service Fabric is agnostic with respect to how you build your service, and you can use any technology.
However, it provides built-in programming APls that make it easier to build microservices.

As shown in Figure 4-25, you can create and run microservices in Service Fabric either as simple
processes or as Docker containers. It is also possible to mix container-based microservices with
process-based microservices within the same Service Fabric cluster.

Azure Service Fabric - Types of clusters

y Service Fabric cluster y Service Fabric with Docker cluster i
; =, \ ol L C
' 8 == K ,
' =] WHA@ Kol als]
B . ee, e® == n L Kexk X
5 = =
; £l fa)
@ g W& L e
s e
Ll |
Microservices as processes Microservices as containers

Figure 4-25. Deploying microservices as processes or as containers in Azure Service Fabric

Service Fabric clusters based on Linux and Windows hosts can run Docker Linux containers and
Windows Containers.

For up-to-date information about containers support in Azure Service Fabric, see Service Fabric and
containers.

Service Fabric is a good example of a platform where you can define a different logical architecture
(business microservices or Bounded Contexts) than the physical implementation that were introduced
in the Logical architecture versus physical architecture section. For example, if you implement Stateful
Reliable Services in Azure Service Fabric, which are introduced in the section Stateless versus stateful
microservices later, you have a business microservice concept with multiple physical services.

As shown in Figure 4-26, and thinking from a logical/business microservice perspective, when
implementing a Service Fabric Stateful Reliable Service, you usually will need to implement two tiers
of services. The first is the back-end stateful reliable service, which handles multiple partitions. The
second is the front-end service, or Gateway service, in charge of routing and data aggregation across
multiple partitions or stateful service instances. That Gateway service also handles client-side
communication with retry loops accessing the backend service used in conjunction with the Service

Fabric reverse Proxy.

63 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy

Business/logical
microservice
(Using Azure Service Fabric
Stateful Reliable Services)

Gateway
service

|
|
|
|
|
|
|
____s |
|
|
|
J

Stateful (i
Partition S€™I® partition
A partitions ~
\ /
~ P

Figure 4-26. Business microservice with several stateful and stateless services in Service Fabric

In any case, when you use Service Fabric Stateful Reliable Services, you also have a logical or business
microservice (Bounded Context) that is usually composed of multiple physical services. Each of them,
the Gateway service and Partition service could be implemented as ASP.NET Web API services, as
shown in Figure 4-26.

In Service Fabric, you can group and deploy groups of services as a Service Fabric Application, which is
the unit of packaging and deployment for the orchestrator or cluster. Therefore, the Service Fabric
Application could be mapped to this autonomous business and logical microservice boundary or
Bounded Context, as well.

Service Fabric and containers

With regard to containers in Service Fabric, you can also deploy services in container images within a
Service Fabric cluster. As Figure 4-27 shows, most of the time there will only be one container per
service.

Business/Logical Microservice
(Using Azure Service Fabric and Containers)

Service Fabric Application

Servw’ce/Con‘[ainer 1

"Business Microservice”

SQL Server
database

|
|
|
|
|
:
Logical Boundary of |
|
|
: Serwce/Contamer
I
|
|
|

Figure 4-27. Business microservice with several services (containers) in Service Fabric

64 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

However, so-called “sidecar” containers (two containers that must be deployed together as part of a
logical service) are also possible in Service Fabric. The important thing is that a business microservice
is the logical boundary around several cohesive elements. In many cases, it might be a single service
with a single data model, but in some other cases you might have physical several services as well.

As of this writing (April 2017), in Service Fabric you cannot deploy SF Reliable Stateful Services on
containers—you can only deploy guest containers, stateless services, or actor services in containers.
But note that you can mix services in processes and services in containers in the same Service Fabric
application, as shown in Figure 4-28.

Business/Logical Microservice
(Using Azure Service Fabric and Containers)

Service Fabric Application

Container / Guest service

Logical Boundary of
"Business Microservice”

Stateful
\ service
\ partitions /

L]
=

Figure 4-28. Business microservice mapped to a Service Fabric application with containers and stateful services

Support is also different depending on whether you are using Docker containers on Linux or Windows
Containers. Support for containers in Service Fabric will be expanding in upcoming releases. For up-
to-date news about container support in Azure Service Fabric, see Service Fabric and containers on
the Azure website.

Stateless versus stateful microservices

As mentioned earlier, each microservice (logical Bounded Context) must own its domain model (data
and logic). In the case of stateless microservices, the databases will be external, employing relational
options like SQL Server, or NoSQL options like MongoDB or Azure Document DB.

But the services themselves can also be stateful, which means that the data resides within the
microservice. This data might exist not just on the same server, but within the microservice process, in
memory and persisted on hard drives and replicated to other nodes. Figure 4-29 shows the different
approaches.

65 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview

Stateless Services Stateful Services

Business Business
Microservice A Microservice B

- ~ e
/ \ /
m Stateless
service

Stateless microservice
with separate store

with in-memory data.
Low latency between
business logic and data

Stateful
service
~ y; N\ partitions /

\
|

I

I . i

} Stateleful microservice
I

|

7

I

I

|

Figure 4-29. Stateless versus stateful microservices

A stateless approach is perfectly valid and is easier to implement than stateful microservices, since the
approach is similar to traditional and well-known patterns. But stateless microservices impose latency
between the process and data sources. They also involve more moving pieces when you are trying to
improve performance with additional cache and queues. The result is that you can end up with
complex architectures that have too many tiers.

In contrast, stateful microservices can excel in advanced scenarios, because there is no latency
between the domain logic and data. Heavy data processing, gaming back ends, databases as a service,
and other low-latency scenarios all benefit from stateful services, which enable local state for faster
access.

Stateless and stateful services are complementary. For instance, you can see in Figure 4-20 that a
stateful service could be split into multiple partitions. To access those partitions, you might need a
stateless service acting as a gateway service that knows how to address each partition based on
partition keys.

Stateful services do have drawbacks. They impose a level of complexity that allows to scale out.
Functionality that would usually be implemented by external database systems must be addressed for
tasks such as data replication across stateful microservices and data partitioning. However, this is one
of the areas where an orchestrator like Azure Service Fabric with its stateful reliable services can help
the most—by simplifying the development and lifecycle of stateful microservices using the Reliable
Services AP| and Reliable Actors.

Other microservice frameworks that allow stateful services, that support the Actor pattern, and that
improve fault tolerance and latency between business logic and data are Microsoft Orleans, from
Microsoft Research, and Akka.NET. Both frameworks are currently improving their support for Docker.

Note that Docker containers are themselves stateless. If you want to implement a stateful service, you
need one of the additional prescriptive and higher-level frameworks noted earlier. However, at the
time of this writing, stateful services in Azure Service Fabric are not supported as containers, only as
plain microservices. Reliable services support in containers will be available in upcoming versions of
Service Fabric.

66 Architecting Container- and Microservice-Based Applications

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-work-with-reliable-collections
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-work-with-reliable-collections
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://github.com/dotnet/orleans
http://getakka.net/

SECTION 5

Development Process for
Docker-Based Applications

Vision
Develop containerized .NET applications the way you like, either IDE focused with Visual Studio and
Visual Studio tools for Docker or CLI/Editor focused with Docker CLI and Visual Studio Code.

Development environment for Docker apps

Development tool choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has tools that
you can use for developing Docker applications.

Visual Studio with Tools for Docker. If you are using Visual Studio 2015, you can install the Visual
Studio Tools for Docker add-in. If you are using Visual Studio 2017, tools for Docker are already built-
in. In either case, the tools for Docker let you develop, run, and validate your applications directly in
the target Docker environment. You can press F5 to run and debug your application (single container
or multiple containers) directly into a Docker host, or press CTRL+F5 to edit and refresh your
application without having to rebuild the container. This is the simplest and most powerful choice for
Windows developers targeting Docker containers for Linux or Windows.

Visual Studio Code and Docker CLI. If you prefer a lightweight and cross-platform editor that
supports any development language, you can use Microsoft Visual Studio Code (VS Code) and the
Docker CLI. This is a cross-platform development approach for Mac, Linux, and Windows.

These products provide a simple but robust experience that streamlines the developer workflow. By
installing Docker Community Edition (CE) tools, you can use a single Docker CLI to build apps for both
Windows and Linux. Additionally, Visual Studio Code supports extensions for Docker such as
IntelliSense for Dockerfiles and shortcut tasks to run Docker commands from the editor.

Additional resources

e Visual Studio Tools for Docker
https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7dalb3e4

e Visual Studio Code. Official site.
https://code.visualstudio.com/download

e Docker Community Edition (CE) for Mac and Windows
https://www.docker.com/community-editions

67 Development Process for Docker-Based Applications

https://marketplace.visualstudio.com/items?itemName=MicrosoftCloudExplorer.VisualStudioToolsforDocker-Preview
https://marketplace.visualstudio.com/items?itemName=MicrosoftCloudExplorer.VisualStudioToolsforDocker-Preview
https://www.docker.com/community-edition
https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4
https://code.visualstudio.com/download
https://www.docker.com/community-editions

.NET languages and frameworks for Docker containers

As mentioned in earlier sections of this guide, you can use .NET Framework, .NET Core, or the open-
source Mono project when developing Docker containerized .NET applications. You can develop in
C#, F#, or Visual Basic when targeting Linux or Windows Containers, depending on which .NET
framework is in use. For more details about.NET languages, see the blog post The .NET Language

Strategy.

Development workflow for Docker apps

The application development lifecycle starts at each developer's machine, where the developer codes
the application using their preferred language and tests it locally. No matter which language,
framework, and platform the developer chooses, with this workflow, the developer is always
developing and testing Docker containers, but doing so locally.

Each container (an instance of a Docker image) includes the following components:

e An operating system selection (for example, a Linux distribution, Windows Nano Server, or
Windows Server Core).

e Files added by the developer (application binaries, etc.).

e Configuration information (environment settings and dependencies).

Workflow for developing Docker container-based applications

This section describes the inner-loop development workflow for Docker container-based applications.
The inner-loop workflow means it is not taking into account the broader DevOps workflow and just
focuses on the development work done on the developer’'s computer. The initial steps to set up the
environment are not included, since those are done only once.

An application is composed of your own services plus additional libraries (dependencies). The
following are the basic steps you usually take when building a Docker application, as illustrated in
Figure 5-1.

Inner-Loop development workflow for Docker apps

3.

Create Images
defined at

1. 2.
Write
Dockerfile/s

5 6.

Run
Containers / Test

4. optin)
Define services

Code

your app by writing

docker-compose.yml|

Compose app your app or

Dockerfile/s X .
microservices

My
Containers

// docker run /

http

docker build access.

T 7 Docker-compose up
.
Base | My
Images Images
Remote Local
Docker Registry Docker
7 (ie. Docker Hub) Repos
git push Push or

Continue
developing

Figure 5-1. Step-by-step workflow for developing Docker containerized apps

68 Development Process for Docker-Based Applications

https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy/
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy/

In this guide, this whole process is detailed and every major step is explained by focusing on a Visual
Studio environment.

When you are using an editor/CLI development approach (for example, Visual Studio Code plus
Docker CLI on macOS or Windows), you need to know every step, generally in more detail than if you
are using Visual Studio. For more details about working in a CLI environment, refer to the eBook
Containerized Docker Application lifecycle with Microsoft Platforms and Tools.

When you are using Visual Studio 2015 or Visual Studio 2017, many of those steps are handled for
you, which dramatically improves your productivity. This is especially true when you are using Visual
Studio 2017 and targeting multi-container applications. For instance, with just one mouse click, Visual
Studio adds the Dockerfile and docker-compose.yml file to your projects with the configuration for
your application. When you run the application in Visual Studio, it builds the Docker image and runs
the multi-container application directly in Docker; it even allows you to debug several containers at
once. These features will boost your development speed.

However, just because Visual Studio makes those steps automatic does not mean that you do not
need to know what is going on underneath with Docker. Therefore, in the guidance that follows, we
detail every step.

1.
Code

your app

Developing a Docker application is similar to the way you develop an application without Docker. The
difference is that while developing for Docker, you are deploying and testing your application or
services running within Docker containers in your local environment (either a Linux VM or a Windows
VM).

Step 1. Start coding and create your initial application or service baseline

Set up your local environment with Visual Studio

To begin, make sure you have Docker Community Edition (CE) for Windows installed, as explained in
the following instructions:

Get started with Docker CE for Windows

In addition, you will need Visual Studio 2017 installed. This is preferred over Visual Studio 2015 with
the Visual Studio Tools for Docker add-in, because Visual Studio 2017 has more advanced support for
Docker, like support for debugging containers. Visual Studio 2017 includes the tooling for Docker if
you selected the .NET Core and Docker workload during installation, as shown in Figure 5-2.

Build cross-platform applications using .NET Core, ASP.NET Core, HTML, JavaScript, and
css

@ NET Core cross-platform development
¢

Location

) Plasse close al instances of Microsoft Visual Studio 2017 RC before proceeding with this opration.

Figure 5-2. Selecting the .NET Core and Docker workload during Visual Studio 2017 setup

69 Development Process for Docker-Based Applications

http://aka.ms/dockerlifecycleebook/
https://www.docker.com/community-edition
https://docs.docker.com/docker-for-windows/

You can start coding your application in plain .NET (usually in .NET Core if you are planning to use
containers) even before enabling Docker in your application and deploying and testing in Docker.
However, it is recommended that you start working on Docker as soon as possible, because that will
be the real environment and any issues can be discovered as soon as possible. This is encouraged
because Visual Studio makes it so easy to work with Docker that it almost feels transparent—the best
example when debugging multi-container applications from Visual Studio.

Additional resources

e Get started with Docker CE for Windows
https://docs.docker.com/docker-for-windows/

e Visual Studio 2017
https://www.visualstudio.com/vs/visual-studio-2017/

2.
Write
Dockerfile/s . L. .
Step 2. Create a Dockerfile related to an existing .NET base image

‘u"

You need a Dockerfile for each custom image you want to build; you also need a Dockerfile for each
container to be deployed, whether you deploy automatically from Visual Studio or manually using the
Docker CLI (docker run and docker-compose commands). If your application contains a single
custom service, you need a single Dockerfile. If your application contains multiple services (as in a
microservices architecture), you need one Dockerfile for each service.

The Dockerfile is placed in the root folder of your application or service. It contains the commands
that tell Docker how to set up and run your application or service in a container. You can manually
create a Dockerfile in code and add it to your project along with your .NET dependencies.

With Visual Studio and its tools for Docker, this task requires only a few mouse clicks. When you
create a new project in Visual Studio 2017, there is an option named Enable Container (Docker)
Support, as shown in Figure 5-3.

New ASP.NET Core Web Application (.NET Core) - WebAPI-Docker-VS2017-RC4-AddDocker ? X
ASP.NET Core 1.1 v earn more

A project template for creating an ASP.NET Core

ASP.NET Core 1.1 Templates application with an example Controller for a RESTful

HTTP service. This template can also be used for
ASP.NET MVC Views and Controllers.
N &
Empty Web AP| Web Learn more
Application
Change Authentication

Erati Docker Support _
Requires Docker for Windows

Docker support can also be enabled later Learn more

Figure 5-3. Enabling Docker Support when creating a new project in Visual Studio 2017

70 Development Process for Docker-Based Applications

https://docs.docker.com/docker-for-windows/
https://www.visualstudio.com/vs/visual-studio-2017/

You can also enable Docker support on a new or existing project by right-clicking your project file in
Visual Studio and selecting the option Add-Docker Project Support, as shown in Figure 5-4.

0 New ltem.. Ctrl+Shift+A Add ’
'3 Existing ltem... Shift+Alt+A fi Manage NuGet Packages..

New Scaffolded Item... Manage Bower Packages...
¥4 New Folder Manage User Secrets
2 Docker Support i} Set as StartUp Project

Reference... Debug ’
t.'}B Connected Service... 3{; Cut Ctrl+X
5 Class.. Shift+Altsc | #< Remove Del

1 Rename

Figure 5-4. Enabling Docker support in an existing Visual Studio 2017 project

This action on a project (like an ASP.NET Web application or Web API service) adds a Dockerfile to the
project with the required configuration. It also adds a docker-compose.yml file for the whole solution.
In the following sections, we describe the information that goes into each of those files. Visual Studio
can do this work for you, but it is useful to understand what goes into a Dockerfile.

Option A: Creating a project using an existing official .NET Docker image

You usually build a custom image for your container on top of a base image you can get from an
official repository at the Docker Hub registry. That is precisely what happens under the covers when
you enable Docker support in Visual Studio. Your Dockerfile will use an existing aspnetcore image.

Earlier we explained which Docker images and repos you can use, depending on the framework and
OS you have chosen. For instance, if you want to use ASP.NET Core and Linux, the image to use is
microsoft/aspnetcore:1.1. Therefore, you just need to specify what base Docker image you will use
for your container. You do that by adding FROM microsoft/aspnetcore:1.1 to your Dockerfile. This
will be automatically performed by Visual Studio, but if you were to update the version, you update
this value.

Using an official .NET image repository from Docker Hub with a version number ensures that the same
language features are available on all machines (including development, testing, and production).

The following example shows a sample Dockerfile for an ASP.NET Core container.

FROM microsoft/aspnetcore:1.1

ARG source

WORKDIR /app

EXPOSE 80

COPY ${source:-obj/Docker/publish} .

ENTRYPOINT ["dotnet™, " MySingleContainerWebApp.dll "]

In this case, the container is based on version 1.1 of the official ASP.NET Core Docker image for Linux;
this is the setting FROM microsoft/aspnetcore:1.1. (For further details about this base image, see
the ASP.NET Core Docker Image page and the .NET Core Docker Image page.) In the Dockerfile, you
also need to instruct Docker to listen on the TCP port you will use at runtime (in this case, port 80, as
configured with the EXPOSE setting).

71 Development Process for Docker-Based Applications

https://hub.docker.com/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/

You can specify additional configuration settings in the Dockerfile, depending on the language and
framework you are using. For instance, the ENTRYPOINT line with ["dotnet",
"MySingleContainerWebApp.d11"] tells Docker to run a .NET Core application. If you are using the
SDK and the .NET CLI (dotnet CLI) to build and run the .NET application, this setting would be
different. The bottom line is that the ENTRYPOINT line and other settings will be different depending
on the language and platform you choose for your application.

Additional resources

e Building Docker Images for .NET Core Applications
https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

e Build your own image. In the official Docker documentation.
https://docs.docker.com/engine/tutorials/dockerimages/

Using multi-platform image repositories

A single repo can contain platform variants, such as a Linux image and a Windows image. This feature
allows vendors like Microsoft (base image creators) to create a single repo to cover multiple
platforms. For example, the microsoft/dotnet repository available in the Docker Hub registry provides

support for Linux and Windows Nano Server by using the same repo name with different tags, as

shown in the following examples.

microsoft/dotnet:1.1-runtime

.NET Core 1.1 runtime-only on Linux Debian

microsoft/dotnet:1.1-runtime-
nanoserver

.NET Core 1.1 runtime-only on Windows Nano Server

In the future, it will be possible to use the same repo name and tag targeting multiple operating
systems. That way, when you pull an image from a Windows host, it will pull the Windows variant, and
pulling the same image name from a Linux host will pull the Linux variant.

Option B: Creating your base image from scratch

You can create your own Docker base image from scratch. This scenario is not recommended for
someone who is starting with Docker, but if you want to set the specific bits of your own base image,

you can do so.

Additional resources

e Create a base image. Official Docker documentation.
https://docs.docker.com/engine/userguide/eng-image/baseimages/

72

Development Process for Docker-Based Applications

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images
https://docs.docker.com/engine/tutorials/dockerimages/
https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

3.

Create Images

defined at Step 3. Create your custom Docker images and embed your application or

sy service in them
[}

For each service in your application, you need to create a related image. If your application is made up
of a single service or web application, you just need a single image.

Note that the Docker images are built automatically for you in Visual Studio. The following steps are
only needed for the editor/CLI workflow and explained for clarity about what happens underneath.

You, as developer, need to develop and test locally until you push a completed feature or change to
your source control system (for example, to GitHub). This means that you need to create the Docker
images and deploy containers to a local Docker host (Windows or Linux VM) and run, test, and debug
against those local containers.

To create a custom image in your local environment by using Docker CLI and your Dockerfile, you can
use the docker build command, as in Figure 5-5.

Ps C:\dev\netcore-webapi-microservice-docker> docker build cesardl/netcore-webapi-microservice-docker:first .
sending build context to Docker daemon 1.148 MB

Step 1 : FROM microsoft/dotnet:latest

latest: Pulling from microsoft/dotnet

5c90d4a2d1a8: Downloading [== —————— .34 MB/51.35 MB

ab30c63719b1: Downloading [= .48 MB/18.55 MB
c6072700a242: Downloading [.34 MB/42.53 MB
121d7eefbc20: waiting
eh57cf4f29%ee: waiting
b2c5ae2d325b: waiting

Figure 5-5. Creating a custom Docker image

Optionally, instead of directly running docker build from the project folder, you can first generate a
deployable folder with the required .NET libraries and binaries by running dotnet publish, and then
use the docker build command.

This will create a Docker image with the name cesardl/netcore-webapi-microservice-
docker:first. In this case, :first is a tag representing a specific version. You can repeat this step for
each custom image you need to create for your composed Docker application.

When an application is made of multiple containers (that is, it is a multi-container application), you
can also use the docker-compose up --build command to build all the related images with a single
command by using the metadata exposed in the related docker-compose.yml files.

You can find the existing images in your local repository by using the docker images command, as
shown in Figure 5-6.

PS C:\dev\netcore-webapi-microservice-docker> docker images
REPOSITORY G IMAGE ID CREATED SIZE

cesard]/netcore-webapi-microservice-docker i 384c4acl809b 4 minutes ago 579.8 MB

microsoft/dotnet t 49aaf5daa850 30 hours ago 548.6 MB
ubuntu cf62323fa025 5 days ago 125 mB
hello-world latest c54a2cc56¢hb 12 days ago 1.848 kB

Figure 5-6. Viewing existing images using the docker images command

73 Development Process for Docker-Based Applications

Creating Docker images with Visual Studio

When you are using Visual Studio to create a project with Docker support, you do not explicitly create
an image. Instead, the image is created for you when you press F5 and run the dockerized application
or service. This step is automatic in Visual Studio, and you will not see it happen, but it is important
that you know what is going on underneath.

4. (opt)

Define services

by writing Step 4.Define your services in docker-compose.yml when building a

docker-compose.ym|

multi-container Docker application

The docker-compose.yml file lets you define a set of related services to be deployed as a composed
application with deployment commands.

To use a docker-compose.yml file, you need to create the file in your main or root solution folder, with
content similar to that in the following example.

version: '2'

services:
webmvc:
image: eshop/web
environment:

- CatalogUrl=http://catalog.api

- OrderingUrl=http://ordering.api
ports:

- "80:80"
depends_on:

- catalog.api

- catalog.api

catalog.api:

image: eshop/catalog.api

environment:
ConnectionString=Server=catalogdata;Port=5432;Database=postgres;..

ports:
- "81:80"

depends_on:
- postgres.data

ordering.api:
image: eshop/ordering.api
environment:
- ConnectionString=Server=ordering.data;Database=0rderingDb;..
ports:
- "82:80"
extra_hosts:
- "CESARDLBOOKVHD:10.0.75.1"
depends_on:
- sql.data

sql.data:
image: mssql-server-linux:latest
environment:
- SA_PASSWORD=Pass@word
- ACCEPT_EULA=Y

74 Development Process for Docker-Based Applications

https://docs.docker.com/compose/compose-file/

ports:
- "5433:1433"
postgres.data:
image: postgres:latest
environment:
POSTGRES_PASSWORD: tempPwd

Note that this docker-compose.yml file is a simplified and merged version. It contains static
configuration data for each container (like the name of the custom image), which always applies, plus
configuration information that might depend on the deployment environment, like the connection
string. In later sections, you will learn how you can split the docker-compose.yml configuration into
multiple docker-compose files and override values depending on the environment and execution type
(debug or release).

The docker-compose.yml file example defines five services: the webmvc service (a web application); two
microservices