

Cesar de la Torre

Bill Wagner

Mike Rousos

Microsoft Corporation

--- DRAFT VERSION 0.5 ---

------------- This eBook (250+ pages) download available at: https://aka.ms/microservicesebook -----------

--------------- This is a draft version. We’re accepting feedback which will be taken into account -------------

----- Please, send direct feedback to dotnet-architecture-ebooks-feedback@service.microsoft.com ----

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the

written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this

book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or

should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft

group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks are property of their respective owners.

Co-Authors:

Cesar de la Torre, Sr. Program Manager, .NET product team, Microsoft Corp.

Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp.

Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft Corp.

Editors:

Steve Hoag, Mike Pope

Participants and reviewers:

 Full name, Title, Team, Company

-- TBD SECTION IN DRAFT ---------------------------------------

---------------- Reviewes and participants list will be added once the process is finished ---------------

https://aka.ms/microservicesebook

i

Contents
Introduction ... 1

About this guide .. 1

What this guide does not cover ... 1

Who should use this guide .. 2

How to use this guide .. 2

Related microservice- and container-based reference application: eShopOnContainers 2

Introduction to Containers and Docker .. 3

What is Docker?.. 4

Comparing Docker containers with virtual machines ... 5

Docker terminology .. 6

Docker containers, images, and registries ... 7

Choosing Between .NET Core and .NET Framework for Docker Containers 9

General guidance ... 9

When to choose .NET Core for Docker containers .. 10

Developing and deploying cross platform .. 10

Using containers for new (“green-field”) projects ... 10

Creating and deploying microservices on containers ... 11

Deploying high density in scalable systems .. 11

When to choose .NET Framework for Docker containers ... 12

Migrating existing applications directly to a Docker container ... 12

Using third-party .NET libraries or NuGet packages not available for .NET Core 12

Using.NET technologies not available for .NET Core ... 12

Using a platform or API that doesn’t support .NET Core ... 13

Decision table: .NET frameworks to use for Docker .. 14

What OS to target with .NET containers.. 15

Official .NET Docker images ... 15

.NET Core and Docker image optimizations for development versus production 16

Architecting Container- and Microservice-Based Applications .. 18

Common container design principles... 18

Containerized monolithic applications .. 19

Deploying a monolithic application as a container .. 21

ii

Publishing a single-container based app to Azure App Service ... 21

State and data in Docker applications ... 22

Service-oriented architecture ... 24

Microservices architecture .. 25

Data sovereignty per microservice .. 26

The relationship between microservices and the Bounded Context pattern ... 28

Logical architecture versus physical architecture .. 29

Challenges and solutions for distributed data management ... 30

Identifying domain-model boundaries for each microservice ... 35

Direct client-to-microservice communication versus the API Gateway pattern 38

Communication between microservices ... 42

Creating composite UI based on microservices, including visual UI shape and layout generated by

multiple microservices ... 53

Resiliency and high availability in microservices ... 55

Health management and diagnostics in microservices .. 55

Orchestrating microservices and multi-container applications for high scalability and availability ... 58

Using container-based orchestrators in Microsoft Azure .. 60

Using Azure Container Service ... 60

Using Azure Service Fabric ... 62

Stateless versus stateful microservices .. 65

Development Process for Docker-Based Applications ... 67

Vision ... 67

Development environment for Docker apps ... 67

Development tools choices: IDE or editor.. 67

.NET languages and frameworks for Docker containers .. 68

Development workflow for Docker apps .. 68

Workflow for developing Docker container-based applications .. 68

Simplified workflow when developing containers with Visual Studio .. 80

Using PowerShell commands in a Dockerfile to set up Windows containers ... 81

Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano

Server Hosts ... 82

Vision ... 82

Application tour ... 83

Docker support .. 84

Troubleshooting .. 86

Stopping Docker containers .. 86

Adding Docker to your projects ... 86

Migrating Legacy Monolithic .NET Framework Applications to Windows Containers 87

Vision ... 87

iii

Benefits ... 88

Possible migration paths ... 89

Application tour ... 89

Lifting and shifting ... 91

Getting data from the existing catalog .NET Core microservice .. 93

Development and production environments .. 93

Designing and Developing Multi-Container and Microservice-Based .NET Applications 94

Vision ... 94

Designing a microservice-oriented application .. 94

Application specifications ... 94

Development team context ... 95

Choosing an architecture .. 95

Benefits of a microservice-based solution ... 98

Downsides of a microservice-based solution ... 98

External versus internal architecture and design patterns .. 99

The new world: multiple architectural patterns and polyglot microservices.. 100

Creating a simple data-driven CRUD microservice ... 103

Designing a simple CRUD microservice .. 103

Implementing a simple CRUD microservice with ASP.NET Core ... 104

Generating Swagger description metadata from your ASP.NET Core Web API 111

Defining your multi-container application with docker-compose.yml ... 115

Using a database server running as a container .. 129

Implementing event-based communication between microservices (integration events) 134

Using message brokers and services buses for production systems .. 135

Integration events .. 135

The event bus .. 136

Testing ASP.NET Core services and web apps .. 150

Tackling Business Complexity in a Microservice with DDD and CQRS Patterns 154

Applying simplified CQRS and DDD patterns within a microservice ... 155

CQRS and CQS approaches in a DDD microservice .. 157

CQRS and DDD patterns are not top-level architectures... 157

Implementing the Reads/Queries in a CQRS microservice .. 158

ViewModels specifically made for client apps, independent from the domain model constraints

 ... 159

Dapper: selected Micro ORM as mechanism to query in the eShopOnContainers sample ordering

microservice ... 160

Dynamic and static ViewModels .. 160

Designing a domain-driven design-oriented microservice ... 162

Keep the microservice context boundaries relatively small .. 162

iv

Layers in domain-driven design microservices .. 162

Designing a microservice domain model.. 165

Implementing a microservice’s domain model with .NET Core ... 170

Domain model structure in a .NET Core Standard Library .. 170

Structuring aggregates in a .NET Standard Library .. 171

Implementing domain Entities as POCO classes ... 171

The SeedWork or reusable base classes and interfaces for your domain model 175

Repository contracts and interfaces placed in the domain model layer ... 177

Value objects.. 178

Value object implementation in C# .. 179

Using Enumeration classes instead of Enums... 181

Designing validations in the domain model layer .. 183

Implementing validations in the domain model layer .. 184

Client side validation (validation in the presentation layers) .. 186

Domain events ... 187

What is a domain event? ... 187

Domain events versus integration events .. 188

Implementing domain events .. 191

How to implement a domain event .. 191

Raising domain events ... 192

The deferred approach for raising and dispatching events .. 192

Single transaction across aggregates versus eventual consistency across aggregates 193

The domain event dispatcher: mapping from events to event handlers ... 195

How to subscribe to domain events ... 196

How to handle domain events.. 196

Designing the infrastructure persistence layer ... 198

The Repository pattern .. 198

Implementing the infrastructure persistence layer with Entity Framework Core 201

Introduction to Entity Framework Core ... 201

Infrastructure in Entity Framework Core from a DDD perspective ... 202

Implementing custom repositories with Entity Framework Core ... 203

EF DbContext and IUnitOfWork instance lifetime in your IoC container ... 205

The repository instance lifetime in your IoC container ... 206

Table mapping .. 207

Using NoSQL databases as a persistence infrastructure ... 209

Designing the microservice’s application layer and Web API ... 212

Using S.O.L.I.D. principles and Dependency Injection ... 212

Implementing the microservice’s application layer and Web API ... 213

v

Using Dependency Injection to inject infrastructure objects into your application layer 213

Implementing the Command and Command-Handlers patterns .. 216

The Command’s process pipeline: hw to trigger a command handler .. 222

Implementing the Command process pipeline with a mediator pattern (MediatR) 224

Applying cross-cutting concerns when processing commands with the Mediator and Decorator

patterns .. 226

Why sagas? ... 227

Implementing Resilient Applications .. 228

Vision ... 228

Handling partial failure ... 228

Strategies for handling partial failure ... 230

Implementing retries with exponential backoff ... 232

Implementing the Circuit Breaker pattern ... 239

Using the ResilientHttpClient utility class from eShopOnContainers ... 240

Health monitoring .. 245

Implementing health checks in ASP.NET Core services .. 245

Watchdogs .. 248

Health checks when using orchestrators .. 249

Advanced monitoring: visualization, analysis, and alerts ... 250

Securing .NET Microservices and Web Applications ... 251

Implementing authentication in .NET microservices and web applications .. 251

Authenticating using ASP.NET Core Identity .. 252

Authenticating using external providers ... 253

Authenticating with bearer tokens .. 255

About authorization in .NET microservices and web applications .. 258

Implementing role-based authorization ... 259

Implementing policy-based authorization ... 259

Storing app secrets safely during development ... 261

Storing secrets as environment variables ... 261

Storing secrets using the ASP.NET Core Secret Manager .. 262

Using Azure Key Vault to protect secrets at production time .. 262

Key Takeaways .. 265

1 Introduction

S E C T I O N 1

Introduction

Enterprises are increasingly realizing cost savings, solving deployment problems, and improving

DevOps and production operations by using containers. Microsoft has been releasing container

innovations for Windows and Linux by creating products like Azure Container Service and Azure

Service Fabric, and by partnering with industry leaders like Docker, Mesosphere, and Kubernetes.

These products deliver container solutions that help companies build and deploy applications at cloud

speed and scale, whatever their choice of platform or tools.

Docker is becoming the de facto standard in the container industry, supported by the most significant

vendors in the Windows and Linux ecosystems. (Microsoft is one of the main cloud vendors

supporting Docker.) In the future, Docker will probably be ubiquitous in any datacenter in the cloud or

on-premises.

In addition, the microservices architecture is emerging as an important approach for distributed

mission-critical applications. In a microservice-based architecture, the application is built on a

collection of services that can be developed, tested, deployed, and versioned independently.

About this guide
This guide is an introduction to developing microservices-based applications and managing them

using containers. It discusses architectural design and implementation approaches using .NET Core

and Docker containers. To make it easier to get started with containers and microservices, the guide

focuses on a reference containerized and microservice-based application that you can explore. The

sample application is available at the eShopOnContainers GitHub repo.

This guide provides foundational development and architectural guidance primarily at a development

environment level with a focus on two technologies: Docker and .NET Core. Our intention is that you

read this guide when thinking about your application design without focusing on the infrastructure

(cloud or on-premises) of your production environment. You will make decisions about your

infrastructure later, when you create your production-ready applications. Therefore, this guide is

intended to be infrastructure agnostic and more development-environment-centric.

After you’ve studied this guide, your next step would be to learn about production-ready

microservices on Microsoft Azure.

What this guide does not cover
This guide does not focus on the application lifecycle, DevOps, CI/CD pipelines, or team work. The

complementary guide Containerized Docker Application Lifecycle with Microsoft Platform and Tools

focuses on that subject. This guide also does not provide implementation details on Azure

infrastructure, such as information on specific orchestrators.

https://martinfowler.com/articles/microservices.html
https://github.com/dotnet/eShopOnContainers

2 Introduction

Additional resources

• Containerized Docker Application Lifecycle with Microsoft Platform and Tools (downloadable

ebook)

https://aka.ms/dockerlifecycleebook

Who should use this guide
We wrote this guide for developers and solution architects who are new to Docker-based application

development and to microservices-based architecture. This guide is for you if you want to learn how

to architect, design, and implement proof-of-concept applications with Microsoft development

technologies (with special focus on .NET Core) and with Docker containers.

You will also find this guide useful if you are a technical decision maker, such as an enterprise

architect, who wants an architecture and technology overview before you decide on what approach to

select for new and modern distributed applications.

How to use this guide
The first part of this guide introduces Docker containers, discusses how to choose between .NET Core

and the .NET Framework as a development framework, and provides an overview of microservices.

This content is for architects and technical decision makers who want an overview but who do not

need to focus on code implementation details.

The second part of the guide starts with the “Development process for Docker based applications”

section. It focuses on development and microservice patterns for implementing applications using

.NET Core and Docker. This section will be of most interest to developers and architects who want to

focus on code and on patterns and implementation details.

Related microservice- and container-based

reference application: eShopOnContainers
The eShopOnContainers application is a reference app for .NET Core and microservices that is

designed to be deployed using Docker containers. The application consists of multiple subsystems,

including several e-store UI front ends (a Web app and a native mobile app). It also includes the back-

end microservices and containers for all required server-side operations.

This microservice and container-based application source code is open source and available at the

eShopOnContainers GitHub repo.

https://aka.ms/dockerlifecycleebook
http://aka.ms/MicroservicesArchitecture

3 Introduction to Containers and Docker

S E C T I O N 2

Introduction to Containers
and Docker

Containerization is an approach to software development in which an application or service, its

dependencies, and its configuration (abstracted as deployment manifest files) are packaged together

as a container image. The containerized application can be tested as a unit and deployed as a

container image instance to the host operating system (OS).

Just as shipping containers allow goods to be transported by ship, train, or truck regardless of the

cargo inside, software containers act as a standard unit of software that can contain different code

and dependencies. Containerizing software this way enables developers and IT professionals to

deploy them across environments with little or no modification.

Containers also isolate applications from each other on a shared OS. Containerized applications run

on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore have a

significantly smaller footprint than virtual machine (VM) images.

Each container can run a whole web application or a service, as shown in Figure 2-1. In this example,

Docker host is a container host, and App1, App2, Svc 1, and Svc 2 are containerized applications or

services.

Figure 2-1. Multiple containers running on a container host

Another benefit of containerization is scalability. You can scale out quickly by creating new containers

for short-term tasks. From an application point of view, instantiating an image (creating a container) is

similar to instantiating a process like a service or web app. For reliability, however, when you run

multiple instances of the same image across multiple host servers, you typically want each container

(image instance) to run in a different host server or VM in different fault domains.

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the

whole application lifecycle workflow. The most important benefit is the isolation provided between

Dev and Ops.

4 Introduction to Containers and Docker

What is Docker?
Docker is an open-source project for automating the deployment of applications as portable, self-

sufficient containers that can run on the cloud or on-premises. Docker is also a company that

promotes and evolves this technology, working in collaboration with cloud, Linux, and Windows

vendors, including Microsoft.

Figure 2-2. Docker deploys containers at all layers of the hybrid cloud

Docker image containers can run natively on Linux and Windows. However, Windows images can run

only on Windows hosts and Linux images can run only on Linux hosts, being a host a server or a VM.

Developers can use development environments on Windows, Linux, or macOS. On the development

computer, the developer runs a Docker host where Docker images are deployed, including the app

and its dependencies. Developers who work on Linux or on the Mac use a Docker host that is Linux

based, and they can create images only for Linux containers. (Developers working on the Mac can edit

code or run the Docker CLI from macOS, but as of the time of this writing, containers do not run

directly on macOS.) Developers who work on Windows can create images for either Linux or Windows

containers.

To host containers in development environments and provide additional developer tools, Docker

ships Docker Community Edition (CE) for Windows or for macOS. These products install the necessary

VM (the Docker host) to host the containers. Docker also makes available Docker Enterprise Edition

(EE), which is designed for enterprise development and is used by IT teams who build, ship, and run

large business-critical applications in production.

To run Windows Containers, there are two types of runtimes:

• Windows Server Containers provide application isolation through process and namespace

isolation technology. A Windows Server Container shares a kernel with the container host and

with all containers running on the host.

• Hyper-V Containers expand on the isolation provided by Windows Server Containers by

running each container in a highly optimized virtual machine. In this configuration, the kernel

of the container host is not shared with the Hyper-V Containers, providing better isolation.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://www.docker.com/community-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

5 Introduction to Containers and Docker

The images for these containers are created the same way and function the same. The difference is in

how the container is created from the image—running a Hyper-V Container requires an extra

parameter. For details, see Hyper-V Containers.

Comparing Docker containers with virtual machines

Figure 2-3 shows a comparison between VMs and Docker containers.

Virtual Machines

Virtual machines include the application, the

required libraries or binaries, and a full guest

operating system. Full virtualization requires

more resources than containerization.

Docker Containers

Containers include the application and all of its

dependencies. However, they share the OS kernel

with other containers, running as isolated

processes in user space on the host operating

system. (Except in Hyper-V containers, where each

container runs inside of a special virtual machine

per container.)

Figure 2-3. Comparison of traditional virtual machines to Docker containers

Because containers require far fewer resources (for example, they do not need a full OS), they are easy

to deploy and they start fast. This allows you to have higher density, meaning that it allows you to run

more services on the same hardware unit, thereby reducing costs.

As a side effect of running on the same kernel, you get less isolation than VMs.

The main goal of an image is that it makes the environment (dependencies) the same across different

deployments. This means that you can debug it on your machine and then deploy it to another

machine with the same environment guaranteed.

A container image is a way to package an app or service and deploy it in a reliable and reproducible

way. You could say that Docker is not only a technology, but also a philosophy and a process.

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

6 Introduction to Containers and Docker

When using Docker, you will not hear developers say, “It works on my machine, why not in

production?” They can simply say, “It runs on Docker,” because the packaged Docker application can

be executed on any supported Docker environment, and it will run the way it was intended to on all

deployment targets (Dev, QA, staging, production, etc.).

Docker terminology
This section lists terms and definitions you should be familiar with before getting deeper into Docker.

For further definitions, an extensive glossary is provided by Docker

(https://docs.docker.com/v1.11/engine/reference/glossary/).

Container Image: A package with all the dependencies and information needed to create a container.

An image includes all the dependencies (such as frameworks) plus deployment and execution

configuration to be used by a container runtime. Usually, an image derives from multiple base images

that are layers stacked on top of each other to form the container’s filesystem. An image is immutable

once it has been created.

Container: An instance of a Docker image. A container represents the execution of a single

application, process, or service. A container consists of the contents of a Docker image, an execution

environment, and a standard set of instructions. When scaling a service, you create multiple instances

of a container from the same image. Or a batch job can create multiple containers from the same

image, passing different parameters to each instance.

Tag: A mark or label you can apply to images so different images or version of the same original

image (depending on the version number or even the target environment) can be identifyied.

Dockerfile: A text file that contains instructions for how to build a Docker image.

Build: The action of building a container image based on the information and context provided by its

Dockerfile plus additional files in the folder where the image is built. You can build images with the

Docker CLI command docker build.

Repository (repo): A collection of related Docker images, labeled with a tag that indicates the image

version. Some repos contain multiple variants of a specific image, such as an image containing SDKs

(heavier), an image containing only runtimes (lighter), etc. Those variants can be marked with tags. A

single repo can contain platform variants, such as a Linux and a Windows image.

Registry: A service providing access to repositories. The default registry for most public images is

Docker Hub (owned by Docker as an organization). A Registry usually contains repositories from

multiple teams. Companies often have private Registries to store and manage images they’ve created.

Azure Container Registry is another example.

Docker Hub: A public registry to upload images and work with them. Docker Hub provides Docker

image hosting, public or private registries, build triggers and web hooks, and integration with GitHub

and Bitbucket.

Azure Container Registry: A public resource for working with Docker images and its components in

Azure. This provides a registry that is close to your deployments in Azure and that gives you control

over access, making it possible to use your Azure Active Directory groups and permissions.

file:///C:/Users/v-mikepo/AppData/Roaming/Microsoft/Word/Docker
https://docs.docker.com/v1.11/engine/reference/glossary/
https://hub.docker.com/

7 Introduction to Containers and Docker

Docker Trusted Registry (DTR): A Docker registry service (from Docker) that can be installed on-

premises so it lives within the organization’s datacenter and network. It is convenient for private

images to be managed within the enterprise. Docker Trusted Registry is included as part of the Docker

Datacenter product. For more information, see Docker Trusted Registry (DTR).

Docker Community Edition (CE): Development tools for Windows and macOS for building, running,

and testing containers locally. Docker CE for Windows provides both Linux and Windows containers

development environments. The Linux Docker host on Windows is based on a Hyper-V virtual

machine. The host for Windows Containers is directly based on Windows. Docker CE for Mac is based

on the Apple Hypervisor framework and the xhyve hypervisor, which provides a Linux Docker host

virtual machine on Mac OS X. Docker CE for Windows and Mac replaces Docker Toolbox, which was

based on Oracle VirtualBox.

Docker Enterprise Edition (EE): An enterprise-scale version of Docker tools for Linux and Windows

development.

Compose: A command-line tool and . yml file format with metadata for defining and running multi-

container applications. You define a single application based on multiple images with one or multiple

.yml files that can override values depending on the environment. Once you have the definitions you

can deploy the whole multi-container application with a single command (docker-compose up) that

creates a container per image on the Docker host.

Cluster: A collection of Docker hosts exposed as if it were a single virtual Docker host so the can scale

to multiple instances of the services spread across multiple hosts within the cluster. Docker clusters

can be created with Docker Swarm, Mesosphere DC/OS, Kubernetes, and Azure Service Fabric. (If you

use Docker Swarm for managing a cluster, you typically refer to it the cluster as a swarm instead of a

cluster.)

Orchestrator: A tool that simplifies management of clusters and Docker hosts. Orchestrators enable

you to manage their images, containers, and hosts through a command line interface (CLI) or a

graphical UI. You can manage container networking, configurations, load balancing, service discovery,

high availability, Docker host configuration, and more. An orchestrator is responsible for running,

distributing, scaling, and healing workloads across a collection of nodes. Typically, orchestrator

products are the same products that provide cluster infrastructure, like Mesosphere DC/OS,

Kubernetes, Docker Swarm, and Azure Service Fabric.

Docker containers, images, and registries
The developer creates an app or service and packages it and its dependencies into a container image.

An image is a static representation of the app or service and its configuration and dependencies.

To run the app or service, the image is instantiated to create a container, which is the app or service

running as a container on the Docker host, initially tested in a development environment or PC.

Developers should store images in a registry, which acts as a library of images and is needed when

deploying to production orchestrators. Docker maintains a public registry via Docker Hub, and other

vendors provide registries for different collections of images. Alternatively, enterprises can have a

private registry on-premises for their own Docker images.

https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://github.com/mist64/xhyve
https://hub.docker.com/

8 Introduction to Containers and Docker

Figure 2-4 shows how images and registries in Docker relate to other components. It also shows the

multiple registry offerings from vendors.

Figure 2-4. Taxonomy of Docker terms and concepts

Putting images in a registry lets you store static and immutable application bits, including all their

dependencies at a framework level. Those images can then be versioned and deployed in multiple

environments and therefore provide a consistent deployment unit.

Private image registries, either hosted on-premises or in the cloud, are recommended when:

• Your images must not be shared publicly due to confidentiality reasons.

• You want to have minimum network latency between your images and your chosen

deployment environment. For example, if your production environment is in Azure’s cloud

you will probably will want to store your images in Azure Container Registry so the network

latency will be minimal. In a similar way, if your production environment is on-premises, you

might want to have an on-premises Docker Trusted Registry available within the same local

network.

9 Choosing Between .NET Core and .NET Framework for Docker Containers

S E C T I O N

3

 Choosing Between .NET
Core and .NET Framework
for Docker Containers

There are two supported choices of frameworks for building server-side containerized Docker

applications with .NET: .NET Framework and .NET Core. Both share a lot of the same .NET platform

components and you can share code across the two. However, there are fundamental differences

between the two and your choice will depend on what you want to accomplish. This section provides

guidance on when to use each.

General guidance
This section provides a summary of when to choose .NET Core or .NET Framework. We provide more

details about these choices in the sections that follow.

You should use .NET Core for your containerized Docker server application when:

• You have cross-platform needs. For example, you want to use both Linux and Windows

containers.

• Your application architecture is based on microservices.

• You need to start containers fast and want a small footprint per container to achieve better

density or more containers per hardware unit in order to lower your costs.

In short, when you create new containerized .NET applications, you should consider.NET Core as the

default choice. It has many benefits and fits much better with the containers philosophy and style of

working.

An additional benefit of using .NET Core is that you can run side by side .NET versions for applications

within the same machine. This benefit is more important for servers or VMs that don’t use containers,

since containers isolate the versions of .NET that the app needs (as long as they are compatible with

the underlying OS).

You should use .NET Framework for your containerized Docker server application when:

• Your application currently uses .NET Framework and has strong dependencies on Windows.

• You need to use Windows APIs that are not supported by .NET Core.

https://www.microsoft.com/net/download/framework
https://www.microsoft.com/net/download/core

10 Choosing Between .NET Core and .NET Framework for Docker Containers

• You need to use third-party .NET libraries or NuGet packages that are not available for .NET

Core.

Using .NET Framework on Docker can improve your deployment experiences by minimizing

deployment issues. This “lift and shift” scenario is important for “dockerizing” legacy applications (at

least, those that are not based on microservices).

When to choose .NET Core for Docker containers
The modularity and lightweight nature of .NET Core makes it perfect for containers. When you deploy

and start a container, its image is far smaller with .NET Core than with .NET Framework. In contrast, to

use .NET Framework for a container, you must base your image on the Windows Server Core image,

which is a lot heavier than the Windows Nano Server or Linux images.

Additionally, .NET Core is cross-platform, so you can deploy server apps with Linux or Windows

container images. However, if you are using the full .NET Framework, you can only deploy images

based on Windows Server Core.

The following is a more detailed explanation of why to pick .NET Core.

Developing and deploying cross platform

Clearly, if your goal is to have an application (web app or service) that is able to run on multiple

platforms supported by Docker (Linux and Windows), the right choice is to use .NET Core, because

.NET Framework only supports Windows.

.NET Core also supports macOS as a development platform, but when deploying containers to a

Docker host, that host (currently) must be based on Linux or Windows. For example, in a development

environment, you could use a Linux VM running on a Mac.

Visual Studio provides an Integrated Development Environment (IDE) for Windows. Visual Studio for

Mac is an evolution of Xamarin Studio running in macOS, but as of the time of this writing, it still does

not support Docker development. You can also use Visual Studio Code (VS Code) on macOS, Linux,

and Windows. VS Code fully supports .NET Core, including IntelliSense and debugging. Since it is a

lightweight editor, you can use it to develop containerized apps in the Mac in conjunction with the

Docker CLI and the .NET Core CLI (dotnet cli). You can also target .NET Core with most third-party

editors like Sublime, Emacs, vi, and the open-source OmniSharp project, which also provides

IntelliSense support. In addition to the IDEs and editors, you can use the .NET Core command-line

tools (dotnet CLI) for all supported platforms.

Using containers for new (“green-field”) projects

Containers are commonly used in conjunction with a microservices architecture, although they can

also be used to containerize web apps or services that follow any architectural pattern. You can use

.NET Framework on Windows Containers, but the modularity and lightweight nature of .NET Core

makes it perfect for containers and microservices architectures. When you create and deploy a

container, its image is far smaller with .NET Core than with .NET Framework.

https://www.visualstudio.com/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/

11 Choosing Between .NET Core and .NET Framework for Docker Containers

Creating and deploying microservices on containers

You could use the full .NET framework for microservices-based applications (without containers) when

using plain processes, because .NET Framework is already installed and shared across processes.

However, if you are using containers, the image for .NET Framework (Windows Server Core plus the

full .NET Framework within each image) is probably too heavy for a microservices-on-containers

approach.

In contrast, .NET Core is the best candidate if you are embracing a microservices-oriented system

that’s based on containers, because .NET Core is lightweight. In addition, its related container images,

either the Linux image or the Windows Nano image, are lean and small.

A microservice is meant to be as small as possible: to be light when spinning up, to have a small

footprint, to have a small Bounded Context, to represent a small area of concerns, and to be able to

start and stop fast. For those requirements, you will want to use small and fast-to-instantiate container

images like the .NET Core container image.

A microservices architecture also allows you to mix technologies across a service boundary. This

enables a gradual migration to .NET Core for new microservices that work in conjunction with other

microservices or with services developed with Node.js, Python, Java, GoLang, or other technologies.

There are many orchestrators you can use when targeting microservices and containers. For large and

complex microservice systems being deployed as Linux containers, Azure Container Service has

multiple orchestrator offerings (Mesos DC/OS, Kubernetes, and Docker Swarm), which makes it a

good choice. You can also use Azure Service Fabric for Linux, which supports Docker Linux containers.

(At the time of this writing, this offering was still in Preview. Check the Azure Service Fabric for the

latest status.)

For large and complex microservice systems being deployed as Windows containers, most

orchestrators are currently in a less mature state. However, you currently can use Azure Service Fabric

for Windows containers, as well as Azure Container Service. Azure Service Fabric is well established for

running mission-critical Windows applications.

All these platforms support .NET Core and make them ideal for hosting your microservices.

Deploying high density in scalable systems

When your container-based system needs the best possible density, granularity, and performance,

.NET Core and ASP.NET Core are your best options. ASP.NET Core is up to ten times faster than

ASP.NET in the full .NET Framework, and it leads other popular industry technologies for

microservices, such as Java servlets, Go, and Node.js.

This is especially relevant for microservices architectures, where you could have hundreds of

microservices (containers) running. With ASP.NET Core images (based on the .NET Core runtime) on

Linux or Windows Nano, you can run your system with a much lower number of servers or VMs,

ultimately saving costs in infrastructure and hosting.

https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-overview
https://azure.microsoft.com/en-us/services/service-fabric/

12 Choosing Between .NET Core and .NET Framework for Docker Containers

When to choose .NET Framework for Docker

containers
While .NET Core offers significant benefits for new applications and application patterns, .NET

Framework will continue to be a good choice for many existing scenarios.

Migrating existing applications directly to a Docker container

You might want to use Docker containers just to simplify deployment, even if you’re not creating

microservices. For example, perhaps you want to improve your DevOps workflow with Docker and so

you can have better isolated test environments and you can also eliminate deployment issues caused

by missing dependencies when moving to production environments. In cases like these, even if you

are deploying a monolithic application, it makes sense to use Docker and Windows containers for

your current .NET Framework applications.

In most cases, you won’t need to migrate your existing applications to .NET Core; you can use Docker

containers that include the full .NET Framework. However, a recommended approach is to use .NET

Core as you extend an existing application, such as writing a new service in ASP.NET Core.

Using third-party .NET libraries or NuGet packages not available for

.NET Core

Third-party libraries are quickly embracing the .NET Standard Library, which enables code sharing

across all .NET flavors, including .NET Core. With the .NET Standard Library 2.0, this will be even easier,

because the .NET Core API surface will become significantly bigger. Your .NET Core applications will

be able to directly use existing .NET Framework libraries.

Be aware that whenever you run a library or process based on the traditional .NET Framework,

because of its dependencies on Windows, the container image used for that application or service will

need to be based on a Windows Container image.

Using.NET technologies not available for .NET Core

Some .NET Framework technologies are not available in the current version of .NET Core (version 1.1

as of this writing). Some of them will be available in later .NET Core releases (.NET Core 2), but others

don’t apply to the new application patterns targeted by .NET Core and may never be available.

The following list shows most of the technologies that are not available in .NET Core 1.1:

• ASP.NET Web Forms. This technology is only available on .NET Framework. Currently there are

no plans to bring ASP.NET Web Forms to .NET Core.

• ASP.NET Web Pages. This technology is slated to be included in a future .NET Core release, as

explained in the .NET Core roadmap.

• ASP.NET SignalR. As of the .NET Core 1.1 release (November 2016), ASP.NET SignalR is not

available for ASP.NET Core (neither client nor server). There are plans to include it in a future

release, as explained in the .NET Core roadmap. A preview is available at the Server-side and

Client Library GitHub repositories.

https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/aspnet/SignalR-Server
https://github.com/aspnet/SignalR-Client-Net

13 Choosing Between .NET Core and .NET Framework for Docker Containers

• WCF services. Even when there’s a WCF-Client library to consume WCF services from .NET

Core (as of early 2017), the WCF server implementation is only available on .NET Framework.

This scenario is being considered for future releases of .NET Core.

• Workflow-related services. Windows Workflow Foundation (WF), Workflow Services (WCF +

WF in a single service), and WCF Data Services (formerly known as ADO.NET Data Services)

are only available on .NET Framework. There are currently no plans to bring them to .NET

Core.

• Language support. As of the release of Visual Studio 2017, Visual Basic and F# don’t have

tooling support for .NET Core, but this support is planned for updated versions of Visual

Studio.

In addition to the technologies listed in the official .NET Core roadmap, other features might be

ported to .NET Core. For a full list, look at the items tagged as port-to-core on the CoreFX GitHub site.

Note that this list doesn’t represent a commitment from Microsoft to bring those components to .NET

Core—the items simply capture requests from the community. If you care about any of the

components listed above, consider participating in the discussions on GitHub so that your voice can

be heard. And if you think something is missing, please file a new issue in the CoreFX repository.

Using a platform or API that doesn’t support .NET Core

Some Microsoft or third-party platforms don’t support .NET Core. For example, some Azure services

provide an SDK that is not yet available for consumption on .NET Core. This is temporary, because all

Azure services will eventually use .NET Core. For example, the Azure DocumentDB SDK for .NET Core

was released as a preview on November 16, 2016, but it is now generally available (GA) as a stable

version.

In the meantime, you can always use the equivalent REST API from the Azure service instead of the

client SDK.

Additional resources

• .NET Core Guide

https://docs.microsoft.com/en-us/dotnet/articles/core/index

• Porting from .NET Framework to .NET Core

https://docs.microsoft.com/en-us/dotnet/articles/core/porting/index

• .NET Framework on Docker Guide

https://docs.microsoft.com/en-us/dotnet/articles/framework/docker/

• .NET Components Overview

https://docs.microsoft.com/en-us/dotnet/articles/standard/components

https://github.com/dotnet/wcf
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/1.2.1
https://docs.microsoft.com/en-us/dotnet/articles/core/index
https://docs.microsoft.com/en-us/dotnet/articles/core/porting/index
https://docs.microsoft.com/en-us/dotnet/articles/framework/docker/
https://docs.microsoft.com/en-us/dotnet/articles/standard/components

14 Choosing Between .NET Core and .NET Framework for Docker Containers

Decision table: .NET frameworks to use for Docker
The following decision table summarizes whether to use .NET Framework or .NET Core.

Remember that for Linux containers, you need Linux-based Docker hosts (VMs or servers) and that for

Windows containers you need Windows Server based Docker hosts (VMs or servers).

Architecture / App Type Linux containers Windows containers

Microservices on containers .NET Core .NET Core

Monolithic app .NET Core .NET Framework

.NET Core

Best-in-class performance and

scalability

.NET Core .NET Core

Windows Server legacy app

(“brown-field”) migration to

containers

-- .NET Framework

New container-based

development (“green-field”)

.NET Core .NET Core

ASP.NET Core .NET Core .NET Core (recommended)

.NET Framework

ASP.NET 4 (MVC 5, Web API 2,

and Web Forms)

-- .NET Framework

SignalR services .NET Core (future release) .NET Framework

.NET Core (future release)

WCF, WF, and other legacy

frameworks

WCF in .NET Core (in the

roadmap)

.NET Framework

WCF in .NET Core (in the

roadmap)

Consumption of Azure services .NET Core

(eventually all Azure services

will provide client SDKs for

.NET Core)

.NET Framework

.NET Core

(eventually all Azure services

will provide client SDKs for

.NET Core)

15 Choosing Between .NET Core and .NET Framework for Docker Containers

What OS to target with .NET containers
Given the diversity of operating systems supported by Docker and the differences between .NET

Framework and .NET Core, you should target specific OS and versions depending on the framework

you are using. For instance, in Linux there are many distros available, but only few of them are

supported in the official .NET Docker images (like Debian and Alpine). For Windows you can use

Windows Server Core or Nano Server; these OSs provide different characteristics (like IIS versus

Kestrel) that might be needed by .NET Framework or NET Core.

In Figure 3-1 you can see the possible OS version depending on the .NET framework used.

Figure 3-1. Operating sytems to target depending on versions of the .NET frameworks

You can also create your own Docker image in cases where you want to use a different Linux distro or

where you want an image with versions not provided by Microsoft. For example, you might create an

image with ASP.NET Core running on the full .NET Framework and Windows Server Core, which is a

not-so-common scenario for Docker.

When adding the image name to your Dockerfile file, you can select the operating system and version

depending on the tag you use, as in the following examples.

microsoft/dotnet:1.1-runtime .NET Core 1.1 runtime-only on Linux

microsoft/dotnet:1.1-runtime-nanoserver .NET Core 1.1 runtime-only on Windows Nano Server

Official .NET Docker images
The Official .NET Docker images are Docker images created and optimized by Microsoft. They are

publicly available in the Microsoft repositories on Docker Hub. Each repository can contain multiple

images, depending on .NET versions, and depending on the OS and versions (Linux Debian, Linux

Alpine, Windows Nano Server, Windows Server Core, etc.).

https://hub.docker.com/u/microsoft/

16 Choosing Between .NET Core and .NET Framework for Docker Containers

Microsoft’s vision for .NET repositories is to have granular and focused repos, where a repo represents

a specific scenario or workload. For instance, the microsoft/aspnetcore images should be used when

using ASP.NET Core on Docker, because those ASP.NET Core images provide additional optimizations

so containers can spin-up faster.

On the other hand, the .NET Core images (microsoft/dotnet) are intended for console apps based on

.NET Core. For example, batch processes, Azure WebJobs, and other console scenarios should use

.NET Core. Those images don’t include the ASP.NET Core stack, resulting in a smaller container image.

Most image repos provide extensive tagging to help you select not just a specific framework version,

but also to choose an OS (Linux distro or Windows version).

For further information about the official .NET Docker images provided by Microsoft, see the .NET

Docker Images summary.

.NET Core and Docker image optimizations for development versus

production

When building Docker images for developers, Microsoft focused on the following main scenarios:

• Images used to develop and build .NET Core apps.

• Images used to run .NET Core apps.

Why multiple images? When developing, building and running containerized applications, you usually

have different priorities. By providing different images for these separate tasks, Microsoft helps

optimize the separate processes of developing, building, and deploying apps.

During development and build

During development, what’s important is how fast you can iterate changes, and the ability to debug

the changes. The size of the image isn't as important as the ability to make changes to your code and

see the changes quickly. Some of our tools, like yo docker for Visual Studio Code, use the

development ASP.NET Core image (microsoft/aspnetcore-build) during development; you could even

use that image as a build container. When building inside a Docker container, what’s important are

the elements that are needed in order to compile your app. This includes the compiler and any other

.NET dependencies, plus web development dependencies like npm, Gulp, and Bower.

Why is this type of build image important? You don’t deploy this image to production. Instead, it's an

image you use to build the content you place into a production image. This image would be used in

your continuous integration (CI) environment or build environment. For instance, rather than manually

installing all your application dependencies directly on a build agent host (a VM, for instance), the

build agent would instantiate a .NET Core build image with all the dependencies required to build the

application. Your build agent only needs to know how to run this Docker image. This simplifies your CI

environment and makes it much more predictable.

During production

What’s important in production is how fast you can deploy and start your containers based on a

production .NET Core image. Therefore, the runtime-only image based on microsoft/aspnetcore is

small so it can travel quickly across the network from your Docker Registry to your Docker hosts. The

contents are ready to run, enabling the fastest time from Docker run to processing results. In the

https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/
https://aka.ms/dotnetdockerimages
https://aka.ms/dotnetdockerimages
https://github.com/Microsoft/generator-docker
https://hub.docker.com/r/microsoft/aspnetcore-build/
https://hub.docker.com/r/microsoft/aspnetcore/

17 Choosing Between .NET Core and .NET Framework for Docker Containers

Docker model, there's no need for compilation from C# code, as when running dotnet build or

dotnet publish when using the build container.

In this optimized image, you put only the binaries and other content needed to run the application.

For example, the content created by dotnet publish contains only the compiled .NET binaries,

images, .js, and .css files. Over time, you'll see images that contain pre-jitted packages.

Although there are multiple versions of the .NET Core and ASP.NET Core images, they all share one or

more layers. The amount of disk space needed to store, or the delta (between your custom image and

its base image) to pull the image from your registry, is small, because all the images share the same

base layer, and might share other layers as well.

When you explore the .NET image repositories at Docker Hub, you will find multiple image versions

classified or marked with tags, so you can decide which one to use depending on the version you

need, like those in the following table:

microsoft/aspnetcore:1.1 ASP.NET Core, with runtime only and ASP.NET Core

optimizations, on Linux

microsoft/aspnetcore-build:1.0-1.1 ASP.NET Core, with SDKs included, on Linux

microsoft/dotnet:1.1-runtime .NET Core 1.1, with runtime only, on Linux

microsoft /dotnet:1.1-runtime-deps .NET Core 1.1, with runtime and framework

dependencies for self-contained apps, on Linux

microsoft/dotnet:1.1.0-sdk-msbuild .NET Core 1.1 with SDKs included, on Linux

18 Architecting Container- and Microservice-Based Applications

S E C T I O N

4

Architecting Container-
and Microservice-Based
Applications

Earlier in this guide, you learned fundamental concepts about containers and Docker. That was the

basic information you need in order to get started. However, enterprise applications can be complex

and are often composed of multiple services instead of a single service (container). For those cases,

you need to understand additional architectural approaches, such as service-oriented architecture

(SOA) and more advanced microservices and container-orchestration concepts. This chapter describes

not just microservices on containers, but any containerized application.

Common container design principles
In the container model, a container image instance represents a single process. By defining a

container image as a process boundary, you can create primitives that can be used to scale the

process or to batch it.

When you design a container image, you’ll see an ENTRYPOINT definition in the Dockerfile. This

defines the process whose lifetime controls the lifetime of the container. When the process completes,

the container lifecycle ends. Containers might represent long-running processes like web servers, but

can also represent short-lived processes like batch jobs, which formerly might have been

implemented as Azure WebJobs.

If the process fails, the container ends, and the orchestrator takes over. If the orchestrator was

configured to keep five instances running and one fails, the orchestrator will create another container

instance to replace the failed process. In a batch job, the process is started with parameters. When the

process completes, the work is complete.

Even though it is not very common, you might find a scenario where you want multiple processes

running in a single container. For that scenario, since there can be only one entry point per container,

you could run a script within the container that launches as many programs as needed. You can, for

example, use Supervisor or a similar tool to take care of launching multiple processes inside a single

container. However, even when you can find architectures holding multiple processes per container,

that approach but it is not very common.

https://docs.docker.com/engine/reference/builder/
https://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/
http://supervisord.org/

19 Architecting Container- and Microservice-Based Applications

Containerized monolithic applications
You might want to build a single, monolithically deployed web application or service and deploy it as

a container. The application itself might not be monolithic, but structured as several libraries,

components, or even layers (application layer, domain layer, data-access layer, etc.). Externally,

however, it is a single container—a single process, a single web application, or a single service.

To manage this model, you deploy a single container to represent the application. To scale up, you

just add more copies with a load balancer in front. The simplicity comes from managing a single

deployment in a single container or VM.

Figure 4-1. Containerized monolithic application architecture example

You can include multiple components, libraries, or internal layers in each container, as illustrated in

Figure 4-1. However, this monolithic pattern might conflict with the container principle “a container

does one thing, and does it in one process”.

The downside of this approach becomes evident if the application grows, requiring it to scale. If the

entire application can scale, it’s not really a problem. However, in most cases, just a few parts of the

application are the choke points that requiring scaling, while other components are used less.

For example, in a typical e-commerce application, you likely need to scale the product information

component, because many more customers browse products than purchase them. More customers

use their basket than use the payment pipeline. Fewer customers add comments or view their

purchase history. And you likely have only a handful of employees, in a single region, that need to

manage the content and marketing campaigns. If you scale the monolithic design, all of the code for

these different tasks is deployed multiple times.

20 Architecting Container- and Microservice-Based Applications

There are multiple ways to scale an application, from horizontal duplication, scaling by splitting

different areas of the application and finally partitioning or splitting similar things or data. Those

possibilities are axplained in the article 3 dimensions to scaling from microservices.io.

In addition to the problem of scaling all components, changes to a single component require

complete retesting of the entire application, and a complete redeployment of all the instances.

However, the monolithic approach is common, because the development of the application is initially

easier than for microservices approaches. Thus, many organizations develop using this architectural

approach. While some organizations have had good enough results, others are hitting limits. Many

organizations designed their applications using this model because tools and infrastructure made it

too difficult to build service oriented architectures (SOA) years ago, and they didn’t see the need—

until the application grew.

From an infrastructure perspective, each server can run many applications within the same host and

have an acceptable ratio of efficiency in resources usage, as shown in Figure 4-2.

Figure 4-2. Host running multiple apps/containers

Monolithic applications in Microsoft Azure can be deployed using dedicated VMs for each instance.

Additionally, using Azure VM Scale Sets, you can easily scale the VMs. Azure App Service can also run

monolithic applications and easily scale instances without requiring you to manage the VMs. Since

2016, Azure App Services can run single instances of Docker containers as well, simplifying

deployment.

As a QA environment or a limited production environment, you can deploy multiple Docker host VMs

and balance them using the Azure balancer, as shown in Figure 4-3. This lets you manage scaling with

a coarse-grain approach, because the whole app lives within a single container (image instance).

Figure 4-3. Example of multiple hosts scaling up a single container application

http://microservices.io/articles/scalecube.html
https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

21 Architecting Container- and Microservice-Based Applications

Deployment to the various hosts can be managed with traditional deployment techniques. The Docker

hosts can be managed with commands like docker run or docker-compose performed manually, or

through automation such as continuous delivery (CD) pipelines.

Deploying a monolithic application as a container

There are benefits to using containers to manage monolithic application deployments. Scaling

container instances is far faster and easier than deploying additional VMs. Even if you use VM Scale

Sets, VMs take time to start. When deployed as traditional application instances instead of containers,

the configuration of the application is managed as part of the VM, which is not ideal.

Deploying updates as Docker images is far faster and network efficient. Docker images typically start

in seconds, which speeds rollouts. Tearing down a Docker image instance is as easy as issuing a

docker stop command, and typically completes in less than a second.

Because containers are immutable by design, you never need to worry about corrupted VMs. In

contrast, update scripts might forget to account for some specific configuration or file left on disk.

While monolithic applications can benefit from Docker, we’re only touching on the benefits.

Additional benefits of managing containers come from deploying with container orchestrators, which

manage the various instances and lifecycle of each container instance. Breaking up the monolithic

application into subsystems that can be scaled, developed, and deployed individually is your entry

point into the realm of microservices.

Publishing a single-container based app to Azure App Service

Whether you want to get a validation of a container deployed to Azure or when an app is simply a

single-container app, Azure App Service provides a great way to provide scalable single-container

based services. Using Azure App Service is simple. It provides great integration with Git to make it

easy to take your code, build it in Visual Studio, and deploy it directly to Azure.

Figure 4-4. Publishing a container to Azure App Service from Visual Studio apps/containers

22 Architecting Container- and Microservice-Based Applications

Without Docker, if you needed other capabilities, frameworks, or dependencies that weren’t

supported in Azure App Service, you had to wait until the Azure team updated those dependencies in

App Service. Or you had to switch to other services like Azure Service Fabric, Azure Cloud Services, or

even VMs, where you had further control and you could install a required component or framework

for your application.

Container support in Visual Studio 2017 gives you the ability to include whatever you want in your

app environment, as shown in Figure 4-4. Since you are running it in a container, if you add a

dependency to your app, you can include the dependency in your Dockerfile or Docker image.

As also shown in Figure 4-4, the publish flow pushes an image through a container registry. This can

be the Azure Container Registry (a registry close to your deployments in Azure and secured by Azure

Active Directory groups and accounts), or any other Docker registry, like Docker Hub or an on-

premises registry.

Without Docker, if you needed other capabilities, frameworks, or dependencies that weren’t

supported in Azure App Service, you had to wait until the Azure team updated those dependencies in

App Service. Or you had to switch to other services like Azure Service Fabric, Azure Cloud Services, or

even VMs, where you had further control and you could install a required component or framework

for your application.

Container support in Visual Studio 2017 gives you the ability to include whatever you want in your

app environment, as shown in Figure 4-4. Since you are running it in a container, if you add a

dependency to your app, you can include the dependency in your Dockerfile or Docker image.

As also shown in Figure 4-4, the publish flow pushes an image through a container registry. This can

be the Azure Container Registry (a registry close to your deployments in Azure and secured by Azure

Active Directory groups and accounts), or any other Docker registry, like Docker Hub or an on-

premises registry.

State and data in Docker applications
In most of the cases, you can think of a container as an instance of a process. A process does not

maintain persistent state. While a container can write to its local storage, assuming that an instance

will be around indefinitely would be like assuming that a single location in memory will be durable.

Container images, like processes, should be assumed to have multiple instances or that they will

eventually be killed; if they’re managed with a container orchestrator, it should be assumed that they

might get moved from one node or VM to another.

Docker provides a feature named as overlay file system. This implements a copy-on-write task that

stores updated information to the root file system of the container. That information is additional to

the original image on which the container is based. If the container were deleted from the system,

those changes are lost. Therefore, while it’s possible to save the state of a container within its local

storage, designing a system around this would conflict with the premise of the container design which

by default is stateless.

The following solutions are used to manage persistent data in Docker applications:

• Data volumes that mount to the host.

https://docs.docker.com/engine/tutorials/dockervolumes/

23 Architecting Container- and Microservice-Based Applications

• Data volume containers that provide shared storage across containers using an external

container.

• Volume plugins that mount volumes to remote services, providing long-term persistence.

• Remote data sources like SQL or NoSQL databases, or cache services like Redis.

• Azure Storage, which provides geo-distributable storage, providing a good long-term

persistence solution for containers.

The following provides more detail about these options.

Data volumes are directories mapped from the host OS to directories in containers. When code in the

container has access to the directory, that access is actually happening to a directory on the host OS.

This directory is not tied to the lifetime of the container itself, and the directory can be accessed from

code running directly on the host OS or by another container that maps the same host directory to

itself. Thus, data volumes are designed to persist data independently of the life of the container. If you

delete a container or an image from the Docker host, the data persisted within the data volume won’t

be deleted. The data in a volume can be accessed from the host OS, as well.

Data volume containers are an evolution or improvement over regular data volumes. A data volume

container is a simple container that has one or more data volumes within it. The data volume

container provides access to containers from a central mount point. This way of access of access is

convenient because it is abstractacting the location of the original data. Other than that, its behavior is

similar to a regular data volume, so data is persisted in this dedicated container independently of the

lifecycle of the application’s containers.

As shown in the Figure 4-5, regular Docker volumes can be stored outside of the containers

themselves but within the physical boundaries of the host server or VM. However, Docker volumes

can’t access a volume from one host server or VM to another.

Figure 4-5. Data volumes and external data sources for container-based applications

When using data volumes, it is not possible to manage data shared between containers that run on

different Docker hosts. And when Docker containers are managed by an orchestrator, containers are

expected to be moved between hosts depending on the optimizations performed by the cluster.

https://docs.docker.com/engine/tutorials/dockervolumes/#creating-and-mounting-a-data-volume-container
https://docs.docker.com/engine/tutorials/dockervolumes/
https://redis.io/
https://azure.microsoft.com/en-us/documentation/services/storage/

24 Architecting Container- and Microservice-Based Applications

Therefore, it is not recommended to use data volumes for business data, but they are a good

mechanism to work with trace files, temporal files, or similar, which won’t impact the business data

consistency.

Volume plugins like Flocker provide data access across all hosts in a cluster. While not all volume

plugins are created equally, volume plugins typically provide externalized persistent reliable storage

from immutable containers.

Remote data sources and cache tools like Azure SQL Database, Azure Document DB, or a remote

cache like Redis can be used in containerized apps the same way they are used when developing

without containers. This is a proven way to store business application data.

Azure Storage provides the following services in the cloud:

• Blob storage stores unstructured object data. A blob can be any type of text or binary data,

such as a document or media files (images, audio, and video files). Blob storage is also

referred to as Object storage.

• File storage offers shared storage for legacy applications using standard SMB protocol. Azure

virtual machines and cloud services can share file data across application components via

mounted shares. On-premises applications can access file data in a share via the File service

REST API.

• Table storage stores structured datasets. Table storage is a NoSQL key-attribute data store,

which allows rapid development and fast access to large quantities of data.

Service-oriented architecture
Service-oriented architecture (SOA) was an overused term and has meant different things to different

people. But as a common denominator, SOA means that you structure your application by

decomposing it into multiple services (most commonly as HTTP services) that can be classified as

different types like subsystems or tiers.

Those services can now be deployed as Docker containers, which solves deployment issues, because

all the dependencies are included in the container image. However, when you need to scale up SOA

applications, you might have scalability and availability challenges if you are deploying based on

single Docker hosts. This is where Docker clustering software or an orchestrator will help you out, as

explained in later sections where we describe deployment approaches for microservices.

Docker containers are useful (but not required) for both traditional service-oriented architectures and

the more advanced microservices architectures.

Microsrevices derive from SOA, but at the same time, SOA is different than microservices architecture.

Things like big central brokers, central orchestrators at the organization level and the Enterprise

Service Bus (ESB) typical in SOA, are in most of the cases anti-patterns in the microservice community.

You could argue that “The Microservice architecture is SOA done right”.

This guide focuses on microservices, because a SOA approach is less prescriptvie than the

requirements and techniques used in a microservice architecture. If you know how to build a

microservice-based application, you also know how to build a simpler service-oriented application.

https://clusterhq.com/flocker/
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus

25 Architecting Container- and Microservice-Based Applications

Microservices architecture
As the name implies, a microservices architecture is an approach to building a server application as a

set of small services, each service running in its own process and communicating with other processes

using protocols such as HTTP/HTTPS, WebSockets, or AMQP. Each microservice implements a specific

end-to-end domain or business capability within a certain context boundary, and each must be

developed autonomously and be deployable independently. Finally, each microservice should own its

related domain data model and domain logic (sovereignty and decentralized data management)

based on different data storage technologies (SQL, NoSQL) and different programming languages.

What size should a microservice be? When developing a microservice, size shoudn’t be the important

point; instead, the important point should be to create loosely coupled services so you have

autonomy of development, deployment and scale, per each service. Of course, when identifying and

designing microservices, you should try to make them as small as possible as long as you don’t have

too many direct dependencies with other microservices. More important than the size of the

microservice is the internal cohesion it must have and its independence from other services.

Why a microservices architecture? In short, it provides long-term agility. Microservices enable better

maintainability in complex, large and highly-scalable systems by letting you create applications based

on many independently deployable services that allow granular and autonomous lifecycle per service.

As an additional benefit, microservices can scale out independently. Instead of having a single

monolithic application that you must scale out as a unit, you can instead scale out specific

microservices. That way, you can scale just the functional area that needs more processing power or

network bandwidth to support demand, rather than scaling out other areas of the application that

don’t need to be scaled. That means cost savings because you need less hardware.

Figure 4-6. Monolithic deployment versus the microservices approach

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

26 Architecting Container- and Microservice-Based Applications

As Figure 4-6 shows, with the microservices approach, it allows agile changes and rapid iteration per

microservice, because you’re able to change specific, small areas of complex, large, and scalable

applications.

Architecting fine-grained microservices-based applications enables continuous integration and

continuous delivery practices, and accelerates delivery of new functions into the application. Fine-

grained composition of applications also allows you run and test microservices in isolation, and to

evolve them autonomously while maintaining clear contracts between them. As long as you don’t

break the interfaces or contracts, you can change the internal implementation of any microservice or

add new functionality without breaking other microservices.

In order to go into production with a microservices system, the following key topics are enablers that

will help you to be successful:

• Monitoring and health checks of the services and infrastructure.

• Scalable infrastructure for the services (i.e. cloud and orchestrators).

• Security design and implementation at multiple levels, authentication, authorization, secrets

management, secure communication, etc.

• Rapid application delivery, usually different teams focusing on different microservices.

• DevOps and CI/CD practices and infrastructure in place.

Of those topics, only the first three are covered or introduced in this guide. The last two points, which

are related to application lifecycle, are covered in the additional Containerized Docker Application

Lifecycle with Microsoft Platform and Tools ebook.

Additional resources

• Mark Russinovich. Microservices: An application revolution powered by the cloud

https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-

cloud/

• Martin Fowler. Microservices

http://www.martinfowler.com/articles/microservices.html

• Martin Fowler. MicroservicePrerequisites

http://martinfowler.com/bliki/MicroservicePrerequisites.html

• Jimmy Nilsson. Chunk Cloud Computing

https://www.infoq.com/articles/CCC-Jimmy-Nilsson

• Cesar de la Torre. Containerized Docker Application Lifecycle with Microsoft Platform and Tools

(downloadable ebook)

https://aka.ms/dockerlifecycleebook

Data sovereignty per microservice

An important rule to follow in the microservices architecture is that each microservice must own its

domain data and logic. Just as a full application owns its logic and data, so must each microservice

own its logic and data under an autonomous lifecycle, with independent deployment per

microservice.

This means that the conceptual model of the domain will differ between subsystems or microservices.

Consider enterprise applications, where customer relationship management (CRM) applications,

transactional purchase subsystems, and customer support subsystems each call on unique customer

entity attributes and data, and where each employs a different Bounded Context (BC).

https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook
http://www.martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
https://www.infoq.com/articles/CCC-Jimmy-Nilsson
https://aka.ms/dockerlifecycleebook

27 Architecting Container- and Microservice-Based Applications

This principle is similar in Domain-Driven Design (DDD), where each Bounded Context or autonomous

subsystem or service must own its domain model (data plus logic/behavior). Each DDD Bounded

Context would correlate to one business microservice (one or several services). This point about the

Bounded Context pattern is explained in the next section.

On the other hand, the traditional (monolithic data) approach used in many applications is to have a

single centralized database or just a few databases, often a normalized SQL database, for the whole

application and all its internal subsystems, as shown in Figure 4-7.

Figure 4-7. Data sovereignty comparison: microservices versus monolithic database

The centralized database approach initially looks simpler and seems to enable reuse of entities in

different subsystems to make everything consistent. But the reality is you end up with huge tables

that serve many different subsystems, and that include attributes and columns that are not needed in

most cases. It’s like trying to use the same physical map for hiking a short trail, taking a day-long car

trip, and learning geography.

A monolithic application with typically a single relational database has two important benefits: ACID

transactions and the SQL language, both working across all the tables and data related to your app.

This approach provides a way to easily write a query that combines data from multiple tables.

However, data access becomes much more complex when you move to a microservices architecture.

Even when ACID transactions can, and most often should also be used within a microservice or

Bounded Context, however, the data owned by each microservice is private to that microservice and

can only be accessed via its microservice API. Encapsulating the data ensures that the microservices

are loosely coupled and can evolve independently of one another. If multiple services were accessing

the same data, schema updates would require coordinated updates to all the services, which would

break the microservice lifecycle autonomy. But distributed data structures mean that you cannot make

https://en.wikipedia.org/wiki/Domain-driven_design
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

28 Architecting Container- and Microservice-Based Applications

a single ACID transaction across microservices. This in turn means you must use eventual consistency

when a business process spans multiple microservices. This is much harder to implement than simple

SQL joins; similarly, many other relational database features are not available across multiple

microservices.

Going even further, different microservices often use different kinds of databases. Modern

applications store and process diverse kinds of data, and a relational database is not always the best

choice. For some use cases, a NoSQL database such as Azure DocumentDB or MongoDB might have a

more convenient data model and offer much better performance and scalability than a SQL database

like SQL Server or Azure SQL DB. In other cases, a relational DB is still the best approach. Therefore,

microservices-based applications often use a mixture of SQL and NoSQL databases, which is

sometimes called the polyglot persistence approach.

A partitioned, polyglot-persistent architecture for data storage has many benefits, including loosely

coupled services, and better performance, scalability, costs, and manageability. However, it can

introduce some distributed data management challenges that will be explained in “Identifying

domain-model boundaries” later in this chapter.

The relationship between microservices and the Bounded Context

pattern

The concept of microservice derives from the Bounded Context (BC) pattern in Domain-Driven Design

(DDD). DDD deals with large models by dividing them into multiple BCs and being explicit about their

boundaries. Each BC must have its own model and database; likewise, each microservice owns its related

data. In addition, each BC usually has its own ubiquitous language to help communication between

software developers and domain experts.

Those terms (mainly domain entities) in the ubiquitous language can be named differently between

different Bounded Contexts even when different domain entities might share the same identity (that

is, the unique ID value with which the entity would be retrieved from persistence). For instance, in a

user-profile Bounded Context or microservice, the User domain entity might share identity with the

Buyer domain entity in the ordering Bounded Context or microservice.

A microservice is therefore like a Bounded Context, but it also specifies that it is a distributed service.

It is built as a separate process per Bounded Context, and it must use the distributed protocols noted

earlier, like HTTP/HTTPS, WebSockets, or AMQP. The Bounded Context pattern, however, doesn’t

specify whether the Bounded Context is a distributed service or if it is simply a logical boundary, like a

generic subsystem, within a monolithic-deployment application.

It is important to highlight that defining a service per Bounded Context is a good place to start but

you don’t have to constrain your design to it. Sometimes you must design a Bounded Context or

business microservice composed by several physical services. But ultimately, both patterns, Bounded

Context and microservice, are closely related.

DDD benefits from microservices by getting real boundaries (distributed microservices). But ideas like

not sharing the model between microservices are what you also want in a Bounded Context.

The terms in the ubiquitous language (mainly domain entities) can be named differently within

different Bounded-Context even when different domain entities might share the same identity (that is,

the unique ID value with which the entity would be retrieved from persistence). For instance, in a user-

http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design
http://martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

29 Architecting Container- and Microservice-Based Applications

profile Bounded Context or microservice, the User domain entity might share identity with the Buyer

domain entity in the ordering Bounded Context or microservice (this is actually an example in the

eShopOncontainers application).

Additional resources

• Chris Richardson. Pattern: Database per service

http://microservices.io/patterns/data/database-per-service.html

• Martin Fowler. BoundedContext

http://martinfowler.com/bliki/BoundedContext.html

• Martin Fowler. PolyglotPersistence

http://martinfowler.com/bliki/PolyglotPersistence.html

• Alberto Brandolini. Strategic Domain Driven Design with Context Mapping

https://www.infoq.com/articles/ddd-contextmapping

Logical architecture versus physical architecture

First of all, building microservices does not require to use any specific technology. For instance,

Docker Containers are not mandatory in order to create a microservices based architecture. Those

microservices could also be runnin as plain processes. Microservices is a logical architecture.

Going further, even when a microservice could be physically implemented as a single service, process,

or container (for simplicity’s sake, that’s the approach taken in the initial version of

eShopOncontainers), this parity between business microservice and physical service or container is not

necessarily required in all cases when you build a large and complex application composed of many

dozens or even hundreds of services.

This is where there is a difference between an app’s logical architecture and physical architecture. The

logical architecture and logical boundaries of a system do not necessarily map one-to-one to the

physical or deployment architecture. It can happen, but it often does not.

Although you might have identified certain business microservices or Bounded Contexts, it doesn’t

mean that the best way to implement it is always by creating a single service (such as an ASP.NET

Web API) or single Docker container per each business microservice. Having a rule saying each

“business microservice” has to be implemented using a single service or container is too rigid.

Therefore, a bounded context or business microservice is a logical architecture that could coincide or

not with the physical architecture. The important point is that a business microservice (or Bounded

Context) has to be autonomous by allowing code and state to be independently versioned, deployed,

and scaled.

As shown in figure 4-8, the Catalog business microservice could be composed by several

services/processes, like several ASP.NET Web API services or any other kind of services using Http or

any other protocol and more importantly, sharing the same data, as long as these services are very

cohesive around the same business domain.

http://aka.ms/MicroservicesArchitecture
http://microservices.io/patterns/data/database-per-service.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/PolyglotPersistence.html
https://www.infoq.com/articles/ddd-contextmapping
http://aka.ms/MicroservicesArchitecture

30 Architecting Container- and Microservice-Based Applications

Figure 4-8. Busines microservice with several physical services/containers

Those services in the example would be sharing the same data model because the REST Catalog API

service targets the same data than the Search service. But from a physical implementation point of

view (service or container) you are spliting that functionality so you can scale up/down each service

depending on the needs. Maybe the regular Catalog REST API service usually needs to have many

more instances than the search service, or viceversa.

In short, the logical architecture of microservices doesn’t always have to coincide with the

physical/deployment architecture. In this guide, whenever we are mentioning a microservice, we mean

a business/logical microservice that could map to a single service or more. In most of the cases it will

be a single service, but depending on the case, could be more.

Challenges and solutions for distributed data management

Challenge #1: How to identify and define the boundaries of each microservice

This is probably the first challenge anyone encounters. Each microservice has to be a piece or area of

your application and each microservice should be autonomous with all the benefits and challenges

that it conveys. But, how do you actually identify and define those boundaries? That is a great

question.

First of all, you need to focus on the application’s logical domain models and related data and try to

identify decoupled islands of data, different contexts within the same application. Each context could

have a different business language (meaning different business terms). Those contexts should be

defined and managed independently. The terms and entities used in those different contexts might

sound similar but soon you can start identifying that in a particular context a similar business concept

with the same identity is used for different purposes and tasks and even called in a different way than

in another context. For instance, a user can be referred as a plain user in the identity/membership

context, as a customer in a CRM context, as a buyer in an ordering context and so forth.

The way you identify those boundaries between the multiple application’s contexts with a different

domain per context is precisely how you can identify the boundaries for each business microservice

and its related domain model and data undearneath, always attempting to minimize the coupling

between those islands or microservices. This guide tries to drill down into this identification and

domain model design in the upcoming section named “Identifying domain-model boundaries for each

microservice”.

31 Architecting Container- and Microservice-Based Applications

Challenge #2: How to create queries that retrieve data from several microservices

A second challenge is the question of how you can implement queries that retrieve data from several

microservices while avoiding chatty and inefficient communication from remote client apps that are

talking to those microservices. An example could be a single screen from a mobile app that needs to

show user info owned by the Basket, Catalog, and User Identity microservices. Another example would

be a complex report involving many tables located in multiple microservices. The right solution

depends on the complexity of the queries, but in any case, you will need a way to aggregate

information if you want to improve the efficiency in the communications of your system. The most

popular solutions are the following.

API Gateway. For simple data aggregation coming from multiple microservices with different

databases owned by each microservice, the recommended approach would be to handle the data

aggregations in aggregation microservices named API Gateway. However, you need to be really

careful about this pattern as it can be a pinch point in your system and a microservice autonomy

violator. In order to limit that case, you might want to have multiple fined-grained API Gateways. This

approach, the API Gateway pattern, is explained in the API Gateway section in further details, when

talking about inter-microservice communication.

CQRS with query/reads tables. This solution for aggregating data from multiple microservices is also

known as the Materialized View pattern that generates, in advanced, a read-only table with the data

owned by multiple microservices. That table will have a format suited to the client app’s needs. This is

a good approach when the data query/join across multiple microservices would have a poor

performance if done in real time due to the nature of the data distributed across the mentioned

microservices. Think about a similar case in regards data needs but using a single database. In that

case, you would use a complex join that you implement with a SQL query involving multiple tables.

However, when handling multiple databases, each database owned by a different microservice, and

you cannot query those databases to make a SQL join, complex queries involving multiple

microservices become an important challenge. Therefore, you can address the requirement with a

CQRS approach by creating a denormalized query table in a different database that is used just for

queries. That table will be designed based on the data you need for that complex query, with a one-

to-one relationship between fields needed by your application’s screen and the columns in the query

table.

This approach not only solves the original problem but also improves the application performance

considerably when compared with a complex relational join targeting multiple tables, because you

already have the query result persisted in an ad-hoc table for that query. Of course, using CQRS with

query/reads tables means additional development work, and you again need to embrace eventual

consistency. But performance and high scalability and the fact that you have data split in multiple

databases might require these types of approaches.

“Cold data” in central databases. For complex reports and queries that might not require real-time

data, a common approach is to export your “hot data” (transactional data from the microservices) as

“cold data” into large databases that are used only for reporting. That central database system can be

a Big Data based system, like Hadoop, a data warehouse like one based on Azure SQL Data

Warehouse, or even a single SQL database used just for reports (if size won’t be an issue).

Keep in mind that this centralized database would be used only for queries and reports that don’t

need real-time data. The original updates and transactions, as your source of truth, have to be in your

microservices data. The way you would synchronize data would be either by using event-driven

https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view

32 Architecting Container- and Microservice-Based Applications

communication (covered in the next sections) or by using other database infrastructure import/export

tools. If you use event-driven communication, that integration process would be similar to the way

you propagate data as described earlier for CQRS query tables.

However, if you constantly need to aggregate information from multiple microservices for complex

queries needed by your application, that might be a symptom of a bad design—a microservice should

be as isolated as possible from other microservices. (This excludes reports/analytics that always should

use cold-data central databases.) Having this problem often might be a reason to merge

microservices. You need to balance autonomy of evolution and deployment of each microservice with

strong dependencies, cohesion and data aggregation.

Challenge #3: How to achieve consistency across multiple microservices

As stated previously, the data owned by each microservice is private to that microservice and can only

be accessed using its microservice API. Therefore, a challenge presented by this approach is how to

implement end-to-end business processes while keeping consistency across multiple microservices.

To analyze this problem, let’s look at an example from the eShopOnContainers reference application.

The Catalog microservice maintains information about all the products, including their stock level. The

Ordering microservice manages orders and must verify that a new order doesn’t exceed the available

catalog product’s stock (it could also have been logic that handles backordered products, it depends

on your domain). In a hypothetical monolithic version of this app, the Ordering subsystem could

simply use an ACID transaction to check the available stock, create the order in the Orders table, and

update the available stock in the Products table.

However, in a microservices architecture based application, the Order and Product tables are owned

by their respective microservices, so one microservice should never include databases owned by other

microservice in their transactions, neither in their queries, as shown in Figure 4-9.

Figure 4-9. A microservice cannot directly access a table in another microservice

The Ordering microservice should not update the Products table directly, because the Products table

is owned by the Catalog microservice. To make an update to the Catalog microservice, the Ordering

microservice should only do it through asyncrohnous communication as when using integration

http://aka.ms/eshoponcontainers

33 Architecting Container- and Microservice-Based Applications

events (message/event based communication), such as performed at the eShopOnContainers

reference application.

As stated by the CAP theorem, you need to choose between availability and ACID strong consistency.

Most microservice based scenarios demand availability and high scalability as opposed to strong

consistency. Mission-critical apps must remain up and running, and developers can work around

strong consistency by using techniques for working with weak or eventual consistency. This is

precisely the approach taken by most microservice-based architectures. Even more, ACID and two-

phase commit transactions are not just against microservices principles but also most NoSQL

databases (like Azure Document DB, MongoDB, etc.) do not support two-phase commit transactions,

neither. However, maintaining data consistency across services and databases is essential. This

challenge is also related to the question of how to propagate changes across multiple microservices

when certain data needs to be redundant—for example, when you need to have the product’s name

or description in the Catalog microservice and the Basket microservice.

A good solution for this problem is to use eventual consistency between microservices articulated

through event-driven communication and a publish-and-subscribe system. These topics are covered

in the section “Asynchronous event-driven communication” later in this guide.

Challenge #4: How should microservices communicate across boundaries?

This is a critical question and a real challenge. It doesn’t really mean what communication protocol

you should use (Http/REST, AMQP/Messaging, etc.) but what communication style you’ll use and most

of all how much coupled your microservices will be. Depending on that, when failure starts to surface,

the consecuences and impact on your system will vary significantly.

 In a distributed system, like a microservices-based application, with so many artifacts moving around

and distributed services across many servers/hosts, things will fail, eventually.

Partial failure and even larger outages will happen, so you need to embrace those facts and design

your microservices and the inter communication across them based on precisely the risks common in

this type of distributed system.

A very popular approach is to implement Http/REST based microservices due to their simplicity. To

use Http is perfectly valid, the issue/risk here is related to how you use it. If you use request/response

Http calls just to interact with your microsrevices from the client applications or the API Gateways, that

is perfectly fine. But, if you start creating a chain of synchronous Http calls across multiple

microservices, communicating them across their boundaries like if they were objects within a

monolithic application, that will be a serious problem.

For instance, let’s say that your client application calls an Http API at the Gateway API or any initial

microservice like the Ordering microservice. If from that point, the Ordering microservice continues to

call additional microservices through Http within the same request/response cycle, then you will be

creating a chain of Http calls. It might sound fair, initially, however, there are important points to

consider when going this path:

• Blocking and low performance. Due to the synchronous nature of Http, the original

request/response won’t return until all the internall Http calls are performed. Imagine if these

calls increase significantly because of any reason and at the same time one of the

intermediate http calls to a microservice is blocked. That means the performance will be

http://aka.ms/eshoponcontainers
http://aka.ms/eshoponcontainers
https://en.wikipedia.org/wiki/CAP_theorem

34 Architecting Container- and Microservice-Based Applications

impacted and the overall scalability will be exponentially affected while additional Http

requests increase.

• Coupling microservices with Http: Business microservices should not be coupled with other

business microservices. Ideally, they should not know about the existance of additional

microservices. If you do, like when implementing a chain of Http calls across microservices,

achieving real autonomy per microservice will be almost impossible and most of all, failure in

one microservice will impact the rest of the chain.

• When failure arises in any microservice. If you implemented a chain of microservices linked by

http calls, when any of the microservices fails (and they will fail, for sure, eventually) the whole

chain of microservices will fail. A microservice based system should be designed to continue

to work as well as possible during partial failures. Even when you might implement client logic

with retries with exponential backoff or circuit breaker mechanisms, the more complex those

http call chains are, the more complex will be to implement that failure strategy based on

http.

You could argue that if your internal microservices are communicating via Http, as described, by

creating chains of Http requests, then the desired microservice autonomy is impacted and you still will

have a monolithic application but based on Http instead of intra-process communication mechanisms.

Of course, communication between the client apps, the optional API Gateway and the first level of

microservices will be usually done using Http. The issues will arise if you expand the request/response

cycle as a chain acrossdditional internal microservices.

Therefore, in order to enforce microservices’ autonomy and have a better resiliency, if possible, you

should minimize the use of chains of request/response communication across the internal

microservices and try to use only asynchronous interaction for inter microservice communication,

either by using asynchronous message/event based communication or through Http polling but out

of the original http request/response cycle. At least, try to minimize, as much as possible,those chains

of Http calls across the internal microservices.

This approach is explained with additional details in the sections “Asynchronous microservice

integration enforcing autonomy” and “Asynchronous message-based communication”.

Additional resources

• CAP theorem

https://en.wikipedia.org/wiki/CAP_theorem

• Eventual consistency

https://en.wikipedia.org/wiki/Eventual_consistency

• Data Consistency Primer

https://msdn.microsoft.com/en-us/library/dn589800.aspx

• Martin Fowler. CQRS (Command and Query Responsibility Segregation)

http://martinfowler.com/bliki/CQRS.html

• Materialized View

https://msdn.microsoft.com/en-us/library/dn589782.aspx

• Charles Row. ACID vs. BASE: The Shifting pH of Database Transaction Processing

http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

• Compensating Transaction

https://msdn.microsoft.com/en-us/library/dn589804.aspx

• Udi Dahan. Service Oriented Composition

http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Eventual_consistency
https://msdn.microsoft.com/en-us/library/dn589800.aspx
http://martinfowler.com/bliki/CQRS.html
https://msdn.microsoft.com/en-us/library/dn589782.aspx
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://msdn.microsoft.com/en-us/library/dn589804.aspx
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

35 Architecting Container- and Microservice-Based Applications

Identifying domain-model boundaries for each microservice

The goal when identifying model boundaries and size for each microservice is not to get to the most

granular separation possible, although you should tend toward small microservices if possible.

Instead, your goal should be to get to the most meaningful separation guided by your domain

knowledge. The emphasis is not on the size, but instead on the business capabilities. Also, if there is

clear cohesion needed for a certain area of the application based on a high number of dependencies,

that should probably be a microservice, too. Cohesion is a way to identify how to break apart or group

together microservices. Ultimately, while you gain more knowledge about the domain, you should

adapt the size of your microservice, iteratively. Finding the right size is not a one-shot process.

Sam Newman, a recognized promoter of microservices and author of the book Building Microservices,

highlights that you should design your microservices based on the Bounded Context pattern (part of

Domain-Driven Design), as introduced earlier. Sometimes, a BC could be composed by several

physical services, but not vice-versa.

A domain model with specific domain entities applies within a concrete bounded context or

microservice. A bounded context delimits the applicability of a domain model and gives developer

team members a clear and shared understanding of what must be cohesive and what can be

developed independently, which are the same goals for microservices.

One other tool that informs about your design choice is Conway’s law, which states that an

application will reflect the social boundaries of the organization that produced it. But, sometimes it

happens the opposite and the company’s organization is formed by the software, so you need to

reverse Conway’s law and build the boundaries the way you want the company to be organized

leaning towards business process consulting.

In order to identify bounded contexts, a DDD pattern that can be used for this is the Context Mapping

pattern. With Context Mapping, you identify the various contexts in the application and their

boundaries. It is common to have a different context and boundary per small subsystem, for instance.

The Context Map is a way to define and make explicit those boundaries between domains. A Bounded

Context is autonomous and includes the details of a single domain, details like the domain entities,

and defines integration contracts with other bounded contexts or subsystems. This is very similar to

the definition of a microservice: it is autonomous, it implements certain domain capability and it must

provide interfaces. This is why Context Mapping and the bounded Context pattern good approaches

for identifying the domain model boundaries of your microservices.

When dealing with a large application, you will see how its domain model can be fragmented — a

domain expert from the catalog domain will name entities differently in the catalog and inventory

domains than a shipping domain expert, for instance. Or the User domain entity might be different in

size and number of attributes when dealing with a CRM expert who wants to store every detail about

the customer than for an ordering domain expert who just needs partial data about the customer. It is

very hard to disambiguate all domain terms across all the domains related to a large application, but

the most important thing is that you should not try to unify the terms but embrace the differences

and richness provided by each domain or area of the system. If you try to have a single unified

database for the whole application, that unified vocabulary will be awkward and won’t sound right to

none of the multiple domain experts. Therefore, bounded contexts (implemented as microservices)

will help you to clarify where you can use certain domain terms and where you will need to split the

system and create additional bounded contexts with different domains.

http://samnewman.io/
http://samnewman.io/books/building_microservices/
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.infoq.com/articles/ddd-contextmapping
https://www.infoq.com/articles/ddd-contextmapping

36 Architecting Container- and Microservice-Based Applications

You will know if you got to the right boundaries and sizes of each bounded context and domain

model if you have few strong relationships between domain models and you don’t usually need to

merge information from multiple domain models when performing typical application operations.

Perhaps, the best answer to the question of how big a domain model of each microservice should be

is the following: it should have an autonomous and as much isolated bounded context as possible

that will enable you to work without having to constantly think or switch to other contexts (other

microservice’s models). In Figure 4-10 you can see how multiple microservices (multiple bounded

contexts) each have their own model and how their entities can be defined, depending on the specific

requirements for each of the identified domains in your application.

Figure 4-10. Identifying entities and microservice model boundaries

Figure 4-10 illustrates a sample scenario related to an online conference management system. You

have identified several bounded contexts that could be implemented as microservices, based on

multiple identified domains that domain experts defined for you. As you can see, there are entities

that are present just in a single microservice’s model, like Payments in the Payment microservice or

subsystem. Those will be easy to implement.

However, you might also have entities that have a different shape but share the same identity across

the multiple domain models from the multiple microservices. For example, the User entity is identified

in the Conferences Management microservice. That same user, with the same identity, is the one

named Buyers in the Ordering microservice, or the one named Payer in the Payment microservice, and

even the one named Customer in the Customer Service microservice. This is because, depending on

the Ubiquitous Language that each domain expert is using, a user might have a different perspective

even with different attributes. The user entity in the microservice model named Conferences

Management might have most of its personal data attributes. However, that same user in the shape of

Payer in the microservice Payment or in the shape of Customer in the microservice Customer Service

might not need the same list of attributes.

A similar approach is illustrated in the Figure 4-11.

https://martinfowler.com/bliki/UbiquitousLanguage.html

37 Architecting Container- and Microservice-Based Applications

Figure 4-11. Decomposing traditional data models into multiple domain models

You can see how the user is present in the Conferences Management microservice model as the User

entity and is also present in the form of the Buyer entity in the Pricing microservice, with alternate

attributes or details about the user when it is actually a buyer. Each microservice or bounded context

might not need all the data related to a User entity, just part of it, depending on the problem to solve

or the context. For instance, in the Pricing microservice model, you don’t need the address or the ID of

the user, just ID (as identity) and Status, which will have an impact on discounts when pricing the seats

per buyer.

The Seat entity has the same name but different attributes in each domain model. However, Seat

shares identity based on the same ID, as happens with User and Buyer.

Basically, there is a shared concept of a user that exists in multiple services (domains), which all share

the identity of that user. But in each domain model there might be additional or different details

about the user entity. Therefore, there needs to be a way to map a user entity from one domain

(microservice) to another.

There are several benefits of not sharing the same user entity with the same number of attributes

across domains (services). One benefit is to reduce duplication, so each microservice’s model don’t

have data that it doesn’t need. Another benefit is having a master microservice that owns a certain

type of data per entity so that updates and queries for a certain type of data are driven only by that

microservice.

38 Architecting Container- and Microservice-Based Applications

Direct client-to-microservice communication versus the API Gateway

pattern

In a microservices architecture, each microservice exposes a set of (typically) fine‑grained endpoints.

This fact can impact the client‑to‑microservice communication, as explained in this section.

Direct client-to-microservice communication

A possible approach is to use a direct client-to-microservice communication architecture. In this

approach, a client app can make requests directly to some of the microservices, as shown in Figure 4-

12.

Figure 4-12. Using a direct client-to-microservice communication architecture

In this approach. each microservice has a public endpoint, sometimes with a different TCP port for

each microservice. An example of an URL for a particular service could be the following URL in Azure:

http://eshoponcontainers.westus.cloudapp.azure.com:88/

In a production environment based on a cluster, that URL would map to the load balancer used in the

cluster, which distributes the requests across the microservices. Even going further, in production

environments you could have an ADC (Application Delivery Controller) like Azure Application Gateway,

in between your microservices and the Internet acting as a transparent tier with not just load

balancing capabilities but also securing your services and offering SSL termination which improves the

load of your hosts by offloading CPU intensive SSL termination to the application gateway plus other

routing capabilities. In any case, this load balancer and ADC would be transparent from a logical

Application architecture point of view.

This direct client-to-microservice communication architecture is good enough for a small

microservice-based application. However, when you build large and complex microservice-based

applications (for example, when handling tens of microservice types), that approach faces possible

issues as explained in the following cases. You need to consider the following questions when

developing a large application based on microservices:

http://eshoponcontainers.westus.cloudapp.azure.com:88/
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-introduction

39 Architecting Container- and Microservice-Based Applications

• How can client apps minimize the number of requests to the backend and reduce chatty

communication to many microservices?

Requiring interaction with multiple microservices to build a single UI screen increases the

number of required roundtrips across the Internet. This increases latency and complexity in

the UI side. Ideally, responses should be efficiently aggregated in the server side—this

reduces latency, since multiple pieces of data come back in parallel and some UI can show

data as soon as it’s ready.

• How can you handle cross-cutting concerns such as authorization, data transformations, and

dynamic request dispatching?

Implementing security and cross-cutting concerns like security and authorization on every

microservice can require significant development effort. A possible approach is to have those

services within the Docker host or internal cluster, in order to restrict direct access to them

from the outside, and to implement those cross-cutting concerns in a centralized place, like

an API Gateway.

• How can client apps communicate with services that use non-Internet-friendly protocols?

Protocols used on the server side (like AMQP or binary protocols) are usually not supported in

client apps. Therefore, requests must be performed through protocols like HTTP/HTTPS and

translated to the other protocols, afterwards. A man-in-the-middle approach can help in this

situation.

• How can you shape a façade especially made for mobile apps?

The API of multiple microservices might not be well designed for the needs of different client

applications, for instance, the needs of a mobile app might be different than the needs of a

web app. For mobile apps, you might need to optimize even further so data responses can be

more efficient, probably by aggregating data from multiple microservices and returning a

single set of data, compressing that data and sometimes even eliminating part of the data in

the response that is not needed by the mobile app. Again, a façade or API in between can be

very convenient for this scenario.

Using an API Gateway

When you design and build large or complex microservice-based applications with multiple client

apps, a good approach to consider for your architecture can be an API Gateway. This is a service that

provides a single entry point for certain groups/sets of internal application’s microservices. It is similar

to the Facade pattern from object‑oriented design, but in this case, it’s part of a distributed system.

The API Gateway pattern is also named as “Back end for Front End” as you build it while thinking

about the client apps’ needs.

Figure 4-13 shows how an API Gateway can fit into a microservice-based architecture.

http://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/Facade_pattern

40 Architecting Container- and Microservice-Based Applications

Figure 4-13. Using the API Gateway pattern in a microservice-based architecture

In this example, the API Gateway would be implemented as a custom Web API service running as a

container.

It is also important to highlight that you should implement several API Gateways so you have different

façades depending on the needs from each client app. Each API Gateway would provide a different

API tailored for each client app or even depending on the form-factor or device by applying specific

adapter code which underneath will be calling multiple internal microservices.

But since the API Gateway is actually an aggregator you need to be careful with it. Usually, it won’t be

a good idea to have a single API Gateway aggregating all the internal microservices of your

application as it would act as a monolithic aggregator or orchestrator and will violate the

microservice’s autonomy by coupling all the microservices. Therefore, the API Gateways should be

segregated based on business boundaries and needs but not as an aggregator for the whole

application.

Sometimes, a granular API Gateway can also be a microservice by itself, even with a domain/business

name and with some data related, e.i. a Redis Cache, as example. And having those boundaries

dictated by the business/domain will help you to get a better design.

Even going further, this granularity in the API gateways tier can be especially useful for more

advanced Composite UI applications based on microservices introduced in a later section named

“Composite UI based on microservices”, because the concept of a fine-grained API Gateway is very

similar to an UI Composition service.

Therefore, for many medium and large size applications, using this custom-built API Gateway pattern

is usually a good approach, but not as a single monolithic aggregator or unique central backend.

 Another approach is to use a product like Azure API Management as shown in figure 4-14. This

approach not only solves your API Gateway needs, but provides features like gathering insights from

your APIs.

https://azure.microsoft.com/en-us/services/api-management/

41 Architecting Container- and Microservice-Based Applications

It is worthto say that if using an API management solution, an API gateway is only a component within

a full API management solution that offer many more features. They are not exactly synonymous but

the API Gateway could be considered a subset contained as part of a API Management solution.

Figure 4-14. Using Azure API Management for your API Gateway

These insights help you get an understanding of how your APIs are being used and how they are

performing by letting you view near real-time analytics reports and identifying trends that might

impact your business. Plus, you can have logs about request and response activity for further online

and offline analysis.

With Azure API Management, you can secure your APIs using a key, a token, and IP filtering. These

features let you enforce flexible and fine-grained quotas and rate limits, modify the shape and

behavior of your APIs using policies, and improve performance with response caching.

In this guide and the reference sample application (eShopOnContainers) we are limiting the

architecture to a simpler and custom-made containerized architecture in order to focus on plain

containers without using PaaS products like Azure API Management. But for large microservice-based

applications that are deployed into Microsoft Azure, we encourage you to review and adopt Azure API

Management as the base for your API Gateways.

Drawbacks in the API Gateway pattern

• The most important drawback, which has to be handled carefully is that, when implementing

an API Gateway, you are coupling that tier with the internal microservices. This couplement

might derive into real danger as it could be becoming “the new ESB”, as explained at Clemens

Vasters' session named "Messaging and Microservices" at GOTO 2016.

• Using a microservices API gateway creates an additional possible point of failure.

• Increased response time due to the additional network call through the API gateway

microservice. However, this extra call is usually less impacful than having a too chatty interface

if directly calling the internal microservices from the client apps.

https://www.youtube.com/watch?v=rXi5CLjIQ9k

42 Architecting Container- and Microservice-Based Applications

• Possibility of bottleneck if not scaled-out properly

• Additional development cost and future maintenance for the API Gateway microservices if

you built custom logic and data aggregation at the API Gateway level. Thus, developers must

update the API Gateway in order to expose each microservice’s endpoints. Going further,

implementation changes in the internal microservices will cause code changes at the API

Gateway level. However, if the chosen API Gateway is just applying security, logging and

versioning (like when using Azure API Management), this additional development cost might

not apply.

• Management bottleneck if the API Gateway is managed/developed by a single team. This is

why a better approach is to have several fined-grained API Gateways depending on the client

apps needs. You could also segregate the API Gateway internally in multiple areas/layers

owned by the several teams working on the internal microservices.

Additional resources

• Charles Richardson. Pattern: API Gateway / Backend for Front-End

http://microservices.io/patterns/apigateway.html

• Azure API Management

https://azure.microsoft.com/en-us/services/api-management/

• Udi Dahan. Service Oriented Composition

http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

• Clemens Vasters. Messaging and Microservices at GOTO 2016

https://www.youtube.com/watch?v=rXi5CLjIQ9k

Communication between microservices

In a monolithic application running on a single process, components invoke one another using

language-level method or function calls. These can be strongly coupled if you are creating objects

with code (for example, new ClassName()), or can be invoked in a decoupled way if you are using

Dependency Injection by referencing abstractions rather than concrete object instances. Either way,

the objects are running within the same process. The biggest challenge when changing from a

monolithic application to a microservices-based application lies in changing the communication

mechanism. A direct conversion from in-process method calls into RPC calls to services will cause a

chatty and not efficient communication that won’t perform well in distributed environments. If you

don’t design your distributed system properly you will face all the issues explained at “The fallacies of

distributed computing”.

The solution is not unique but multiple. It lies on isolating the business microservices as much as

possible, using asynchronous communication between microsrevices and replacing fine-grained

communication (typical in intra-process communication between objects) with a coarser-grained

communication, by grouping calls, and by returning to the client sets of data that aggregate multiple

internal calls.

A microservices-based application is a distributed system running on multiple processes or services,

usually even across multiple servers/hosts. Each service instance is typically a process. Therefore,

services must interact using an inter-process communication protocol such as HTTP, AMQP, or a

binary protocol like TCP, depending on the nature of each service.

The microservice community promotes “smart endpoints and dumb pipes”. This slogan encourages a

design that is as decoupled as possible between microservices, and as cohesive as possible within a

single microservice. As explained earlier, each microservice owns its own data and its own domain

http://microservices.io/patterns/apigateway.html
https://azure.microsoft.com/en-us/services/api-management/
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://simplicable.com/new/smart-endpoints-and-dumb-pipes

43 Architecting Container- and Microservice-Based Applications

logic, but the microservices composing an end-to-end application are usually simply choreographed

by using REST communications rather than complex protocols such as WS-* and flexible event-driven

communications instead of centralized business-process-orchestrators.

The two commonly used protocols are HTTP request/response with resource APIs (when querying

most of all), and lightweight asynchronous messaging when communicating updates across multiple

microservices. These are explained in more detail in the following sections.

Communication types

Client and services can communicate through many different types of communication, each one

targeting a different scenario and goals. Initially, those types of communications can be classified in

two axes or dimensions.

The first axis is defining if the protocol is synchronous or asynchronous:

• Synchronous protocol. HTTP is a synchronous protocol. The client sends a request and waits

for a response from the service. That is independent of the client code execution that coud be

synchronous (thread is blocked) or asynchronous (thread is not blocked, response will get to a

callback, eventually). The important point here is that the protocol (HTTP/S) is synchronous

and the client code can only continue its task when it receives the HTTP server response.

• Asynchronous protocol. Other protocols like AMQP (protocol supported by many operating

systems and cloud environmentsusing messaging are asynchronous. The client code or

message sender usually won’t wait for a response. It will just send the message like when

sending a message to a RabbitMQ queue or any other message broker.

The second axis is defining if the communication has a single receiver or multiple receivers:

• Single-Receiver. Each request must be processed by exactly one receiver or service. An

example of this communication is the Command pattern.

• Multiple-Receivers. Each request can be processed from none to multiple receivers or services.

This type of communication must be asynchronous. An example is the publish/subscribe

mechanism used in patterns like Event-driven architecture. This is based on an event-bus

interface or message broker when propagating data updates between multiple microservices

through events; it is usually implemented through a service bus or similar artifact like Azure

Service Bus by using topics and subscriptions.

A microservice-based application will often use a combination of these communication styles. The

most common type is single-receiver communication with a synchronous protocol like HTTP/S when

invoking a regular Web API HTTP service. Also, messaging protocols for asynchronous communication

between microservices.

However, these dimensions axes are good to know so you have clarity on the possible communication

mechanisms to use, but they are not the important concerns when building microservices. Neither the

asynchronicity related to the client thread execution nor the asynchronicity related to the protocol are

the important points when integrating microservices, but only if you are able to integrate your

microservices asynchronously while maintaining the microservices independent with no direct

dependencies between each other, as explained in the following section.

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://microservices.io/patterns/data/event-driven-architecture.html
https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/service-bus/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

44 Architecting Container- and Microservice-Based Applications

Asynchronous microservices integration enforcing autonomy

As mentioned, the important point when building a microservices-based application is the way you

integrate your microservices. Ideally, you should try to minimize the communication between the

internal microservices. The less inter communications between microservices, the better. But, of

course, in many cases you will need somehow to integrate the microservices. When you need to do

that, the critical and mandatory rule here is that the communication between the microservices should

be asynchronous. That doesn’t mean that you have to use one or other protocol (asynchronous

protocol versus synchronous protocol), it just means that the communication between microservices

should be done only by propagating data asynchronously, but never depending on other

microservices for the initial service’s request/response operation.

If possible, never depend on synchronous communication (request/response) between multiple

microservices, not even for queries. The goal of each microservice is to be autonomous and available

to the client consumer even if the other services that are part of the end-to-end application are down

or unhealthy.

If from an original microservice you think you need to call other microservices (like performing a HTTP

request for a data query) in order to be able to provide a response to to the client application, that

means you have an architecture that won’t be resilient when some microservices fail.

Even more, having dependencies between microservices (like doing Http requests between them for

querying data) not only makes your microservices not autonomous/independent but their

performance will be impacted, the overall response time for the client apps will be getting worse the

more you add synchronous dependencies (like query reauests) between them.

If your microservice needs to raise any additional action to another microservice, don’t do that

synchronously and as part of the original microservice request/reply operation, do it asynchronously

by using any technique, whether it is based on asynchronous messaging or integration events, queues

or any other way but out of the original synchronous request/reply operation.

And finally, and this is where most of the issues arise when building microservices, if your initial

microservice needs data that is originally owned by other microservices, simply replicate or propagate

that data (only the attributes you need) into your service’s database by using eventual consistency

(commonly, by using integration events, as explained in upcoming sections).

As introduced in the section “Identifying domain-model boundaries for each microservice”,

duplicating some data across several microservices is not a wrong design but healthy, as when doing

that you can translate that data into the specifc language or terms of that additional Domain or

Bounded Context. For instance, in the eShopOnContainers application you have an initial microservice

named Identity.API in charge of most of the user’s data with an Entity named User. However, whe you

need to store data about the user within the Ordering microservice, you store it as a different entity

named Buyer. The Buyer entity shares the same identity with the original User entity, but it might have

just a few attributes needed by the Ordering domain since it might not need to have the whole user

profile.

The protocol you might use to communicate and even propagate data asynchronously across

microservices in order to have eventual consistency, can be any. As mentioned, you could use

integration events using an event bus or message broker (async push way based on a

http://aka.ms/MicroservicesArchitecture

45 Architecting Container- and Microservice-Based Applications

publish/subscription approach) or you could even use HTTP by polling the other services instead. It

doesn’t matter. The important rule is to not create synchronous dependencies between your

microservices.

The following sections explain the multiple communication styles to be used in a microservice-based

application.

Communication styles

There are many protocols and choices you can use for communication, depending on the

communication type you want to use. If you are using a synchronous request/response-based

communication mechanism, protocols such as HTTP and REST approaches are the most common,

especially if you are publishing your services outside the Docker host or microservice cluster. If you

are communicating between services internally (within your Docker host or microservices cluster) you

might also want to use binary format communication mechanisms (like Service Fabric remoting or

WCF using TCP and binary format). Alternatively, you can use asynchronous, message-based

communication mechanisms such as AMQP.

There are also multiple message formats like JSON or XML or even binary formats, which can be more

efficient. If your chosen binary format is not a standard, it is probably not a good idea to publicly

publish your services using that format. You could use a non-standard format for internal

communication between your microservices. You might do this when communicating between

microservices within your Docker host or microservice cluster (Docker orchestrators or Azure Service

Fabric), or for propietary client applications that talk to the microservices.

Request/response communication with HTTP and REST

When using a request/response communication, a client sends a request to a service, then the service

processes the request and sends back a response. Request/response communication is especially well

suited for querying data for real-time UI (a live user interface) from client apps. Therefore, in a

microservice architecture you will probably use this communication mechanism for most queries, as

shown in Figure 4-15.

Figure 4-15. Using HTTP request/response communication (synchronous or asynchronous)

When using a request/response communication, the client assumes that the response will arrive in a

short time, typically less than a second or a few seconds at most. For delayed responses, you need to

46 Architecting Container- and Microservice-Based Applications

implement asynchronous communication based on messaging patterns and messaging technologies,

which is a different approach explained in the next section.

A popular architectural communication style for this the request/response communication style is

REST. This approach is based on and tightly coupled to the HTTP protocol, embracing HTTP verbs like

PUT, POST, and GET. REST is also the most commonly used architectural communication approach

when creating services. You can implement REST services when developing ASP.NET Core Web API

services.

There is additional value when using HTTP REST services as your interface definition language. For

instance, if you use Swagger metadata to describe your service API, you can use tools that generate

client stubs that can directly discover and consume your services.

Additional resources

• Martin Fowler. Richardson Maturity Model. A description of the REST model.

http://martinfowler.com/articles/richardsonMaturityModel.html

• Swagger. The official site.

http://swagger.io/

Push and real-time communication based on HTTP

Another possibility (usually for different purposes) is a real-time and one-to-many communication

with higher-level frameworks such as ASP.NET SignalR and protocols such as WebSockets.

As shown in the figure 4-16, real-time http communication means that you can have server code

pushing content to connected clients as the data becomes available, rather than having the server

wait for a client to request new data.

Figure 4-16. One-to-one real-time asynchronous message communication

Since communication is in real time, client apps show the changes almost instantly. This is usually

handled by a protocol such as WebSockets, using many WebSocket connections (one per client). A

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/messaging
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://swagger.io/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://swagger.io/
https://www.asp.net/signalr
https://en.wikipedia.org/wiki/WebSocket

47 Architecting Container- and Microservice-Based Applications

typical example is when a service communicates a change in the score of a sports game to many

client web apps simultaneously.

Asynchronous message-based communication

Asynchronous messaging and event-driven communication are critical when propagating changes

across multiple microservices and their related domain models. As mentioned when discussing

microservices and Bounded Contexts, models (User, Customer, Product, Account, etc.) can mean

different things to different microservices or Bounded Contexts. That means that you need some way

to reconcile changes across the different models when changes occur. A solution is eventual

consistency and event-driven communication based on asynchronous messaging.

When using messaging, processes communicate by exchanging messages asynchronously. A client

makes a command or a request to a service by sending it a message. If the service needs to reply, it

sends a different message back to the client. Since it is a message-based communication, the client

assumes that the reply will not be received immediately, and that there might be no response at all.

A message is composed by a header (metadata such as identification or security information) and a

body. Messages are usually sent through asynchronous protocols like AMQP.

The preferred infrastructure for this type of communication in the microservices community is a

lightweight message broker, very different than the typical SOA large brokers and orchestrators. In a

lightweight message broker, the infrastructure is typically “dumb,” acting only as a message broker,

with simple implementations such as RabbitMQ or a scalable service bus in the cloud like Azure

Service Bus. In this scenario, most of the “smart” thinking still lives in the endpoints that are producing

and consuming messages—that is, in the microservices.

Another rule you should try to follow, as much as possible, is to use only async messaging between

the internal services and sync communication (such as Http) only from the front-end and client apps.

There are two kinds of messaging communication: Single receiver message-based communication

and Multiple receivers message-based communication.

Single receiver message-based communication

A single receiver means there is a point to point communication which delivers a message to exactly

one of the consumers that is reading from the channel, so the message should be processed just

once. But there are special situations that you also need to take into account. For instance, in a cloud

system that tries to automatically recover from failures, the same message could be sent multiple

times. Due to network or other failures, the client has to be able to retry sending messages, and the

server has to implement an operation to be idempotent in order to process a particular message just

once.

Message-based asynchronous communication with a single receiver is especially well suited for

sending an asynchronous command or trigger from one microservice to another. For example, if you

want to trigger any action in another microservice (a single one) once you are already in an

asynchronous and message based business process, you should avoid to mix message-based

communication with synchronous Http communication. Therefore, that kind of trigger or command

48 Architecting Container- and Microservice-Based Applications

should be based on asynchronous communication based on messages sent across microservices, like

a message-based command. Figure 4-17 illustrates this approach.

Figure 4-17. A single microservice receiving an asynchronous message

It is also worth noting that, when the commands are coming from the client applications, they can be

implemented as Http synchronous commands. You should use message-based commands when you

need higher scalability or when you are already in a message-based business process.

Multiple receivers message-based communication

As a more flexible approach, you might also want to use a publish/subscribe mechanism so that your

communication from the sender will be available to additional subscriber microservices or to external

applications. Thus, it helps you to follow the open/closed principle in the sending service. That way,

additional subscribers can be added in the future without the need to modify the sender service.

When you use a publish/subscribe communication, you might be using an event bus interface to

publish events to any subscriber.

Asynchronous event-driven communication

When using this type of communication and architectural approach, a microservice publishes an

integration event when something happens within its domain and any other microservice needs to be

aware of, like a price change in a product catalog microservice. Additional microservices subscribe to

the events so they can receive them asychchronously. When that happens, the receivers might update

their own domain entities, which can cause more integration to be published. This publish/subscribe

system is usually performed by using an implementation of an event bus. The event bus can be

designed as an abstraction or interface with the API needed to subscribe or unsubscribe to events and

to publish events. The event bus can also have one or more implementations based on any inter-

https://en.wikipedia.org/wiki/Open/closed_principle

49 Architecting Container- and Microservice-Based Applications

process and messaging broker, like a messaging queue or service bus that supports asynchronous

communication and a publish/subscribe model.

A good recommendation is to is make sure that this sort of eventual consistency driven by integration

events has to be completely obvious to the end user and not try to fake it with push systems like

SignalR, or polling refresh systems from the client. The end user and the business owner have to

explicetely embrace eventual consistency in the system and realize that in many cases the business

doesn’t have any problem with this approach, as long as it is explicit.

As noted earlier in the “Challenges and solutions for distributed data management” section, you can

use integration events to implement business tasks that span across multiple microservices. Thus, you

will have eventual consistency between those services. An eventually consistent transaction is made

up of a collection of distributed actions. At each action, the related microservice updates a domain

entity and publishes another integration event that raises the next action within the end-to-end

business task.

An important point is that you might want to communicate to multiple microservices that are

subscribed to the same event. For doing so, you can use the publish/subscribe messaging based on

event-driven communication, as shown in Figure 4-18. This publish/subscribe mechanism is not

exclusive to the microservice architecture. It is similar to the way Bounded Contexts in DDD should

communicate, or to the way you propagate updates from the write database to the read database in

the CQRS (Command and Query Responsibility Segregation) architecture pattern. The goal is to have

eventual consistency between multiple data sources across your distributed system.

Figure 4-18. Asynchronous event-driven message communication

Your implementation will determine what protocol to use for event-driven, message-based

communications. AMQP can help achieve reliable queued communication.

When using an event bus you might want to use an abstraction level (like an event bus interface)

based on a related implementation in classes with code using the API from a message broker like

RabbitMQ or a service bus like Azure Service Bus with Topics. Alternatively, you might want to use a

http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://www.rabbitmq.com/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

50 Architecting Container- and Microservice-Based Applications

higher-level service bus like NServiceBus, MassTranssit, or Brighter to articulate your event bus and

publish/subscribe system.

A note about messaging technologies for production systems

The available messaging technologies for implementing your abstract event bus are at different levels.

For instance, products like RabbitMQ (a messaging broker transport) and even Azure Service Bus sit at

a lower level than other products like, NServiceBus, MassTransit or Brighter which can work on top of

either RabbitMQ and even on top of Azure Service Bus. Your choice depends on how many rich

features at the application level and out-of-the-box scalability you need for your application. For

implementing just a proof-of-concept event bus for your development environment, as we’ve done in

the eShopOnContainers sample, a simple implementation on top of RabbitMQ running on a Docker

container might be enough.

However, for mission-critical and production systems that need hyper-scalability, you might want to

evaluate Azure Service Bus. For high-level abstractions and features that make the development of

distributed applications easier, we recommend that you evaluate other commercial and open-source

service buses, such as NServiceBus, MassTransit, and Brighter. Of course, you can build your own

service-bus features on top of lower-level technologies like RabbitMQ and Docker. But that plumbing

work might cost too much for a custom enterprise application.

Resiliently publishing to the event bus

A challenge when implementing an event-driven architecture across multiple microservices is how to

atomically update state in the original microservice while resiliently publishing its related integration

event into the event bus, somehow based on transactions. The following are a few ways to accomplish

this, although there could be additional approaches, as well.

• Using a transactional (DTC-based) queue like MSMQ. (However, this is a legacy approach.)

• Using transaction log mining.

• Using full Event Sourcing pattern.

• Using the Outbox pattern: a transactional database table as a message queue that will be the

base for an event-creator component that would create the event and publish it.

Finally, additional topics to consider when using asynchronous communication are message

idempotence and messages deduplication, both topics covered in the section named Implementing

event-based communication between microservices (integration events), whtin this guide.

Additional resources

• Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

• Publish/Subscribe Channel

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

• Chris Richardson. Pattern: Command Query Responsibility Segregation (CQRS)

http://microservices.io/patterns/data/cqrs.html

• Command and Query Responsibility Segregation (CQRS)

https://msdn.microsoft.com/en-us/library/dn568103.aspx

• Communicating Between Bounded Contexts

https://msdn.microsoft.com/en-us/library/jj591572.aspx

• Eventual consistency

https://en.wikipedia.org/wiki/Eventual_consistency

http://www.scoop.it/t/sql-server-transaction-log-mining
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://gistlabs.com/2014/05/the-outbox/
http://soapatterns.org/design_patterns/event_driven_messaging
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://microservices.io/patterns/data/cqrs.html
https://msdn.microsoft.com/en-us/library/dn568103.aspx
https://msdn.microsoft.com/en-us/library/jj591572.aspx
https://en.wikipedia.org/wiki/Eventual_consistency

51 Architecting Container- and Microservice-Based Applications

• Philip Brown. Strategies for Integrating Bounded Contexts

http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

• Jimmy Bogard. Refactoring Towards Resilience: Evaluating Coupling

https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

Creating, evolving, and versioning microservice APIs and contracts

A microservice API is a contract between the service and its clients. You will be able to evolve a

microservice independently only if you don’t break its API contract, which is why the contract is so

important. If you change the contract, it will impact your client applications or your API Gateway.

The nature of the API definition depends on which protocol you are using. For instance, if you are

using messaging (like AMQP), the API consists of the message types. If you are using HTTP and

RESTFul services, the API consists of the URLs and the request and response JSON formats.

However, even if you are thoughtful about your initial contract, a service API will need to change over

time. When that happens—and especially if your API is a public API consumed by multiple client

applications—you typically can’t force all clients to upgrade to your new API contract. You usually

need to incrementally deploy new versions of a service in a way that both old and new versions of a

service contract are running simultaneously. Therefore, it is important to have a strategy for your

service versioning.

When the API changes are small, like if you add attributes or parameters to your API, clients that use

an older API should switch and continue to work with the new version of the service. You might be

able to provide default values for any missing attributes that are required, and the clients might be

able to ignore any extra response attributes.

However, sometimes you need to make major and incompatible changes to a service API. Because

you might not be able to force client applications or services to upgrade immediately to the new

version, a service must support older versions of the API for some period. If you are using an HTTP-

based mechanism such as REST, one approach is to embed the API version number in the URL or into

a Http header. Then you can decide between implementing both versions of the service

simultaneously within the same service instance, or deploying different instances that each handle a

version of the API. For this a good approach is to use the mediator pattern (i.e. MediatR library) to

decouple the different implementation versions into independent handlers.

Finally, it is worth to highlight that when using a REST architecture approach, Hypermedia is the best

solution for versioning your services and it allows evolvable APIs.

Additional resources

• Scott Hanselman. ASP.NET Core RESTful Web API versioning made easy

http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

• Versioning a RESTful web API

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-web-api

• Roy Fielding. Versioning, Hypermedia, and REST

https://www.infoq.com/articles/roy-fielding-on-versioning

http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/
https://www.amqp.org/
https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/jbogard/MediatR
https://www.infoq.com/articles/mark-baker-hypermedia
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-web-api

52 Architecting Container- and Microservice-Based Applications

Microservices addressability and the service registry

Each microservice has a unique name (URL) that is used to resolve its location. Your microservice

needs to be addressable wherever it is running. If you have to think about which computer is running

a particular microservice, things can go bad quickly. In the same way that DNS resolves a URL to a

particular computer, your microservice needs to have a unique name so that its current location is

discoverable. Microservices need addressable names that make them independent from the

infrastructure that they are running on. This implies that there is an interaction between how your

service is deployed and how it is discovered, because there needs to be a service registry. In the same

vein, when a computer fails, the registry service must be able to indicate where the service is now

running.

The service registry pattern is a key part of service discovery. The registry is a database containing the

network locations of service instances. A service registry needs to be highly available and up to date.

Clients could cache network locations obtained from the service registry. However, that information

eventually goes out of date and clients become unable to discover service instances. Consequently, a

service registry consists of a cluster of servers that use a replication protocol to maintain consistency.

In some microservice deployment environments (called clusters, to be covered in a later section),

service discovery is built in. For example, within an Azure Container Service environment, Kubernetes

and DC/OS with Marathon can handle service instance registration and deregistration. They also run a

proxy on each cluster host that plays the role of server-side discovery router. Another example is

Azure Service Fabric, which also provides a service registry through its out-of-the-box Naming Service.

It is worth to mention that there is certain overlap between the service registry and the API gateway

pattern which helps to solve this problem, as well. For example, the Service Fabric Reverse Proxy is a

type of implementation of a Gateway API that based on the Service Fabrice Naming Service helps to

resolve address resolution to the internal services.

http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/service-registry.html
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy

53 Architecting Container- and Microservice-Based Applications

Creating composite UI based on microservices, including visual UI

shape and layout generated by multiple microservices

Microservices architecture often starts with the server side handling data and logic. However, a more

advanced approach is to design your app UI based on microservices as well. That means having a

composite UI produced by the microservices, instead of having microservices on the server and just a

monolithic client app consuming the microservices. With this approach, the microservices you build

can be complete with both logic and visual representation together.

Figure 4-19 shows the simpler approach of just consuming microservices from a monolithic client

application. Of course, you could have an ASP.NET MVC service in between producing the HTML/JS.

The figure is a simplification that highlights that you have a single client UI (monolithic) consuming

the microservices, which just focus on logic and data and not on the UI shape (HTML/JS).

Figure 4-19. A monolithic UI application consuming backend microservices

In contrast, a composite UI is precisely generated and composed by actual microservices. Each

microservice drives the visual shape of a specific area of the UI. The key difference is that you will have

client UI components (TS classes, for example) based on templates, and the data-shaping-UI

ViewModel for those templates comes from each microservice.

At client application start-up time, each of the client UI components (TypeScript classes, for example)

registers itself with an infrastructure microservice capable of providing ViewModels for a given

scenario. If the microservice changes the shape, the UI changes visually.

Figure 4-20 shows a version of this composite UI approach. It’s simplified, because you might have

other microservices that are aggregating granular parts based on different techniques—this depends

on whether you are building a traditional web approach (ASP.NET MVC) versus a SPA (Single Page

Application).

54 Architecting Container- and Microservice-Based Applications

Figure 4-20. Example of a composite UI application shaped by backend microservices

Connecting back to the AP Gateway pattern, each of those UI composition microservices would be

very similar to a small API Gateway but in this case responsible for a small UI area.

A composite UI approach that’s driven by the microservices can be more or less challenging

depending on what UI technologies you are using. For instance, you won’t use the same techniques

for building a traditional web application than for building a SPA or for native mobile app (as when

developing Xamarin apps, which can be more challenging for this approach).

The eShopOnContainers sample application uses the monolithic UI approach for multiple reasons.

First, it is an introduction to microservices and containers. A composite UI is more advanced but also

requires further complexity when designing and developing the UI. Second, eShopOnContainers also

provides a native mobile app based on Xamarin, which would make it more complex on the client C#

side.

However, we encourage you to use the following references to learn more about composite UI based

on microservices.

Additional resources

• Composite UI using ASP.NET (Particular’s Workshop)

https://github.com/Particular/Workshop.Microservices/tree/master/demos/CompositeUI-MVC

• Ruben Oostinga. The Monolithic Frontend in the Microservices Architecture

http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/

• Mauro Servienti. The secret of better UI composition

https://particular.net/blog/secret-of-better-ui-composition

• Viktor Farcic. Including Front-End Web Components Into Microservices

https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-

microservices/

• Managing Frontend in the Microservices Architecture

http://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

http://aka.ms/MicroservicesArchitecture
https://github.com/Particular/Workshop.Microservices/tree/master/demos/CompositeUI-MVC
http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/
https://particular.net/blog/secret-of-better-ui-composition
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
http://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

55 Architecting Container- and Microservice-Based Applications

Resiliency and high availability in microservices

Dealing with unexpected failures is one of the hardest problems to solve, especially in a distributed

system. Much of the code that developers write involves handling exceptions, and this is also where

the most time is spent in testing. The problem is more involved than writing code to handle failures.

What happens when the machine where the microservice is running fails? Not only do you need to

detect this microservice failure (a hard problem on its own), but you also need something to restart

your microservice.

A microservice needs to be resilient to failures and restart often on another machine for availability

reasons. This also comes down to the state that was saved on behalf of the microservice, where the

microservice can recover this state from, and whether the microservice can restart successfully. In

other words, there needs to be resilience in the compute (the process restarts) as well as resilience in

the state or data (no data loss and the data remains consistent).

The problems of resiliency are compounded during other scenarios, such as when failures happen

during an application upgrade. The microservice, working with the deployment system, needs to

decide whether it can continue to move forward to the newer version or instead roll back to a

previous version to maintain a consistent state. Questions such as whether enough machines are

available to keep moving forward and how to recover previous versions of the microservice need to

be considered. This requires the microservice to emit health information to be able to make these

decisions.

In addition, resiliency is related to how cloud-based systems must behave. As mentioned, a cloud-

based system must embrace failures and must try to automatically recover from them. For instance, in

case of network or container failures, client apps or client services must have a strategy to retry

sending messages or to retry requests, since in many cases failures in the cloud are partial. The

“Implementing Resilient Applications” section in this guide tackles how to handle partial failure. It

describes techniques like retries with exponential backoff or the Circuit Breaker pattern in .NET Core

by using libraries like Polly, which offers a large variety of policies to handle this subject.

Health management and diagnostics in microservices

It may seem obvious, and it is often overlooked, but a microservice must report its health and

diagnostics. Otherwise, there is little insight from an operations perspective. Correlating diagnostic

events across a set of independent services and dealing with machine clock skews to make sense of

the event order is challenging. In the same way that you interact with a microservice over agreed-

upon protocols and data formats, there is a need for standardization in how to log health and

diagnostic events that ultimately end up in an event store for querying and viewing. In a microservices

approach, it is key that different teams agree on a single logging format. There needs to be a

consistent approach to viewing diagnostic events in the application.

Health checks

Health is different from diagnostics. Health is about the microservice reporting its current state to take

appropriate actions. A good example is working with upgrade and deployment mechanisms to

maintain availability. Although a service may be currently unhealthy due to a process crash or machine

reboot, the service might still be operational. The last thing you need is to make this worse by

https://github.com/App-vNext/Polly

56 Architecting Container- and Microservice-Based Applications

performing an upgrade. The best approach is to do an investigation first or allow time for the

microservice to recover. Health events from a microservice help us make informed decisions and, in

effect, help create self-healing services.

In the “Implementing Health Checks in ASP.NET Core services” section of this guide, we explain how to

use a new ASP.NET HealthCheck library in your microservices so they can report their state to a

monitoring service to take appropriate actions.

Diagnostics, logs event streams

Logs provide information about how an application or service is running, including exceptions,

warnings or simple informational messages. Usually, each log is based on text format, one line per

event, although exceptions will also show the stack trace spanning to multiple lines.

In monolithic server-based applications you can simply write logs to a file on disk (a logfile) and then

analyze it with any tool. Since the application execution is limited to a fixed server/VM, is not too

complex to analyze the flow of events.

However, in a distributed application where multiple services are executed across many nodes in an

orchestrator’s cluster, being able to correlate the distributed events is a challenge.

A microservice based application should not try to store the output stream of events or logfiles by

itself, not even try to manage the routing of the events to a central place. It should be transparent,

meaning that each process should just write its event stream to a standard output that underneath

will be collected by the execution environment infrastructure where it is running. An example of these

event stream routers is Microsoft.Diagnostic.EventFlow which collects event streams from multiple

sources and publish it on output systems like the simple standard output for development

environment or cloud systems like Application Insights, OMS (for on-premises applications) and Azure

Diagnostics. There are also very good third party log analysis platforms (search, alert, report and

monitor), even in real time, like Splunk.

Orchestrators managing health and diagnostics information

When creating a microservice-based application, you need to deal with complexity. Of course, a single

microservice is simple to deal with, but tens or hundreds of types and thousands of instances of

microservices is a complex problem. It’s not just about building your microservice architecture—you

also need high availability, addressability, resiliency, health, and diagnostics if you intend to have a

stable and cohesive system.

https://github.com/Azure/diagnostics-eventflow
https://azure.microsoft.com/en-us/services/application-insights/
https://github.com/Azure/diagnostics-eventflow#oms-operations-management-suite
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/azure-diagnostics
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/azure-diagnostics
http://www.splunk.com/goto/Splunk_Log_Management?ac=ga_usa_log_analysis_phrase_Mar17&_kk=logs%20analysis&gclid=CNzkzIrex9MCFYGHfgodW5YOtA

57 Architecting Container- and Microservice-Based Applications

Figure 4-21. A Microservice Platform is fundamental for app’s Health Management

The complex problems shown in Figure 4-21 are very hard to solve by yourself. Development teams

should focus on solving business problems and building custom applications with microservices-

based approaches. They should not focus on solving complex infrastructure problems; if they did, the

cost of any microservice-based application would be huge. Therefore, there are microservice-oriented

platforms, referred to as orchestrators or microservice clusters, that try to solve the hard problems of

building and running a service and using infrastructure resources efficiently. This reduces the

complexities of building applications that use a microservices approach.

Different orchestrators might sound similar, but the capabilities on diagnostics and healthchecks

offered by each of them can be different in terms of features and their state of maturity, sometimes

depending on the OS platform, as explained in the next section.

Additional resources

• 12factor . Logs – Treat logs as event streams

https://12factor.net/logs

• Microsoft Diagnostic Event Flow Library

https://github.com/Azure/diagnostics-eventflow

• Microsoft. Azure Diagnostics

https://docs.microsoft.com/en-us/azure/azure-diagnostics

• Microsoft. OMS Agent

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-windows-agents

• Microsoft. Semantic Logging Application block

https://msdn.microsoft.com/en-us/library/dn440729(v=pandp.60).aspx

• Splunk. Log analysis

http://www.splunk.com

• Microsoft. EventSource (for Windows ETW)

https://msdn.microsoft.com/en-us/library/system.diagnostics.tracing.eventsource(v=vs.110).aspx

https://12factor.net/logs
https://docs.microsoft.com/en-us/azure/azure-diagnostics
https://msdn.microsoft.com/en-us/library/dn440729(v=pandp.60).aspx
http://www.splunk.com/

58 Architecting Container- and Microservice-Based Applications

Orchestrating microservices and multi-container

applications for high scalability and availability
Using orchestrators for production-ready applications is essential if your application is based on

microservices or simply split across multiple containers. As introduced previously, in a microservice-

based approach, each microservice owns its model and data so that it will be autonomous from a

development and deployment point of view. But even if you have a more traditional application that is

composed of multiple services (like SOA), you will also have multiple containers or services comprising

a single business application that need to be deployed as a distributed system. These kinds of systems

are complex to scale out and manage; therefore, you absolutely need an orchestrator if you want to

have a production-ready and scalable multi-container application.

Figure 4-22 illustrates deployment into a cluster of an application composed by multiple microservices

(containers)3s3.

Figure 4-22. A cluster of containers

It looks like a logical approach. But how are you handling load-balancing, routing, and orchestrating

these composed applications?

The Docker CLI meets the needs of managing one container on one host, but it falls short when it

comes to managing multiple containers deployed on multiple hosts for more complex distributed

applications. In most cases, you need a management platform that will automatically spin containers

up, suspend them or shut them down when needed, and ideally also control how they access

resources like network and data storage.

59 Architecting Container- and Microservice-Based Applications

To go beyond the management of individual containers or very simple composed apps and move

toward larger enterprise applications with microservices, you must turn to orchestration and clustering

platforms. For Docker containers, these include Docker Swarm, Mesosphere DC/OS, and Kubernetes,

which are all available as part of Microsoft Azure Container Service, or the microservices orchestrator

that’s part of Azure Service Fabric.

From an architecture and development point of view, it’s important to understand the following

platforms and products that support advanced scenarios if you are building large enterprise

composed of microservices-based applications:

Clusters and Orchestrators. When you need to scale out applications across many Docker hosts like

when dealing with a large microservice-based application, it is critical to have the ability to manage all

those hosts as a single cluster by abstracting the complexity of the undearneath platform. That is what

the container clusters and orchestrators provide. Examples of orchestrators are Docker Swarm,

Mesosphere DC/OS, Kubernetes and Azure Service Fabric.

Schedulers. Scheduling means to have the capability for an administrator to launch containers in a

cluster so they also provide a UI. A cluster scheduler has several responsibilities: To use the cluster’s

resources efficiently, to set the constraints provided by the user, to have an efficient load balancing of

containers across nodes/hosts and to be robust against errors while providing high availability.

The concepts of a cluster and a scheduler are closely related, so the products provided by different

vendors often provide both capabilities. The following list shows the most important platform and

software choices you have for clusters and schedulers for containers. These clusters can be offered in

public clouds like Azure.

Software Platforms for Container Clustering, Orchestration, and Scheduling

Docker Swarm

Docker Swarm lets you cluster and schedule Docker containers. By using

Swarm, you can turn a pool of Docker hosts into a single, virtual Docker

host. Clients can make API requests to Swarm the same way they do to

hosts, meaning that Swarm makes it easy for apps to scale to multiple

hosts.

Docker Swarm is a product from Docker, the company.

Docker v1.12 or later can run native and built-in Swarm Mode.

Mesosphere DC/OS

Mesosphere Enterprise DC/OS (based on Apache Mesos) is a production

ready platform for running containers and distributed applications.

DC/OS works by abstracting a collection of the resources available in the

cluster and making those resources available to components built on top

of it. Marathon is usually used as a scheduler integrated with DC/OS.

Google Kubernetes

Kubernetes is an open-source product that provides functionality from

cluster infrastructure and container scheduling to orchestrating

capabilities. It lets you automate deployment, scaling, and operations of

application containers across clusters of hosts.

60 Architecting Container- and Microservice-Based Applications

Kubernetes provides a container-centric infrastructure that groups

application containers into logical units for easy management and

discovery.

Azure Service Fabric

Service Fabric is a Microsoft microservices platform for building

applications. It is an orchestrator of services and creates clusters of

machines. By default, Service Fabric deploys and activates services as

processes, but Service Fabric can deploy services in Docker container

images. More importantly, you can mix both services in processes and

services in containers together in the same application.

The feature of Service Fabric deploying services as Docker containers is

currently in preview state, as of April 2016.

 Service Fabric services can be developed in many ways, from using

the Service Fabric programming models to deploying guest executables

as well as containers. Service Fabric supports prescriptive application

models like stateful services and Reliable Actors.

Using container-based orchestrators in Microsoft Azure

From a cloud offering perspective, several vendors are offering Docker containers support plus Docker

clusters and orchestration support, including Microsoft Azure, Amazon EC2 Container Service, and

Google Container Engine.

Microsoft Azure provides Docker cluster and orchestrator support through Azure Container Service

(ACS), as explained in the next section.

Another choice is to use Microsoft Azure Service Fabric (a microservices platform), which also supports

Docker support based on Linux and Windows containers. Service Fabric runs on Azure or any other

cloud and also on-premises.

Using Azure Container Service

A Docker cluster pools multiple Docker hosts and exposes them as a single virtual Docker host, so you

can deploy multiple containers into the cluster. The cluster will handle all the complex management

plumbing, like scalability, health, and so forth. Figure 4-23 represents how a Docker cluster for

composed applications maps to Azure Container Service (ACS).

ACS provides a way to simplify the creation, configuration, and management of a cluster of virtual

machines that are preconfigured to run containerized applications. Using an optimized configuration

of popular open-source scheduling and orchestration tools, ACS enables you to use your existing

skills or draw on a large and growing body of community expertise to deploy and manage container-

based applications on Microsoft Azure.

Azure Container Service optimizes the configuration of popular Docker clustering open source tools

and technologies specifically for Azure. You get an open solution that offers portability for both your

https://azure.microsoft.com/en-us/documentation/articles/service-fabric-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-cluster-resource-manager-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-existing-app/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-anywhere/

61 Architecting Container- and Microservice-Based Applications

containers and your application configuration. You select the size, the number of hosts, and choice of

orchestrator tools, and Container Service handles everything else.

Figure 4-23. Clustering choices in Azure Container Service

ACS leverages Docker images to ensure that your application containers are fully portable. It supports

your choice of open-source orchestration platforms like DC/OS (powered by Apache Mesos),

Kubernetes (originally created by Google), and Docker Swarm, to ensure that these applications can

be scaled to thousands or even tens of thousands of containers.

The Azure Container service enables you to take advantage of the enterprise-grade features of Azure

while still maintaining application portability, including at the orchestration layers.

Figure 4-24. Orchestrators in ACS

As shown in figure 4-24, Azure Container Service is simply the infrastructure provided by Azure in

order to deploy DC/OS, Kubernetes or Docker Swarm, but ACS does not implement any additional

orchestrator. Therefore, ACS is not an orchestrator per se, only infrastructure leveraging existing OSS

orcherstrators for containers.

62 Architecting Container- and Microservice-Based Applications

From a usage perspective, the goal of Azure Container Service is to provide a container hosting

environment by using popular open-source tools and technologies. To this end, it exposes the

standard API endpoints for your chosen orchestrator. By using these endpoints, you can leverage any

software that can talk to those endpoints. For example, in the case of the Docker Swarm endpoint, you

might choose to use the Docker command-line interface (CLI). For DC/OS, you might choose to use

the DC/OS CLI.

Getting started with Azure Container Service

To begin using Azure Container Service, you deploy an Azure Container Service cluster from the Azure

portal by using an Azure Resource Manager template or the CLI. Available templates include Docker

Swarm, Kubernetes, and DC/OS. The provided quickstart templates can be modified to include

additional or advanced Azure configuration. For more information on deploying an Azure Container

Service cluster, see Deploy an Azure Container Service cluster.

There are no fees for any of the software installed by default as part of ACS. All default options are

implemented with open-source software.

ACS is currently available for Standard A, D, DS, G, and GS series Linux virtual machines in Azure. You

are only charged for the compute instances you choose, as well as the other underlying infrastructure

resources consumed such as storage and networking. There are no incremental charges for the ACS

itself.

Additional resources

• Introduction to Docker container hosting solutions with Azure Container Service

https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/

• Docker Swarm overview

https://docs.docker.com/swarm/overview/

• Swarm mode overview

https://docs.docker.com/engine/swarm/

• Mesosphere DC/OS Overview

https://docs.mesosphere.com/1.7/overview/

• Kubernetes. The official site.

http://kubernetes.io/

Using Azure Service Fabric

Azure Service Fabric arose from Microsoft’s transition from delivering box products, which were

typically monolithic in style, to delivering services. The experience of building and operating large

services at scale, such as Azure SQL Database, Azure Document DB, Azure Service Bus, or Cortana’s

Backend, shaped Service Fabric. The platform evolved over time as more and more services adopted

it. Importantly, Service Fabric had to run not only in Azure but also in standalone Windows Server

deployments.

The aim of Service Fabric is to solve the hard problems of building and running a service and utilizing

infrastructure resources efficiently, so that teams can solve business problems using a microservices

approach.

Service Fabric provides two broad areas to help you build applications that use a microservices

approach:

https://azure.microsoft.com/documentation/articles/xplat-cli-install/
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-swarm
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-swarm
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-kubernetes
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-dcos
https://azure.microsoft.com/en-us/documentation/articles/container-service-deployment/
https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/swarm/
https://docs.mesosphere.com/1.7/overview/
http://kubernetes.io/

63 Architecting Container- and Microservice-Based Applications

• A platform that provides system services to deploy, scale, upgrade, detect, and restart failed

services, discover service location, manage state, and monitor health. These system services in

effect enable many of the characteristics of microservices described previously.

• Programming APIs, or frameworks, to help you build applications as microservices: reliable

actors and reliable services. Of course, you can choose any code to build your microservice,

but these APIs make the job more straightforward, and they integrate with the platform at a

deeper level. This way you can get health and diagnostics information, or you can take

advantage of reliable state management.

Service Fabric is agnostic with respect to how you build your service, and you can use any technology.

However, it provides built-in programming APIs that make it easier to build microservices.

As shown in Figure 4-25, you can create and run microservices in Service Fabric either as simple

processes or as Docker containers.

Figure 4-25. Deploying microservices as processes or as containers in Azure Service Fabric

Service Fabric clusters based on Linux and Windows hosts can run Docker Linux containers and

Windows Containers.

For up-to-date information about containers support in Azure Service Fabric, see Service Fabric and

containers.

Service Fabric is a good example of a platform where you can define a different logical architecture

(business microservices or Bounded Contexts) than the physical implementation that were introduced

in the section “Logical Architecture vs. Physical Architecture”. For example, if you implement Stateful

Reliable Services in Azure Service Fabric, which are introduced in the next section named “Stateless

versus stateful microservices,” you have a business microservice concept with multiple physical

services.ka

As shown in figure 4-26, an3d thinking from a logical/business microservice perspective, when

implementing a Service Fabric Reliable Service, you usually will need to implement two tiers of

services. First, the backend stateful reliable service which handles multiple partitions, plus the frontend

service or Gateway service in charge of routing and data aggregation across multiple partitions or

stateful service instances. That Gateway service also handles the client-side communication libraries

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview

64 Architecting Container- and Microservice-Based Applications

with a retry loops accessing the backend service and retry policies used in conjunction with the

Service Fabric Reverse proxy.

Figure 4-26. Busines microservice with several stateful/stateless services in Service Fabric

In any case, the fact here is that when using Service Fabric Stateful Reliable Services, you will also have

a logical/business microservice (bounded context) usually composed by multiple physical services

(each of them, gateway service or partition service, could be implemented as an ASP.NET Web API

service, for instance), as shown in the image 4-9.

In Service Fabric, you can group and deploy groups of services under the concept of “Service Fabric

Application” as that is the unit of packaging and deployment for the orchestrator/cluster. Therefore,

the Service Fabric Application could be mapped to this autonomous “busines/logical microservice”

boundary or Bounded Context, as well.

Service Fabric and containers

Going further and talking about containers in Service Fabric, you can also deploy services in container

images within a Service Fabric cluster.

As shown in Figure 4-26, most of the times, there will only be one container per service.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

65 Architecting Container- and Microservice-Based Applications

Figure 4-26. Busines microservice with several services/containers in Service Fabric

However, side-car containers (two containers that must be deployed together as part of a logical

service) can also be possible in Service Fabric. The important point to highlight is that a business

microservice is the logical boundary around several cohesive elements. In many cases, it might be a

single service with a single data model, but in some other cases you might have physical several

services, too.

It is important to note that as of April of 2017, in Service Fabric you still cannot deploy SF Reliable

Stateful Services on containers but only deploy guest containers, stateless services or actor services in

containers. But very importantly and as shown in the image 4-27, you can mix services in processes

and services in containers in the same Service Fabric application.

Figure 4-27. Busines microservice mapped to a Service Fabric application with containers & stateful services

Support is also different depending if using Docker containers on Linux or Windows Containers.

Support for containers in Service Fabric will be increasing in upcoming releases. For up-to-date

support of containers in Azure Service Fabric, check the page “Service Fabric and Containers”.

Stateless versus stateful microservices

As mentioned earlier, each microservice (or logical bounded-context) must own its domain model

(data and logic). In the case of stateless microservices, the databases will be external, employing

relational options like SQL Server or NoSQL options like MongoDB or Azure Document DB.

But the services themselves can also be stateful, which means that the data resides within the

microservice. This data might exist not just on the same server, but within the microservice’s process,

in memory and persisted on hard drive and replicated to other nodes. Figure 4-28 shows the different

approaches.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-containers-overview

66 Architecting Container- and Microservice-Based Applications

Figure 4-28. Stateless versus stateful microservices

A stateless approach is perfectly valid and is easier to implement than stateful microservices, since the

approach is similar to traditional and well-known patterns. But stateless microservices impose latency

between the process and data sources. They also involve more moving pieces when you are trying to

improve performance via additional cache and queues. The result is that you can end up with complex

architectures with too many tiers.

In contrast, stateful microservices can excel in advanced scenarios, because there is no latency

between the domain logic and data. Heavy data processing, gaming back ends, databases as a service,

and other low-latency scenarios all benefit from stateful services, which enable local state for faster

access.

Stateless and stateful services are complementary. For instance, you can see in Figure 4-20 that a

stateful service could be split into multiple partitions. To access those partitions, you might need a

stateless service acting as a gateway service that knows how to address each partition based on

partition keys.

Stateful services do have drawbacks. They impose a level of complexity to scale out. Functionality that

would usually be implemented by external database systems must be addressed for tasks such as data

replication across stateful microservices and data partitioning. However, this is one of the areas where

an orchestrator like Azure Service Fabric with its stateful reliable services can help the most—by

simplifying the development and lifecycle of stateful microservices using the Reliable Services API and

Reliable Actors.

Other microservice frameworks that allow stateful services, that support the Actor pattern, and that

improve fault tolerance and latency between business logic and data are Microsoft Orleans, from

Microsoft Research, and Akka.NET. Both frameworks are currently improving their support for Docker,

as well.

Note that Docker containers are themselves stateless. If you want to implement a stateful service, you

need one of the additional, prescriptive and higher-level frameworks noted earlier. However, at the

time of this writing, stateful services in Azure Service Fabric are not supported as containers, only as

plain microservices. Reliable services support in containers will be available in upcoming versions of

Service Fabric.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-work-with-reliable-collections
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://github.com/dotnet/orleans
http://getakka.net/

67 Development Process for Docker-Based Applications

S E C T I O N 5

Development Process for
Docker-Based Applications

Vision
Develop containerized .NET applications the way you like, either IDE focused with Visual Studio and

Visual Studio tools for Docker or CLI/Editor focused with Docker CLI and Visual Studio Code.

Development environment for Docker apps

Development tools choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you

covered for developing Docker applications.

Visual Studio with Docker Tools. If you’re using Visual Studio 2015, you can install the Visual Studio

Tools for Docker add-in. If you’re using Visual Studio 2017, Docker Tools are already installed. In

either case, the Docker tools let you develop, run, and validate your applications directly in the target

Docker environment. You can press F5 to run and debug your application (single container or multiple

containers) directly into a Docker host, or press CTRL+F5 to edit and refresh your app without having

to rebuild the container. This is the simplest and most powerful choice for Windows developers

targeting Docker containers for Linux or Windows.

Visual Studio Code and Docker CLI If you prefer a lightweight and cross-platform editor that

supports any development language, you can use Microsoft Visual Studio Code (VS Code) and the

Docker CLI. This is a cross-platform development approach for Mac, Linux, and Windows.

These products provide a simple yet robust experience that streamlines the developer workflow. By

installing Docker Community Edition (CE) tools, Docker developers can use a single Docker CLI to

build apps for both Windows and Linux. Additionally, Visual Studio Code supports extensions for

Docker such as intellisense for Dockerfiles and shortcut tasks to run Docker commands from the

editor.

Additional resources

• Visual Studio Tools for Docker

• Download Visual Studio Code

• Docker Community Edition (CE) for Mac and Windows

https://marketplace.visualstudio.com/items?itemName=MicrosoftCloudExplorer.VisualStudioToolsforDocker-Preview
https://marketplace.visualstudio.com/items?itemName=MicrosoftCloudExplorer.VisualStudioToolsforDocker-Preview
https://www.docker.com/community-edition
https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4
https://code.visualstudio.com/download
http://www.docker.com/products/docker
http://www.docker.com/products/docker
http://www.docker.com/products/docker

68 Development Process for Docker-Based Applications

.NET languages and frameworks for Docker containers

As introduced in earlier sections of this guide, you can use .NET Framework, .NET Core, or the OSS

project Mono when developing Docker containerized .NET applications. You can develop in C#, F#, or

Visual Basic targeting Linux or Windows containers, depending on which .NET framework is in use.

Check the “The .NET Language Strategy” blog post for further details on .NET languages.

Development workflow for Docker apps
The application development lifecycle starts at each developer’s machine, where the developer codes

the app using their preferred language and tests it locally. No matter which language, framework, and

platform the developer chooses, with this workflow, the developer is always developing and testing

Docker containers, but doing so locally.

Each container (an instance of a Docker image) contains the following components:

• An operating system selection (for example, a Linux distribution, Windows Nano Server, or

Windows Server Core).

• Files added by the developer (app binaries, etc.).

• Configuration information (environment settings and dependencies).

• Instructions for the processes that Docker should run.

Workflow for developing Docker container-based applications

This section describes the inner-loop development workflow for Docker container-based applications.

The inner-loop workflow means it is not taking into account the broader DevOps workflow but still

only focusing on the development work done at the dev machine. The initial steps to set up the

environment are not included, since those are done only once.

An app is composed of your own services plus additional libraries (dependencies). The following are

the basic steps you usually take when building a Docker app, as illustrated in Figure 5-1.

Figure 5-1. Step-by-step workflow for developing Docker containerized apps

https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy/

69 Development Process for Docker-Based Applications

In this guide, this whole process is detailed and every critical step is explained by focusing on a Visual

Studio environment.

When you are using an editor/CLI development approach (for example, Visual Studio Code plus

Docker CLI in a macOS or Windows), you need to know every step, even in mor edetail than when

using Visual Studio. In that case (CLI environment for macOS or Windows), refer to the eBook

Containerized Docker Application lifecycle with Microsoft Platforms and Tools for these further details

on a CLI environment.

When you are using Visual Studio 2015 or Visual Studio 2017, many of those steps are handled for

you, which dramatically improves your productivity. This is especially true when you are using Visual

Studio 2017 and targeting multi-container applications. For instance, with just one mouse click, Visual

Studio adds the Dockerfile and docker-compose.yml file to your projects with the configuration for

your app. When you run the app in Visual Studio, it builds the Docker image and runs the multi-

container application directly in Docker; it even allows you to debug several containers at once. These

features will boost your development speed.

However, just because Visual Studio makes those steps automatic doesn’t mean that you don’t need

to know what’s going on underneath with Docker. Therefore, in the guidance that follows, we detail

every step.

Step 1. Start coding and create your initial app or service baseline

Developing a Docker app is similar to the way you develop an app without Docker. The difference is

that while developing for Docker, you are deploying and testing your application or services running

within Docker containers in your local environment (either a Linux VM or a Windows VM).

Set up your local environment with Visual Studio

To begin, make sure you have Docker Community Edition (CE) for Windows installed, as explained in

the following instructions:

Get started with Docker CE for Windows

In addition, you’ll need Visual Studio 2017 installed, as a preferred choice version over Visual Studio

2015 with the Visual Studio Tools for Docker add-in because it has more advanced support for

Docker, like support for debugging containers. Visual Studio 2017 includes the tooling for Docker if

you selected the .NET Core and Docker workload during installation, as shown in Figure 5-2.

Figure 5-2. Selecting the .NET Core and Docker workload during Visual Studio 2017 setup

http://aka.ms/dockerlifecycleebook/
https://www.docker.com/community-edition
https://docs.docker.com/docker-for-windows/

70 Development Process for Docker-Based Applications

Additional resources

• Get started with Docker CE for Windows

https://docs.docker.com/docker-for-windows/

• Visual Studio 2017

https://www.visualstudio.com/vs/visual-studio-2017/

You can start coding your app in plain .NET (usually in .NET Core if you are planning to use containers)

even before enabling Docker in your app and deploying and testing in Docker. However, it’s

recommended that you start working on Docker as soon as possible, because that will be the real

environment and any issues can be discovered as soon as possible. This is encouraged because Visual

Studio makes it so easy to work with Docker that it almost feels transparent, being the best example

when debugging multi-container applications from Visual Studio.

Step 2. Create a Dockerfile related to an existing .NET base image

You need a Dockerfile per custom image to be built and per container to be deployed, either

performed automatically by Visual Studio when you hit F5 or manually by you if using Docker CLI

(docker run and docker-compose commands). If your app contains a single custom service, you will

need a single dockerfile. If your app contains multiple services (as in a microservices architecture), you

need one Dockerfile per service.

The Dockerfile is placed in the root folder of your app or service. It contains the commands that tell

Docker how to set up and run your app or service in a container. You can manually create a Dockerfile

in code and add it to your project along with your .NET dependencies.

With Visual Studio and its tools for Docker, this task requires only a few mouse clicks. When you

create a new project in Visual Studio 2017, there’s an option named Enable Container (Docker)

Support, as shown in Figure 5-3.

Figure 5-3. Enabling Docker Support when creating a new project in Visual Studio 2017

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://www.visualstudio.com/vs/visual-studio-2017/

71 Development Process for Docker-Based Applications

You can also enable Docker support on a new or existing project by right-clicking your project file in

Visual Studio and selecting the option Add-Docker Project Support, as shown in figure 5-4.

Figure 5-4. Enabling Docker support in an existing Visual Studio 2017 project

This action on a project (like an ASP.NET Web app or Web API service) adds a Dockerfile to the project

with the required configuration, plus it will add a docker-compose.yml file for the whole solution. In

the following sections, we describe the information that goes into each of those files. Visual Studio

can do this work for you, but it’s useful to understand what goes into a Dockerfile.

Option A: Creating a project using an existing official .NET Docker image

You usually build a custom image for your container on top of a base image you can get from an

official repository at the Docker Hub registry. That is precisely what happens under the covers when

enabling Docker support from Visual Studio. Your Dockerfile will use an existing aspnetcore image.

Earlier we explained which Docker images and repos you can use, depending on the framework and

OS you’ve chosen. For instance, if you want to use ASP.NET Core and Linux, the image to use is

microsoft/aspnetcore:1.1. Therefore, you just need to specify what base Docker image you’ll be

using for your container by specifying that in your Dockerfile, by adding FROM

microsoft/aspnetcore:1.1 to your Dockerfile. This will be automatically performed by Visual

Studio, but if you were to update the version, you will do it that way.

Using an official .NET image repository at Docker Hub with a version number ensures that the same

language features are available on all machines (including development, testing, and production).

Figure 5-5 shows a sample Dockerfile for an ASP.NET Core container.

FROM microsoft/aspnetcore:1.1
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", " MySingleContainerWebApp.dll "]

Figure 5-5. Sample Dockerfile for a ASP.NET Core container (Image for .NET Core on Linux)

In this case, the container is based on version 1.1 of the official ASP.NET Core Docker image for Linux;

this is the setting FROM microsoft/aspnetcore:1.1. (For further details about this base image, see

the ASP.NET Core Docker Image page and the .NET Core Docker Image page.) In the dockerfile, you

https://hub.docker.com/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/

72 Development Process for Docker-Based Applications

also need to instruct Docker to listen on the TCP port you will use at runtime (in this case, port 80, as

configured with the EXPOSE settings).

You can specify additional configuration settings in the Dockerfile, depending on the language and

framework you are using. For instance, the ENTRYPOINT line with ["dotnet",

"MySingleContainerWebApp.dll"] tells Docker to run a .NET Core app. If you are using the SDK and

the .NET CLI (dotnet CLI) to build and run the .NET app, this setting would be different. The bottom

line is that the ENTRYPOINT line and other settings will be different depending on the language and

platform you choose for your application.

Additional resources

• Building Docker Images for .NET Core Applications

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

• Build your own image. In the official Docker documentation.

https://docs.docker.com/engine/tutorials/dockerimages/

Using multi-platform image repositories

A single repo can contain platform variants, such as a Linux image and a Windows image. This feature

allows vendors like Microsoft (base image creators) to create a single repo to cover multiple

platforms. For example, the microsoft/dotnet repository available in the Docker Hub registry provides

support for Linux and Windows Nano Server by using the same repo name with different tags, as

shown in the following examples.

microsoft/dotnet:1.1-runtime .NET Core 1.1 runtime-only on Linux Debian

microsoft/dotnet:1.1-runtime-
nanoserver

.NET Core 1.1 runtime-only on Windows Nano Server

In the future, it will be possible to use the same repo name and tag targeting multiple operatin

systems. That way, when you pull an image from a Windows host, it will pull the Windows variant, and

pulling the same image name from a Linux host will pull the Linux variant.

Option B: Creating your base image from scratch

You can create your own Docker base image from scratch. This scenario is not recommended for

someone who is starting with Docker, but if you want to set the specific bits of your own base image,

you can do so.

Additional resources

• Create a base image (in the Docker documentation)

https://docs.docker.com/engine/userguide/eng-image/baseimages/

Step 3. Create your custom Docker images and embed your app or service

in it

For each service in your app, you’ll need to create a related image. If your app is made up of a single

service or web app, you just need a single image.

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images
https://docs.docker.com/engine/tutorials/dockerimages/
https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

73 Development Process for Docker-Based Applications

Note that the Docker images are built automatically for you in Visual Studio. The following steps are

only needed for the editor/CLI workflow.

You, as developer, need to develop and test locally until you push a completed feature or change to

your source control system (for example, to GitHub). This means that you need to create the Docker

images and deploy containers to a local Docker host (Windows or Linux VM) and run, test, and debug

against those local containers.

To create a custom image in your local environment by using Docker CLI and your Dockerfile, you can

use the docker build command, as in Figure 5-6.

Figure 5-6. Creating a custom Docker image

Optionally, instead of directly running docker build from the project’s folder, you can first generate

a deployable folder with the required .NET libraries and binaries by running dotnet publish, and

then use the docker build command.

This will create a Docker image with the name cesardl/netcore-webapi-microservice-

docker:first. In this case, :first is a tag representing a specific version. You can repeat this step for

each custom image you need to create for your composed Docker application of several containers.

When an application is made by multiple containers (multi-container app), you can also use the

docker-compose up --build command to build all the related images with a single command by

using the metadata exposed in the related docker-compose.yml files.

You can find the existing images in your local repository by using the docker images command, as

shown in Figure 5-7.

Figure 5-7. Viewing existing images using the docker images command

Creating Docker Images with Visual Studio

When you are using Visual Studio to create a project with Docker support, you don’t explicitly create

an image. Instead, the image is created for you when you press F5 and run the dockerized application

or service. This step is automatic in Visual Studio, and you won’t see it happen, but it’s important that

you know what’s going on underneath.

74 Development Process for Docker-Based Applications

Step 4. Define your services in docker-compose.yml when building a

multi-container Docker app

The docker-compose.yml file lets you define a set of related services to be deployed as a composed

application with deployment commands.

To use a docker-compose.yml file, you need to create the file in your main or root solution folder, with

content similar to that shown in Figure 5-8.

version: '2'

services:
 webmvc:
 image: eshop/web
 environment:
 - CatalogUrl=http://catalog.api
 - OrderingUrl=http://ordering.api
 ports:
 - "80:80"
 depends_on:
 - catalog.api
 - catalog.api

 catalog.api:
 image: eshop/catalog.api
 environment:
 ConnectionString=Server=catalogdata;Port=5432;Database=postgres;…
 ports:
 - "81:80"
 depends_on:
 - postgres.data

 ordering.api:
 image: eshop/ordering.api
 environment:
 - ConnectionString=Server=ordering.data;Database=OrderingDb;…
 ports:
 - "82:80"
 extra_hosts:
 - "CESARDLBOOKVHD:10.0.75.1"
 depends_on:
 - sql.data

 sql.data:
 image: mssql-server-linux:latest
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"

 postgres.data:
 image: postgres:latest
 environment:

https://docs.docker.com/compose/compose-file/

75 Development Process for Docker-Based Applications

 POSTGRES_PASSWORD: tempPwd

Figure 5-8. Example docker-compose.yml file for a multi-container based app

Note that this docker-compose.yml file is a simplified and merged version. It contains static

configuration data for each container (like the name of the custom image), which always applies, plus

configuration information that might depend on the deployment environment, like the connection

string. In later sections, you will learn how you can split the docker-compose.yml configuration into

multiple docker-compose files and override values depending on the environment and execution type

(debug or release).

The docker-compose.yml file example defines five services: the webmvc service (a web app); two

microservices (ordering.api and basket.api); and two data source containers, sql.data based on

SQL Server for Linux running as a container, and postgres.data with a Redis cache service. Each

service will be deployed as a container, so a Docker image is required for each.

The docker-compose.yml file specifies not only what containers are being used, but how they are

individually configured. For instance, on the webmvc container definition at the .yml file:

• Uses the pre-built eshop/web:latest image. Although you could also command the image to

be built as part of the docker-compose execution with an additional configuration based on a

section “build:” within the docker-compose file.

• Initializes two environment variables (CatalogUrl and OrderingUrl).

• Forwards the exposed port 80 on the container to the external port 80 on the host machine.

• Links the web service to the basket and ordering service with the depends_on setting. This

casues the service to wait until those services are started.

We will revisit the docker-compose.yml file in a later section when we cover how to implement

microservices and multi-container apps.

Working with docker-compose.yml in Visual Studio 2017

When you add Docker solution support to a service project in a Visual Studio solution, Visual Studio

adds a Dockerfile to your project, and it adds a service section (project) in your solution with the

docker-compose.yml files. It is an easy way to start composing your multiple-container solution. You

can then open the docker-compose.yml files and update them with additional features.

Figure 5-9. Adding Docker support in Visual Studio 2017 by right-clicking on an ASP.NET Core project

This action not only adds the Dockerfile to your project, but it adds the configuration information to

several global docker-compose.yml files set at the solution level.

76 Development Process for Docker-Based Applications

After you add Docker support to your solution in Visual Studio, you will also see a new node (docker-

compose.dcproj project file) in the Solution Explorer that contains the added docker-compose.yml

files, as shown in Figure 5-10.

Figure 5-10. The docker-compose tree node added in Visual Studio 2017 Solution Explorer

You could deploy a multi-container application by using a single docker-compose.yml file by using

the docker-compose up command. However, Visual Studio adds a group of them so you can override

values depending on the environment (dev versus. production) and execution type (release versus

debug). This capability will be explained in later sections.

Step 5. Build and run your Docker app

If your app only has a single container, you can run it by deploying it to your Docker host (VM or

physical server). However, if your app contains multiple services, you can deploy it as a composed

application, in a single execution command, with “docker-compose up” or with Visual Studio that will

use that command underneath. Let’s look at the different options.

Option A: Running a single-container with Docker CLI

You can run a Docker container using the “docker run” command, as in the following example:

docker run -t -d -p 80:5000 cesardl/netcore-webapi-microservice-docker:first

Figure 5-11. Running a Docker container using the "docker run" command

In this case, it binds the internal port 5000 of the container to port 80 of the host machine. This means

that the host is listening on port 80 and forwarding to port 5000 on the container.

77 Development Process for Docker-Based Applications

Option B: Running a multi-container application

In most enterprise scenarios, a Docker application will be composed of multiple services, which means

you need to run a multi-container application as shown in Figure 5-12.

Figure 5-12. VM with Docker containers deployed

Running a multi-container application with Docker CLI

For this scenario, you can run the docker-compose up command. This command uses the docker-

compose.yml file that you have at the solution level to deploy a multi-container application. Figure 5-

13 shows the results when running the command from your main project directory, which contains the

docker-compose.yml file.

Figure 5-13. Example results when running the docker-compose up command

After the docker-compose up command runs, the application and its related containers are deployed

into your Docker host, as illustrated in the previous VM representation in Figure 5-12.

Running and debugging a multi-container application with Visual Studio

Running a multi-container application using Visual Studio 2017 cannot get simpler. You can not only

run the multi-container application, but you’re able to debug all its containers directly from Visual

Studio by setting regular breakpoints.

As mentioned before, each time you add Docker solution support to a project within a solution, that

project is configured in the global (solution-leve) docker-compose.yml file, which lets you run or

debug the whole solution at once. Visual Studio will spin up one container per project that has Docker

solution support enabled, and perform all the internal steps for you (dotnet publish, docker build to

build the Docker images, etc.).

The important point here is that, as shown in Figure 5-14, in Visual Studio 2017 there is an additional

Docker command under the F5 key. This option lets you run or debug a multiple container

application by running all the containers that are defined in the docker-compose.yml files at the

solution level. The ability to debug multiple-container solutions means that you can set several

78 Development Process for Docker-Based Applications

breakpoints, each breakpoint in a different project (container), and while debugging from Visual

Studio you will stop at breakpoints defined in different projects and running on different containers.

Figure 5-14. Running multi-container apps in Visual Studio 2017

Additional resources

• Deploy an ASP.NET container to a remote Docker host

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-

docker/

A note about testing and deploying with orchestrators

The “docker-compose up” and “docker run” commands (or running and debugging the containers in

Visual Studio) are adequate for testing containers in your development environment. But you should

not use this approach if you are targeting Docker clusters and orchestrators like Docker Swarm,

Mesosphere DC/OS, or Kubernetes. If you are using a cluster like Docker Swarm mode (available in

Docker CE for Windows and Mac since version 1.12), you need to deploy and test with additional

commands like “docker service create” for single services. If you are deploying an app composed

of several containers, you use “docker compose bundle” and “docker deploy myBundleFile” in

order to deploy the composed app as a stack. For more information, see the article Introducing

Experimental Distributed Application Bundles in the Docker documentation.

For DC/OS and Kubernetes you would use different deployment commands and scripts as well.

Step 6. Test your Docker application using your local Docker host

This step will vary depending on what your app is doing. In a simple .NET Core Web app that is

deployed as a single container or service, you can access the service by opening a browser on the

Docker host and navigating to that site as shown in Figure 5-15. (If the configuration in the Dockerfile

maps the container to a port on the host that’s anything other than 80, include the host post in the

URL.)

Figure 5-15. Example of testing your Docker application locally using localhost

If localhost is not pointing to the Docker host IP (by default, when using Docker CE, it should), to

navigate to your service, use the IP address of your machine’s network card.

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/compose/reference/bundle/
https://docs.docker.com/engine/reference/commandline/deploy/
https://blog.docker.com/2016/06/docker-app-bundle/
https://blog.docker.com/2016/06/docker-app-bundle/
https://mesosphere.com/blog/2015/09/02/dcos-cli-command-line-tool-datacenter/
http://kubernetes.io/docs/user-guide/deployments/

79 Development Process for Docker-Based Applications

Note that this URL in the browser uses port 80 for the particular container example being discussed.

However, internally the requests are being redirected to port 5000, because that’s how it was

deployed with the “docker run” command, as explained in a previous step.

You can also test the app using curl from the terminal, as shown in figure 5-16. In a Docker installation

on Windows, the default Docker Host IP is always 10.0.75.1 in addition to your real machine’s IP.

Figure 5-16. Example of testing your Docker application locally using curl

Testing and debugging containers with Visual Studio 2017

When running and debugging the containers with Visual Studio 2017, you can debug the .NET

application in much the same way as you would when running without containers.

Additional resources

• Debugging apps in a local Docker container

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-edit-and-refresh/

Testing and debugging without Visual Studio

If you’re developing using the editor/CLI approach, debugging is more difficult and you will want to

debug by generating traces.

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-edit-and-refresh/

80 Development Process for Docker-Based Applications

Simplified workflow when developing containers with Visual Studio

Effectively, the workflow when using Visual Studio is a lot simpler than if you use the editor/CLI

approach, because most of the steps required by Docker related to the Dockerfile and docker-

compose.yml files are hidden or simplified by Visual Studio, as shown in the image 5-17.

Figure 5-17. Simplified workflow when developing with Visual Studio

Moreover, you need to perform step 2 (Add Docker support to your projects) just once. Therefore, the

workflow remains similar to your usual development tasks when using .NET for any other

development. You need to know what’s going on under the covers (the images build process, what

base images you are using, deployment of containers, etc.) and sometimes you will also need to edit

the Dockerfile or docker-compose.yml file to customzie behaviors. But most of the work is greatly

simplified by using Visual Studio, making you a lot more productive.

Additional resources

• Steve Lasker. .NET Docker Development with Visual Studio 2017

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111

• Jeffrey T. Fritz. Put a .NET Core App in a Container with the new Docker Tools for Visual Studio

https://blogs.msdn.microsoft.com/webdev/2016/11/16/new-docker-tools-for-visual-studio/

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111

81 Development Process for Docker-Based Applications

Using PowerShell commands in a Dockerfile to set up Windows

containers

Windows Containers allow you to convert your existing Windows applications into Docker images and

deploy them with the same tools as the rest of the Docker ecosystem. To use Windows Containers,

you run PowerShell commands in the Dockerfile as shown in the Figure 5-18.

FROM microsoft/windowsservercore
LABEL Description="IIS" Vendor="Microsoft" Version="10"
RUN powershell -Command Add-WindowsFeature Web-Server
CMD ["ping", "localhost", "-t"]

Figure 5-18. Example of running PowerShell commands in the Dockerfile

In this case, we are using a Windows Server Core base image (the FROM setting) and installing IIS with

a PowerShell command (the RUN setting). In a similar way, you could also use PowerShell commands

to set up additional components like ASP.NET 4.x, .NET 4.6, or any other Windows software. For

example, following command in a Dockerfile sets up ASP.NET 4.5:

RUN powershell add-windowsfeature web-asp-net45

Additional resources

• Example of powershell commands to run from dockerfiles to include Windows features

https://github.com/Microsoft/aspnet-docker/blob/master/4.6.2/Dockerfile

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview
https://github.com/Microsoft/aspnet-docker/blob/master/4.6.2/Dockerfile

82 Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano Server Hosts

S E C T I O N 6

Deploying Single-
Container-Based .NET
Core Web Applications on
Linux or Windows Nano
Server Hosts

Vision
You can use Docker containers for monolithic deployment of simpler web applications. This improves

continuous integration/continuous deployment pipelines and helps achieve deployment-to-production

success. No more “it works in my machine, why doesn’t work in production?”

A microservices-based architecture has many benefits, but those benefits come at a cost of increased

complexity. In some cases, the costs outweigh the benefits, and you will be better served with a

monolithic deployment application running in a single container or in just a few containers.

An application might not be easily decomposable into well-separated microservices. You’ve learned

that these should be partitioned by function: microservices should work independently of each other

to provide a more resilient application. If you can’t deliver feature slices of the application, separating

it only adds complexity.

An application might not yet need to scale features independently. Let’s suppose that early in the life

of of our reference application eShopOnContainers, the traffic did not justify separating features into

different microservices. Traffic was small enough that adding resources to one service typically meant

adding resources to all services. The additional work to separate the application into discrete services

provided minimal benefit.

Also, early in the development of an application you might not have a clear idea where the natural

functional boundaries are. As you develop a minimum viable product, the natural separation might

not yet have emerged.

Some of these conditions might be temporary. You may start by creating a monolithic application,

and later separate some features to be developed and deployed as microservices. Other conditions

83 Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano Server Hosts

might be essential to the application’s problem space, meaning that the application might never be

broken into multiple microservices.

Separating an application into many discrete processes introduces overhead. There is more

complexity in separating features into different processes. The communication protocols become

more complex. Instead of method calls, you must use asynchronous communications between

services. As you move to a microservices architecture, you need to add many of the building blocks

implemented in the microservices version of the eShopOnContainers application: event bus handling,

message resiliency and retries, eventual consistency, and more.

A very much simplified version of eShopOnContainers (named eShopWeb and included in the same

GitHub repo) runs as a monolithic MVC application, and as just described, there are advantages

offered by that design choice. You can download the source for this application from GitHub and run

it locally. Even this monolithic application benefits from being deployed in a container environment.

For one, the containerized deployment means that every instance of the application runs in the same

environment. This includes the developer environment where early testing and development take

place. The development team can run the application in a containerized environment that matches

the production environment.

In addition, containerized applications scale out at lower cost. As you saw earlier, the container

environment enables greater resource sharing than traditional VM environments.

Finally, containerizing the application forces a separation between the business logic and the storage

server. As the application scales out, the multiple containers will all rely on a single physical storage

medium. This would typically be a high-availability server running a SQL Server database.

Application tour
The eShopWeb application represents some of the eShopOnContainers application running as a

monolithic application—an ASP.NET Core MVC based application running on .NET Core. It mainly

provides the catalog browsing capabilities that we described in earlier sections.

The application uses a SQL Server database for the catalog storage. In container-based deployments,

this monolithic application can access the same data store as the microservices-based application. The

app is configured to run SQL Server in a container alongside the monolithic application. In a

production environment, SQL Server would run on a high availability machine, outside of the Docker

host. For convenience in a dev or test environment, we recommend running SQL Server in its own

container.

The initial feature set only enables browsing the catalog. Updates would enable the full feature set of

the containerized application. A more advanced monolithic web application architecture is described

in the ASP.NET Web Application architecture practices eBook and related eShopOnWeb sample app,

although in that case it is not running on Docker containers because that scenario focuses on plain

web development with ASP.NET Core.

However, the simplified version available at eShopOnContainers (eShopWeb) runs in a Docker

container.

https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Web/WebMonolithic
https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Web/WebMonolithic
https://aka.ms/webappebook
http://aka.ms/WebAppArchitecture
http://aka.ms/MicroservicesArchitecture
https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Web/WebMonolithic

84 Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano Server Hosts

Docker support
The eShopOnWeb project runs on .NET Core. Therefore, it can run in either Linux-based or Windows-

based containers. Note that for Docker deployment, you want to use the same host type for SQL

Server. Linux-based containers allow a smaller footprint and are preferred.

Visual Studio provides a project template that adds support for Docker to a solution. You right-click

the project, click Add followed by Docker Support. The template adds a Dockerfile to your project,

and a new docker-compose project that provides a starter docker-compose.yml file. This step has

already been done in the eShopOnWeb project downloaded from GitHub. You’ll see that the solution

contains the eShopOnWeb project and the docker-compose project as shown in Figure 6.1.

Figure 6-1. docker-compsoe project in a single container web app

These files are standard docker-compose files, consistent with any Docker project. You can use them

with Visual Studio or from the command line. This application runs on .NET Core and uses Linux

containers, so you can also code, build, and run on a Mac or on a Linux machine.

The docker-compose.yml file contains information about what images to build and what containers to

launch. The templates specify how to build the eshopweb image and launch the app’s containers. You

need to add the dependency on SQL Server by including an image for it (for example, mssql-server-

linux), and a service for the sql.data image for Docker to build and launch that container. These

settings are shown in the following example.

version: '2'

services:
 eshopweb:
 image: eshop/web
 build:
 context: ./eShopWeb
 dockerfile: Dockerfile

 depends_on:
 - sql.data
 sql.data:
 image: microsoft/mssql-server-linux

The depends_on directive tells Docker that the eShopWeb image depends on the sql.data image.

Lines below that are the instructions to build an image tagged sql.data using the microsoft/mssql-

server-linux image.

The docker-compose project displays the other docker-compose files under the main docker-

compose.yml node to provide a visual indication that these files are related. The docker-compose-

85 Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano Server Hosts

override.yml file contains settings for both services, such as connection strings and other application

settings.

The following example shows the .docker-compose.vs.debug.yml file, which contains settings used for

debugging in Visual Studio. In that file, the eshopweb image has the dev tag appended to it. That

helps separate debug from release images so that you don’t accidentally deploy the debug

information to a production environment:

version: '2'

services:
 eshopweb:
 image: eshop/web:dev
 build:
 args:
 source: ${DOCKER_BUILD_SOURCE}
 environment:
 - DOTNET_USE_POLLING_FILE_WATCHER=1
 volumes:
 - ./eShopWeb:/app
 - ~/.nuget/packages:/root/.nuget/packages:ro
 - ~/clrdbg:/clrdbg:ro
 entrypoint: tail -f /dev/null
 labels:
 - "com.microsoft.visualstudio.targetoperatingsystem=linux"

The last file added is docker-compose.ci.build.yml. This would be used from the command line to

build the project from a CI server. This compose file starts a Docker container that builds the images

needed for your application. The following example shows the contents of the docker-

compose.ci.build.yml file.

version: '2'

services:
 ci-build:
 image: microsoft/aspnetcore-build:1.0-1.1
 volumes:
 - .:/src
 working_dir: /src
 command: /bin/bash -c "dotnet restore ./eShopWeb.sln && dotnet publish
./eShopWeb.sln -c Release -o ./obj/Docker/publish"

Notice that the image is an ASP.NET Core build image. That image includes the SDK and build tools to

build your application and create the required images. Running the docker-compose project using

this file starts the build container from the image, then builds your application’s image in that

container. You specify that docker compose file as part of the command line to build your application

in a Docker container, then launch it.

In Visual Studio, you can run your application in Docker containers by selecting the docker-compose

project as the startup project, and then pressing Ctrl+F5 (F5 to debug), as you can with any other

application. When you start the docker-compose project, Visual Studio runs docker-compose using

the docker-compose.yml file, the docker-compose.override.yml file, and one of the docker-

compose.vs.* files. Once the application has started, Visual Studio launches the browser for you.

86 Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano Server Hosts

If you launch the application in the debugger, Visual Studio will attach to the running application in

Docker.

Troubleshooting
This section describes a few issues that might arise when your run containers locally and suggests

some fixes.

Stopping Docker containers

After you launch the containerized application, the containers continue to run, even after you’ve

stopped debugging. You can run the docker ps command from the command line to see which

containers are running. The docker stop command stops a running container, as shown in Figure 6-2.

Figure 6-2. Listing and stopping containers with “docker ps” and “docker stop” CLI commands

You might need to stop running processes when you switch between different configurations.

Otherwise, the container that is running the web application is using the port for your application

(5106 in this example).

Adding Docker to your projects

The wizard that adds Docker support communicates with the running Docker process. The wizard will

not run correctly if Docker is not running when you start the wizard. In addition, the wizard examines

your current container choice to add the correct Docker support. If you want to add support for

Windows Containers, run the wizard while you have Docker running with Windows containers

configured. If you want to add support for Linux containers, run the wizard while you have Dockder

running with Linux containers configured.

87 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

S E C T I O N

7

Migrating Legacy
Monolithic .NET
Framework Applications to
Windows Containers

Vision
Windows Containers can also be used as a way to improve dev/test environments and deployment to

production of applications based on legacy technologies like WebForms or any other legacy technology

available in the full .NET Framework. This is what is called a “lift and shift scenario”.

Earlier sections of this guide have championed a microservices architecture where business

applications are distributed among different containers, each running a small, focused service. That

goal has many benefits. In new development, it’s strongly recommended. Enterprise-critical

applications will also benefit enough to justify the cost of a re-architecture and re-implementation.

But not every application will benefit enough to justify the cost. That doesn’t mean those applications

can’t be used in container scenarios.

In this section, we’ll explore an application for eShopOnContainers, shown in Figure 7-1. This

application would be used by members of the eShopOnContainers enterprise to view and edit the

product catalog.

Figure 7-1. Web app implemented with ASP.NET Web Forms (legacy technology) on a Windows Container

88 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

This is a Web Forms application used to browse and modify the catalog entries. The Web Forms

dependency means this application won’t run on .NET Core unless it is rewritten without Web Forms

and instead uses ASP.NET Core MVC. You’ll see how you can run applications like these in containers

without changes. You’ll also see how you can make minimal changes to work in a hybrid mode where

some functionality has been moved into a separate microservice, but most functionality remains in the

monolithic application.

Benefits
The Catalog.WebForms application is available in the eShopContainers GitHub repository

(https://github.com/dotnet/eShopOnContainers). This application is a standalone web application

accessing a high availability data store. Even so, there are advantages to running the application in a

container. You create an image for the application. From that point forward, every deployment runs in

the same environment. Every container uses the same OS version, has the same version of

dependencies installed, uses the same framework, and is built using the same process. You can see

the application loaded in Visual Studio 2017 in Figure 7-2.

Figure 7-2. Catalog management Web Forms app in Visual Studio 2017

In addition, developers can all run the application in this consistent environment. Issues that only

appear with certain versions will appear immediately for developers rather than surfacing in a staging

or production environment. Differences between the development environments among the

development team matter less once applications run in containers.

Finally, containerized applications have a flatter scale-out curve. You’ve learned how containerized

apps enable more containers in a VM or more containers in a physical machine. This translates to

higher density and fewer required resources.

https://github.com/dotnet/eShopOnContainers

89 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

For all of these reasons, consider running legacy monolithic apps in a Docker container using a “lift-

and-shift” operation. The phrase “lift and shift” describes the scope of the task: you lift the entire

application from a physical or virtual machine, and shift it into a container. In ideal situations, you

don’t need to make any changes to the application code to run it in a container.

Possible migration paths
As a monolithic application, the catalog.Webforms app is one web application containing all the

code, including the data cccess libraries. The database runs on a separate high availability machine.

That configuration is simulated in the sample code by using a mock catalog service: you can run the

catalog.WebForms application against that fake data to simulate a pure lift-and-shift scenario. This

demonstrates the simplest migration path, where you move existing assets to run in a container

without any code changes at all. This path is appropriate for applications that are complete and that

have minimal interaction with functionality that you are moving to microservices.

However, the eShopOnContainers website is already accessing the data storage using microservices

for different scenarios. Some small additional changes can be made to the catalog editor to leverage

the catalog microservice instead of accessing the catalog data storage directly.

These changes demonstrate the continuum for your own applications. You can do anything from

moving an existing application without change into containers, to making small changes that enable

existing applications to access some of the new microservices, to completely rewriting an application

to fully participate in a new microservice-based architecture. The right path depends on both the cost

of the migration and the benefits from any migration.

Application tour
You can load the Catalog.WebForms solution and run the application as a standalone app. In this

configuration, instead of a persistent storage database, the application uses a fake service to return

data. The application uses AutoFac (https://autofac.org/) as an inversion of control (IOC) container.

Using Dependency Injection (DI), you can configure the application to use the fake data or the live

catalog data service. (We’ll explain more about DI shortly.) The startup code reads a useFake setting

from the web.config files, and configures the AutoFac container to inject either the fake data service

or the live catalog service. If you run the application with useFake set to false in the web.config file,

you see the Web Forms application displaying the catalog data.

Most of the techniques used in this application should be very familiar to anyone who has used Web

Forms. However, the catalog microservice introduces two techniques that might be unfamiliar:

Dependency Injection (DI), which was mentioned earlier, and working with asynchronous data stores

in Web Forms.

DI inverts the typical object-oriented strategy of writing classes that allocate all needed resources.

Instead, classes request their dependencies from a service container. The advantage of DI is that you

can replace external services with fakes (mocks) to support testing or other environments.

The DI container uses web.config appSettings configuration to control whether to use the fake

catalog data or the live data from the running service. The application registers an HttpModule object

that builds the container and registers a pre-request handler to inject dependencies. You can see that

code in the Modules/AutoFacHttpModule.cs file, which looks like the following example:

https://autofac.org/

90 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

private static IContainer CreateContainer()
{
 // Configure AutoFac:
 // Register Containers:
 var settings = WebConfigurationManager.AppSettings;
 var useFake = settings["usefake"];
 bool fake = useFake == "true";
 var builder = new ContainerBuilder();
 if (fake)
 {
 builder.RegisterType<CatalogMockService>()
 .As<ICatalogService>();
 }
 else
 {
 builder.RegisterType<CatalogService>()
 .As<ICatalogService>();

 builder.RegisterType<RequestProvider>()
 .As<IRequestProvider>();
 }
 var container = builder.Build();
 return container;
}

private void InjectDependencies()
{
 if (HttpContext.Current.CurrentHandler is Page page)
 {
 // Get the code-behind class that we may have written
 var pageType = page.GetType().BaseType;

 // Determine if there is a constructor to inject, and grab it
 var ctor = (from c in pageType.GetConstructors()
 where c.GetParameters().Length > 0
 select c).FirstOrDefault();

 if (ctor != null)
 {
 // Resolve the parameters for the constructor
 var args = (from parm in ctor.GetParameters()
 select Container.Resolve(parm.ParameterType))
 .ToArray();

 // Execute the constructor method with the arguments resolved
 ctor.Invoke(page, args);
 }

 // Use the Autofac method to inject any
 // properties that can be filled by Autofac
 Container.InjectProperties(page);

 }
}

91 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

The app’s pages (Default.aspx.cs and EditPage.aspx.cs) define constructors that take these

dependencies. Note that the default constructor is still present and accessible. The infrastructure

needs this.

protected _Default() { }

public _Default(ICatalogService catalog) =>
 this.catalog = catalog;

The catalog APIs are all asynchronous methods. Web Forms now supports these for all data controls.

The Catalog.WebForms application uses model binding for the list and edit pages; controls on the

pages define SelectMethod, UpdateMethod, InsertMethod, and DeleteMethod properties that specify

Task-returning asynchronous operations. Web Forms controls understand when the methods bound

to a control are asynchronous. The only restriction you encounter when using asynchronous select

methods is that you cannot support paging: the paging signature requires an out parameter.

Asynchronous methods cannot have out parameters. This same technique is used on other pages that

require data from the catalog service.

The default configuration for the catalog Web Forms application uses a mock implementation of the

catalog.api service. This mock uses a hard-coded dataset for its data, which simplifies some tasks by

removing the dependency on the catalog.api service in development environments.

Lifting and shifting
Visual Studio provides great support for containerizing an application. You right-click the project node

and then select Add and Docker Support. The Docker project template adds a new project to the

solution called docker-compose. The project contains the Docker assets that compose (or build) the

images you need, and starts running the necessary containers, as shown in Figure 7-3.

In the simplest lift-and-shift scenarios, the application will be the single service that you use for the

Web Forms application. The template also changes your startup project to point to the docker-

compose project. Pressing Ctrl+F5 or F5 now creates the Docker image and launches the Docker

container.

Figure 7-3. The docker-compose project in the Web Forms solution

92 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

Before you run the solution, you must make sure that you configure Docker to use Windows

containers. To do that, you right-click the Docker taskbar icon in Windows and select Switch to

Windows containers, as shown in Figure 7-4.

Figure 7-4. Switching to Windows Containers from Docker taskbar icon in Windows

If the menu item says Switch to Linux containers, you’re already running Docker with Windows

containers.

Running the solution restarts the Docker host. When you build, you build the application and the

Docker image for the Web Forms project. The first time you do this, it takes considerable time. That’s

because the build process pulls down the base Windows Server image and the additional image for

ASP.NET. Subsequent build and run cycles will be much faster.

Let’s take a deeper look at the files added by the Docker project template. It created several files for

you. Visual Studio uses these files to create the Docker image and launch a container. You can use the

same files from the CLI to run Docker commands manually.

The following Dockerfile example shows the basic settings for building a Docker image based on the

Windows ASP.NET image that runs an ASP.NET site.

FROM microsoft/aspnet
ARG source
WORKDIR /inetpub/wwwroot
COPY ${source:-obj/Docker/publish} .

This Dockerfile will look very similar to those created for running an ASP.NET Core application in Linux

containers. However, there are a few important differences. The most important difference here is that

the base image is microsoft/aspnet, which is the current Windows Server image that includes the

.NET Framework. Other differences are that the directories copied from your source directory are

different.

The other files in the docker-compose project are the Docker assets needed to build and configure

the containers. Visual Studio puts the various docker-compose.yml files under one node to highlight

how they are used. The base docker-compose file contains the directives that are common to all

configurations. The docker-compose.override.yml file contains environment variables and related

overrides for a developer configuration. The variants with .vs.debug and .vs.release provide

environment settings that enable Visual Studio to attach to and manage the running container.

While Visual Studio integration is part of adding Docker support to your solution, you can also build

and run from the command line, using the docker-compose up command, as you saw in previous

sections.

93 Migrating Legacy Monolithic .NET Framework Applications to Windows Containers

Getting data from the existing catalog .NET Core

microservice
You can configure the Web Forms application to use the eShopOnContainers catalog microservice to

get data instead of using fake data. To do this, you edit the web.config file and set the value of the

useFake key to false. The DI container will use the class that accesses the live catalog microservice

instead of the class that returns the hard-coded data. No other code changes are needed.

Accessing the live catalog service does mean you need to update the docker-compose project to

build the catalog service image and launch the catalog service container. Docker CE for Windows

supports both Linux containers and Windows containers, but not at the same time. To run the catalog

microservice, you need to build an image that runs the catalog microservice on top of a Windows-

based container. This approach requires a different Dockerfile for the microservices project than

you’ve seen in earlier sections. The Dockerfile.windows file contains the configuration settings to build

the catalog API container image so that it runs on a Windows container—for example, to use a

Windows Nano Docker image.

The catalog microservice relies on the SQL Server database. Therefore, you need to use a Windows-

based SQL Server Docker image as well.

After these changes, the docker-compose project does more to start the application. The project now

starts the SQL Server using the Windows based SQL Server image. It starts the catalog microservice in

a Windows container. And, it starts the Web Forms catalog editor container, also in a Windows

container. If any of the images need building, the images are created first.

Development and production environments
There are a couple of differences between the development configuration and a production

configuration. In the development environment, you run the Web Forms application, the catalog

microservice, and SQL Server in Windows containers, as part of the same Docker host. In earlier

sections, you’ve seen the SQL Server images deployed in the same Docker host as the other .NET

Core-based services on a Linux-based Docker host. The advantage of running the multiple

microservices in the same Docker host (or cluster) is that there is less network communication and the

communication between containers has lower latency.

In the development environment, you must run all the containers in the same OS. Docker CE for

Windows does not support running Windows- and Linux-based containers at the same time. In

production, you can decide if you want to run the catalog microservice in a Windows container in a

single Docker host (or cluster), or have the Web Forms application communicate with an instance of

the catalog microservice running in a Linux container on a different Docker host. It depends on how

you want to optimize for network latency. In most cases, you’ll want the microservices that your

applications depend on running in the same Docker host (or swarm) for ease of deployment and

lower communication latency. In those configurations, the only costly communications is between the

microservice instances and the high-availability servers for the persistent data storage.

94 Designing and Developing Multi-Container and Microservice-Based .NET Applications

S E C T I O N

8

Designing and Developing
Multi-Container and
Microservice-Based .NET
Applications

Vision
Developing containerized microservice applications means you are building multi-container

applications, however, a multi-container application could also be simpler (like a 3-tier application) and

not necessarily following a microservice architecture.

Earlier we raised the question “Is Docker necessary when building a microservice architecture?” The

answer is a clear no. Docker is an enabler and can provide significant benefits, but containers and

Docker are not a hard requirement for microservices. As an example, you could create a microservice-

based application with or without Docker when using Azure Service Fabric, which supports

microservices running as simple processes or as Docker containers.

However, if you know how to design and develop a microservice- based application that is also based

on Docker containers, you will be able to design and develop any other, simpler application model.

For example, you might design a three-tier application that also requires a multi-container approach.

Because of that, and because microservice architectures are an important trend within the container

world, this section focuses on a microservice architecture implementation using Docker containers.

Designing a microservice-oriented application
This section focuses on developing a hypothetical server-side enterprise application.

Application specifications

The hypothetical application handles requests by executing business logic, accessing databases, and

then returning HTML, JSON, or XML responses. We’ll say that the app must support a variety of

clients, including desktop browsers running SPA (Single Page Applications), traditional web apps,

mobile web apps, and native mobile apps. The application might also expose an API for third parties

to consume. It should also be able to integrate its microservices or external applications

asynchronously, so that approach will help resiliency of the microservices in the case of partial failures.

95 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The application will consist of these types of components:

• Presentation components. These are responsible for handling the UI and consuming remote

services.

• Domain/business logic. This is the application’s domain logic.

• Database access logic. This consists of data access components responsible for accessing

databases (SQL or NoSQL).

• Application integration logic. This includes a messaging channel, mainly based on message

brokers.

The application will require high scalability, while allowing its vertical subsystems to scale out

autonomously, as certain subsystems will require more scalability than others.

The application must be able to be deployed in multiple infrastructure environments (multiple public

clouds and on-premises) and ideally should be cross-platform, being able to move from Linux to

Windows (or vice versa) easily.

Development team context

We also assume the following about the development process for the application:

• You have multiple dev teams focusing on different business areas of the application.

• New team members must become productive quickly, and the application must be easy to

understand and modify.

• The application will have a long-term evolution and ever-changing business rules.

• You need good long-term maintainability, which means having agility when implementing

new changes in the future while being able to update multiple subsystems with minimum

impact on the other subsystems.

• You want to practice continuous integration and continuous deployment of the application.

• You want to take advantage of emerging technologies (frameworks, programming languages,

etc.) while evolving the application. You don’t want to make full migrations of the application

when moving to new technologies, because that would result in high costs and impact the

predictability and stability of the application.

Choosing an architecture

What should the the application deployment architecture be? The specifications for the application,

along with the development context, strongly suggest that you should architect the application by

decomposing it into autonomous subsystems in the form of collaborating microservices and

containers, where a microservice is a container.

In this approach, each service (container) implements a set of cohesive and narrowly related functions.

For example, an application might consist of services such as the catalog service, ordering service,

basket service, user profile service, etc.

Microservices communicate using protocols such as HTTP (REST), asynchronously whenever possible,

especially when propagating updates.

Microservices are developed and deployed as containers independently of one another. This means

that a development team can be developing and deploying a certain microservice without impacting

other subsystems.

96 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Each microservice has its own database, allowing it to be fully decoupled from other microservices.

When necessary, consistency between databases from different microservices is achieved using

application-level events (through a logical event bus), as handled in Command and Query

Responsibility Segregation (CQRS). Because of that, the business constraints must embrace eventual

consistency between the multiple microservices and related databases.

eShopOnContainers: A reference app for .NET Core and microservices deployed using

containers

So you can focus on the architecture and technologies instead of thinking about a hypothetic

business domain that you might not know, that’s why we have selected a well-know business domain

which is a simplified e-commerce (e-shop) application that presents a catalog of products, takes

orders from customers, verifies inventory, and performs other business functions. This container-

based application source code is available at the eShopOnContainers Github repo.

The application consists of multiple subsystems, including several store UI front ends (a Web app and

a native mobile app), along with the back-end microservices and containers for all the required server-

side operations. Figure 8-1 shows the architecture of the reference application.

Figure 8-1. The eShopOnContainers reference app, showing the direct client-to-microservice communication

and the event bus

Hosting environment. In Figure 8-1, you see several containers deployed within a single Docker host.

That would be the case when deploying to a single Docker host uwith the docker-compose up

command. However, if you’re using an orchestrator or container-cluster, each container could be

running in a different host (node), and any node could be running any number of containers, as we

explained earlier in the architecture section.

http://aka.ms/MicroservicesArchitecture

97 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Communication architecture. The eShopOnContainers app uses two communication types,

depending on the kind of the functional action (queries versus updates and transactions):

• Direct client-to-microservice communication. This is used for queries and when accepting

update or transctional commands from the client apps.

• Asynchronous event-based communication. This occurs through an event bus to propagate

updates across microservices or to integrate with external applications. The event bus can be

implemented with any messaging-broker infrastructure technology like RabbitMQ, or using

higher-level service buses like Azure Service Bus, NServiceBus, MassTransit, or Brighter.

The application is deployed as a set of microservices in the form of containers. Client apps can

communicate with those containers as well as communicate between microservices. As mentioned,

this initial architecture is using a direct client-to-microservice communication architecture, which

means that a client app can make requests to each of the microservices directly. Each microservice has

a public endpoint like https://servicename.applicationname.companyname. If required, each

microservice can use a different TCP port. In production, that URL would map to the microservice’s

load balancer, which distributes requests across the available microservice instances.

As explained in the architecture section of this guide, the direct client-to-microservice communication

architecture can have drawbacks when you are building a large and complex microservice-based

application. But it can be good enough for a small application, such as in the eShopOnContainers

application, where the goal is to focus on the microservices deployed as Docker containers.

However, if you are going to design a large microservice-based application with dozens of

microservices, we strongly recommend that you consider the API Gateway pattern, as we explained in

the architecture section.

Data sovereignty per microservice

In the sample application, each microservice owns its own database or data source, and each database

or data source is deployed as another container. This design decision was made only to make it easy

for a developer to get the code from GitHub, clone it, and open it in Visual Studio or Visual Studio

Code. Or alternatively, to make it easy to compile the custom Docker images using .NET Core CLI and

the Docker CLI, and then deploy and run them in a Docker development environment. Either way,

using containrs for data sources lets developers build and deploy in a matter of minutes without

having to provision an external database or any other data source with hard dependencies on

infrastructure (cloud or on-premises).

In a real production environment, for high availability and for scalability, the databases should be

based on database servers in the cloud or on-premises, but not in containers.

Therefore, the units of deployment for microservices (and even for databases in this application) are

Docker containers, and the reference application is a multi-container application that embraces

microservices principles.

Additional resources

• eShopOnContainers GitHub repo. Source code for the reference application

https://aka.ms/eShopOnContainers/

98 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Benefits of a microservice-based solution

A microservice based solution like this has many benefits:

Each microservice is relatively small—easy to manage and evolve. Specifically:

• It’s easy for a developer to understand and get started quickly with good productivity.

• Containers start fast, which makes developers more productive.

• An IDE like Visual Studio can load smaller projects fast, making developers productive.

• Each microservice can be designed, developed and deployed independently of other

microservices, which agility as it is easier to frequently deploy new versions of microservices.

It is possible to scale out individual areas of the application. For instance, the catalog service or

the basket service might need to be scaled out, but not the ordering process. A microservices

infrastructure will be much more efficient in regards to the resources used when scaling out than a

monolithic architecture.

You can divide the development work between multiple teams. Each service can be owned by a

single dev team. Each team can manage, develop, deploy, and scale their service independently of the

rest of the teams.

Issues are more isolated. If there is an issue in one service, only that service is initially impacted

(except when implementing wrong designs with direct dependencies between microservices), and

other services can continue to handle requests. On the contrary, one malfunctioning component in a

monolithic deployment architecture can bring down the entire system (especially when it involves

resources, such as a memory leak.) Additionally, when an issue in a microservice is resolved, you can

deploy just the affected microservice without impacting the rest.

You can use the latest technologies. Because you can start developing services independently and

run them side by side (thanks to containers and .NET Core), you can start using the latest technologies

and frameworks instead of being stuck on an older stack or framework for the whole application.

Downsides of a microservice-based solution

A microservice based solution like this also has some drawbacks:

Distributed application. This adds complexity for developers when they are designing and building

the services. For example, developers must implement inter-service communication using protocols

like HTTP or AMPQ, which adds complexity for testing and exception handling. It also adds latency to

the system.

Deployment complexity. An application that has tens of microservices types and needs high

scalability (it needs to be able to create many instances per service and balance those services across

many hosts) means a high degree of deployment complexity for IT operations and management. If

you are not using a microservice-oriented infrastructure (like an orchestrator and scheduler), that

additional complexity can require far more development efforts than the business application itself.

Atomic transactions. Atomic transactions between multiple microservices usually are not possible.

The business requirements have to embrace eventual consistency between the multiple microservices.

Increased global resource needs (total memory, drives, network for all the needed servers/hosts). In

many cases, when you replace a monolithic application with a microservices approach, the amount of

99 Designing and Developing Multi-Container and Microservice-Based .NET Applications

global resources needed by the new microservice-based application will be larger than the

infrastructure needs of the original monolithic application. This is because the higher degree of

granularity and distributed services requires more global resources. However, given the low cost of

resources in general and the benefit of being able to scale out just certain areas of the application

compared to long-term costs when evolving monolithic applications, the increased use of resources is

usually a good tradeoff for large, long-term applications.

Issues with direct client‑to‑microservice communication. When the application is large, with

dozens of microservices, there are challenges and limitations if the app requires direct client-to-

microservice communications. One problem is a potential mismatch between the needs of the client

and the APIs exposed by each of the microservices. In certain cases, the client app might need to

make many separate requests to compose the UI, which can be inefficient over the public Internet and

would be impractical over a mobile network. Therefore, requests from the client app to the back-end

system should be minimized.

Another problem with direct client-to-microservice communications is that some microservices might

be using protocols that are not Web-friendly. One service might use a binary communication, while

another service might use AMQP messaging. Those protocols are not firewall‑friendly and are best

used internally. Usually, an application should use protocols such as HTTP and WebSockets for

communication outside of the firewall.

Yet another drawback with this direct client‑to‑service approach is that it makes it difficult to refactor

the contracts for those microservices. Over time developers might want to change how the system is

partitioned into services. For example, they might merge two services or split a service into two or

more services. However, if clients communicate directly with the services, performing this kind of

refactoring can break compatibility with client apps.

As mentioned in the architecture section, when designing and building a complex application based

on microservices, you might consider the use of multiple fine-grained API Gateways instead of the

simpler direct client‑to‑microservice communication approach.

Partioning the microservices. Finally, no matter which approach you take for your microservice

architecture, another challenge is deciding how to partition an end-to-end application into multiple

microservices. As noted in the architecture section of the guide, there are several techniques and

approaches you can take. Basically, you need to identify areas of the application that are decoupled

from the other areas and that have a low number of hard dependencies. In many cases, this is aligned

to partitioning services by use case. For example, in our e-shop application we have an ordering

service that is responsible for all the business logic related to the order process. We also have the

catalog service and the basket service that implement other capabilities. Ideally, each service should

have only a small set of responsibilities. This is similar to the single responsibility principle (SRP)

applied to classes, which states that a class should only have one reason to change. But in this case, it

is about microservices, so the scope will be larger than a single class. Most of all, a microservice has to

be completely autonomous, end to end, including responsibility for its own data sources.

External versus internal architecture and design patterns

The external architecture is the microservice architecture composed by multiple service, following the

principles described in the architecture section of this guide. However, depending on the nature of

each microservice, and independently of high-level microservice architecture you choose, it is

common and sometimes advisable to have a different internal architecture, each based on different

100 Designing and Developing Multi-Container and Microservice-Based .NET Applications

patterns, for different microservices. The microservices can even use different technologies and

programming languages, and different internal architecture and design patterns, as illustrated in

Figure 8-2.

Figure 8-2. External versus internal architecture and design

For instance, in our eShop sample, the catalog, basket, and user profile microservices are simple

(basically, CRUD subsystems). Therefore, their internal architecture and design is straightforward.

However, you might have other microservices, such as the ordering microservice, which is more

complex and represents ever-changing business rules with a high degree of domain complexity. In

cases like these, you might want to implement more advanced patterns within a particular

microservice, like the ones defined with Domain-Driven Design (DDD) approaches, as we are doing in

the eShop ordering microservice. (You will be able to review these DDD patterns in the section later

that explains the implementation of the eShop ordering microservice.)

Another reason for a different technology per microservice might be the nature of each microservice.

For example, it might be better to use a functional programming language like F#, or even a language

like R if you are targeting AI and machine learning domains, instead of a more object-oriented

programming language like C#.

The bottom line is that each microservice can have a different internal architecture based on different

design patterns. Not all microservices should be implemented using advanced DDD patterns, because

that would be over-engineering them. Similarly, complex microservices with ever-changing business

logic should not be implemented as CRUD components, or you can end up with low-quality code.

The new world: multiple architectural patterns and polyglot

microservices

There are many architectural patterns used by software architects and developers. The following are a

few (mixing architecture styles and architecture patterns):

• Simple CRUD, single-tier, single-layer.

101 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Traditional N-Layered.

• Domain-Driven Design N-layered.

• Clean Architecture (Such as eShopOnWeb)

• Command and Query Responsibility Segregation (CQRS).

• Event-Driven Architecture (EDA).

You can also build microservices with many technologies and languages, such as ASP.NET Core Web

APIs, NancyFx, ASP.NET Core SignalR (available with .NET Core 2), F#, Node.js, Python, Java, C++,

GoLang, and more.

The important point is that no particular architecture pattern or style, nor any particular technology, is

right for all situations. Figure 8-3 shows some approaches and technologies (although not in any

particular order) that could be used in multiple and different microservices.

Figure 8-3. Multi-architectural patterns and the polyglot microservices world

As shown in Figure 8-3, in applications composed of many microservices (Bounded Contexts in

Domain-Driven Design lingo, or simply “subsystems” as autonomous microservices), you might

implement each microservice in a different way. Each might have a different architecture pattern and

use different languages and databases depending on the app’s nature, business requirements, and

priorities. In somce cases the microservices might be similar. But that is not uusually the case, because

each subsystem’s context boundary and requirements are usually different.

For instance, for a simple CRUD maintenance application, it might not make sense to design and

implement DDD patterns. But for your core domain or core business, you might need to apply more

advanced patterns to tackle business complexity with ever-changing business rules.

https://msdn.microsoft.com/en-us/library/ee658109.aspx#Layers
https://blogs.msdn.microsoft.com/cesardelatorre/2011/07/03/published-first-alpha-version-of-domain-oriented-n-layered-architecture-v2-0/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://aka.ms/WebAppArchitecture
https://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Event-driven_architecture

102 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Especially when you deal with large applications composed by multiple sub-systems, you shouldn’t

apply a single top-level architecture based on a single architecture pattern. For instance, CQRS

shouldn’t be applied as a top-level architecture for a whole application, but might be useful for a

specific set of services.

There is no “silver bullet” or a right architecture pattern for every given case. You cannot have one

architecture pattern “to rule them all”. Depending on the priorities of each microservice, you must

choose a different approach for each, as explained in the following sections.

103 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Creating a simple data-driven CRUD microservice
This section outlines how to create a simple microservice that performs create, read, update, and

delete (CRUD) operations on a data source.

Designing a simple CRUD microservice

From a design point of view, this type of containerized microservice is very simple. Perhaps the

problem to solve is simple, or perhaps the implementation is only a proof of concept.

Figure 8-4. Internal Design for simpler CRUD microservices

An example of this kind of simple data-drive service is the catalog microservice from the

eShopOnContainers sample application. This type of service implements all its functionality in a single

ASP.NET Core Web API project that includes classes for its data model, its business logic, and its data

access code. It also stores its related data in a database running in SQL Server (as another container

for dev/test purposes) but could also be any regular SQL Server host, as shown in Figure 8-5.

Figure 8-5. Simple data-driven/CRUD microservice design diagram

104 Designing and Developing Multi-Container and Microservice-Based .NET Applications

When you are developing this kind of service, you only need ASP.NET Core and a data-access API or

ORM like Entity Framework Core. You could also generate Swagger metadata automatically through

Swashbuckle to provide a description of what your service offers, as explained in the next section.

Note that running a database server like SQL Server within a Docker container is great for

development environments, because you can have all your dependencies up and running without

needing to provision a database in the cloud or on-premises. This is very convenient when running

integration tests. However, for production environments, running a database server in a container is

not recommended, because you usually do not get high availability with that approach. For a

production environment in Azure, it is recommended to use Azure SQL DB or any other database

technology that can provide high availability and high scalability. For example, for a NoSQL approach,

you might choose DocumentDB.

Finally, by editing the Dockerfile and docker-compose.yml metadata files, you can configure how the

image of this container will be created—what base image it will use, plus design settings such as

internal and external names and TCP ports.

Implementing a simple CRUD microservice with ASP.NET Core

To implement a simple CRUD microservice using .NET Core and Visual Studio, you start by creating a

simple ASP.NET Core Web API project (running on .NET Core so it can run on a Linux Docker host), as

shown in Figure 8-6.

Figure 8-6. Creating an ASP.NET Core Web API project in Visual Studio

After creating the project, you can implement your MVC controllers as you would in any other Web

API project, using the Entity Framework API or any other API. In the eShopOnContainers.Catalog.API

project, you can see that the main dependencies for that microservice are just ASP.NET Core itself,

Entity Framework, and Swashbuckle, as shown in Figure 8-7.

https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/ef/core/index
http://swagger.io/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

105 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 8-7. Dependencies in a simple CRUD Web API microservice

Implementing CRUD Web API services with Entity Framework Core

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology. EF Core is an object-relational mapper (ORM) that enables

.NET developers to work with a database using .NET objects.

The catalog microservice uses EF and the SQL Server provider because its database is running in a

container with the SQL Server for Linux Docker image. However, the database could be deployed into

any SQL Server, such as Windows on-premises or Azure SQL DB. The only thing you would need to

change is the connection string in the ASP.NET Web API microservice.

Add Entity Framework Core to your dependencies

You can install the NuGet package for the database provider you want to use, in this case SQL Server,

from within the Visual Studio IDE or with the NuGet console. Use the following command:

Install-Package Microsoft.EntityFrameworkCore.SqlServer

The data model

With EF Core, data access is performed by using a model. A model is made up of entity classes and a

derived context that represents a session with the database, allowing you to query and save data. You

can generate a model from an existing database, manually code a model to match your database, or

use EF migrations to create a database from your model (and evolve it as your model changes over

time). For the catalog microservice we are using the last approach. You can see an example of the

CataloItem entity class in the following code example, which is a simple Plain Old CLR Object (POCO)

entity class.

public class CatalogItem
{
 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

106 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 public decimal Price { get; set; }

 public string PictureUri { get; set; }

 public int CatalogTypeId { get; set; }

 public CatalogType CatalogType { get; set; }

 public int CatalogBrandId { get; set; }

 public CatalogBrand CatalogBrand { get; set; }

 public CatalogItem() { }
}

You also need a DbContext that represents a session with the database. For the catalog microservice,

the CatalogContext class derives from the DbContext base class, as shown in the following example.

public class CatalogContext : DbContext
{
 public CatalogContext(DbContextOptions<CatalogContext> options) : base(options)
 {
 }
 public DbSet<CatalogItem> CatalogItems { get; set; }
 public DbSet<CatalogBrand> CatalogBrands { get; set; }
 public DbSet<CatalogType> CatalogTypes { get; set; }
 //… Additional code…
}

You can have additional code in the DbContext implementation. For example, in the sample

application, we have a OnModelCreating method in the CatalogContext class that automatically

populates the sample data the first time it tries to access the database. This method is useful for demo

data. You can also use the OnModelCreating method to customize object/database entity mappings

with many other EF extensibility points.

You can see further details about .OnModelCreating in the Implementing the Infrastructure-Persistence

Layer with Entity Framework Core section later in this book.

Querying data from Web API controllers

Instances of your entity classes are typically retrieved from the database using Language Integrated

Query (LINQ), as shown in the following example:

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 private readonly CatalogContext _catalogContext;
 private readonly CatalogSettings _settings;
 private readonly ICatalogIntegrationEventService
 _catalogIntegrationEventService;
 public CatalogController(CatalogContext context,
 IOptionsSnapshot<CatalogSettings> settings,
 ICatalogIntegrationEventService
 catalogIntegrationEventService)
 {
 _catalogContext = context ?? throw new

https://blogs.msdn.microsoft.com/dotnet/2016/09/29/implementing-seeding-custom-conventions-and-interceptors-in-ef-core-1-0/

107 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 ArgumentNullException(nameof(context));
 _catalogIntegrationEventService = catalogIntegrationEventService ??
 throw new ArgumentNullException(nameof(catalogIntegrationEventService));

 _settings = settings.Value;
 ((DbContext)context).ChangeTracker.QueryTrackingBehavior =
 QueryTrackingBehavior.NoTracking;
 }

 // GET api/v1/[controller]/items[?pageSize=3&pageIndex=10]
 [HttpGet]
 [Route("[action]")]
 public async Task<IActionResult> Items([FromQuery]int pageSize = 10,
 [FromQuery]int pageIndex = 0)

 {
 var totalItems = await _catalogContext.CatalogItems
 .LongCountAsync();
 var itemsOnPage = await _catalogContext.CatalogItems
 .OrderBy(c => c.Name)
 .Skip(pageSize * pageIndex)
 .Take(pageSize)
 .ToListAsync();
 itemsOnPage = ChangeUriPlaceholder(itemsOnPage);
 var model = new PaginatedItemsViewModel<CatalogItem>(
 pageIndex, pageSize, totalItems, itemsOnPage);
 return Ok(model);
 } //...
}

Saving data

Data is created, deleted, and modified in the database using instances of your entity classes. You

could add code like the following hard-code example (mock data in this case) to your Web API

controllers.

var catalogItem = new CatalogItem() {CatalogTypeId=2, CatalogBrandId=2,
 Name="Roslyn T-Shirt", Price = 12};
_context.Catalog.Add(catalogItem);
_context.SaveChanges();

Dependency Injection in ASP.NET Core and Web API controllers

In ASP.NET Core you can use Dependency Injection (DI) out of the box. You do not have to set up a

third-party Inversion of Control (IoC) container, although you can plug your preferred IoC container

into the ASP.NET Core infrastructure if you want. In this case, it means that you can directly inject the

requried EF DBContext or additional repositories through the controller constructor. In Figure 8-10

above we are injecting an object of CatalogContext type plus other objects through the constructor

CatalogController().

An important configuration to set up in the Web API project is the DbContext class registration into

the service’s IoC container. You typically do so in the Startup class by calling the

services.AddDbContext method inside the ConfigureServices method, as shown in the following

example:

108 Designing and Developing Multi-Container and Microservice-Based .NET Applications

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<CatalogContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlServerOptionsAction: sqlOptions =>
 {
 sqlOptions.
 MigrationsAssembly(
 typeof(Startup).
 GetTypeInfo().
 Assembly.
 GetName().Name);
 //Configuring Connection Resiliency:

 sqlOptions.
 EnableRetryOnFailure(maxRetryCount: 5,
 maxRetryDelay: TimeSpan.FromSeconds(30),
 errorNumbersToAdd: null);
 });

 // Changing default behavior when client evaluation occurs to throw.
 // Default in EFCore would be to log warning when client evaluation is done.
 options.ConfigureWarnings(warnings => warnings.Throw(
 RelationalEventId.QueryClientEvaluationWarning));
 });
 //...
}

Additional resources

• Querying Data

https://docs.microsoft.com/en-us/ef/core/querying/index

• Saving Data

https://docs.microsoft.com/en-us/ef/core/saving/index

The DB connection string and environment variables used by Docker containers

You can use the ASP.NET Core settings and add a ConnectionString property to your settings.json

file as shown in the following example:

{
 "ConnectionString": "Server=tcp:127.0.0.1,5433;Initial
Catalog=Microsoft.eShopOnContainers.Services.CatalogDb;User
Id=sa;Password=Pass@word",
 "ExternalCatalogBaseUrl": "http://localhost:5101",
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

https://docs.microsoft.com/en-us/ef/core/querying/index
https://docs.microsoft.com/en-us/ef/core/saving/index

109 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The settings.json file can have default values for the ConnectionString property or for any other

property. However, those properties will be overridden by the values of environment variables that

you specify in the docker-compose.override.yml file.

From your docker-compose.yml or docker-compose.override.yml files, you can initialize those

environment variables so that Docker will set them up as OS environment variables for you, as shown

in the following docker-compose.override.yml file (the connection string and other lines wrap in this

example, but it would not wrap in your own file).

docker-compose.override.yml

 catalog.api:
 environment:
 - ConnectionString=Server=
 sql.data;Database=Microsoft.eShopOnContainers.Services.CatalogDb;
 User Id=sa;Password=Pass@word
 - ExternalCatalogBaseUrl=http://10.0.75.1:5101
 #- ExternalCatalogBaseUrl=
 http://dockerhoststaging.westus.cloudapp.azure.com:5101

 ports:
 - "5101:5101"

The docker-compose.yml files at the solution level are not only more flexible than configuration files

at the project or microservice level, but also more secure. Consider that the Docker images that you

build per microservice do not contain the docker-compose.yml files, only binary files and

configuration files for each microservice, including the Dockerfile. But the docker-compose.yml file is

not deployed along with your application; it is used only at deployment time. Therefore, placing

environment variables values in those docker-compose.yml files (even without encrypting the values)

is more secure than placing those values in regular .NET configuration files that are deployed with

your code.

Finally, you can get that value from your code by using Configuration["ConnectionString"], as

shown in the ConfigureServices method in Figure 8-12 earlier.

However, for production environments, you might want to explorer additional ways on how to store

secrets like the connection strings. Usually that will be managed by your chosen orchestrator, like you

can do with Docker Swarm secrets management.

Implementing versioning in ASP.NET Web APIs

As business requirements change, new collections of resources may be added, the relationships

between resources might change, and the structure of the data in resources might be amended.

Updating a Web API to handle new requirements is a relatively straightforward process, but you must

consider the effects that such changes will have on client applications consuming the Web API.

Although the developer designing and implementing a Web API has full control over that API, the

developer does not have the same degree of control over client applications that might be built by

third party organizations operating remotely.

https://docs.docker.com/engine/swarm/secrets/

110 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Versioning enables a Web API to indicate the features and resources that it exposes. A client

application can then submit requests to a specific version of a feature or resource. There are several

approaches to implement versioning:

• URI versioning

• Query string versioning

• Header versioning

•

Query string and URI versioning are the simplest to implement. Header versioning is a good

approach. However, header versioning not as explicit and straightforward as URI versioning. Because

URL versioning is the simplest and most explicit, the eShopOnContainers sample app uses URI

versioning.

With URI versioning, as in the eShopOnContainers sample app, each time you modify the Web API or

change the schema of resources, you add a version number to the URI for each resource. Existing URIs

should continue to operate as before, returning resources that conform to the schema that matches

the requested version.

As shown in the following code example, the version can be set by using the Route attribute in the

Web API, which makes the version explicit in the URI (v1 in this case).

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 // Implementation ...

This versioning mechanism is simple and depends on the server routing the request to the

appropriate endpoint. However, for a more sophisticated versioning and the best method when using

REST, you should use hypermedia and implement HATEOAS (Hypertext as the Engine of Application

State).

Additional resources

• Scott Hanselman. ASP.NET Core RESTful Web API versioning made easy

http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

• Versioning a RESTful web API

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#versioning-a-restful-web-api

• Roy Fielding. Versioning, Hypermedia, and REST

https://www.infoq.com/articles/roy-fielding-on-versioning

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#using-the-hateoas-approach-to-enable-navigation-to-related-resources
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#using-the-hateoas-approach-to-enable-navigation-to-related-resources
http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design%23versioning-a-restful-web-api

111 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Generating Swagger description metadata from your ASP.NET Core

Web API

Swagger is a commonly used open source framework backed

by a large ecosystem of tools that helps you design, build,

document, and consume your RESTful APIs. It is becoming

the standard for the APIs description metadata domain. You

should include Swagger description metadata with any kind

of microservice, either data-driven microservices or more

advanced domain-driven microservices (as explained in

following section).

The heart of Swagger is the Swagger specification, which is API description metadata in a JSON or

YAML file. The specification creates the RESTful contract for your API, detailing all its resources and

operations in both a human- and machine-readable format for easy development, discovery, and

integration.

The specification is the basis of the OpenAPI Specification (OAS) and is developed in an open,

transparent, and collaborative community to standardize the way RESTful interfaces are defined.

The specification defines the structure for how a service can be discovered and how its capabilities

understood. For more information, including a web editor and examples of Swagger specifications

from companies like Spotify, Uber, Slack, and Microsoft, see the Swagger site (http://swagger.io).

Why use Swagger?

The main reasons to generate Swagger metadata for your APIs are the following.

Ability for other products to automatically consume and integrate your APIs. Dozens of

products and commercial tools and many libraries and frameworks support Swagger. Microsoft has

high-level products and tools that can automatically consume Swagger-based APIs, such as the

following:

• AutoRest. You can automatically generate .NET client classes for calling Swagger. This

• tool can be used from the CLI and it also integrates with Visual Studio for easy use through

the GUI.

• Microsoft Flow. You can automatically use and integrate your API into a high-level Microsoft

Flow workflow, with no programming skills required.

• Microsoft PowerApps. You can automatically consume your API from PowerApps mobile apps

built with PowerApps Studio, with no programming skills required.

• Azure App Service Logic Apps. You can automatically use and integrate your API into an Azure

App Service Logic App, with no programming skills required.

Ability to automatically generate API documentation. When you create large-scale RESTful APIs,

such as complex microservice-based applications, you need to handle many endpoints with different

data models used in the request and response payloads. Having proper documentation and having a

solid API explorer, as you get with Swagger, is key for the success of your API and adoption by

developers.

Swagger’s metadata is what Microsoft Flow, PowerApps, and Azure Logic Apps use to understand how

to use APIs and connect to them.

http://swagger.io/
http://swagger.io/
http://swagger.io/commercial-tools/
http://swagger.io/open-source-integrations/
https://github.com/Azure/AutoRest
https://flow.microsoft.com/en-us/
https://flow.microsoft.com/en-us/blog/integrating-custom-api/
https://powerapps.microsoft.com/en-us/
https://powerapps.microsoft.com/en-us/blog/register-and-use-custom-apis-in-powerapps/
https://powerapps.microsoft.com/en-us/guided-learning/learning-powerapps-parts/
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-what-are-logic-apps
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-custom-hosted-api
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-custom-hosted-api

112 Designing and Developing Multi-Container and Microservice-Based .NET Applications

How to automate API Swagger metadata generation with the Swashbuckle NuGet

package

Generating Swagger metadata manually (in a JSON or YAML file) can be tedious work. However, you

can automate API discovery of ASP.NET Web API services by using the Swashbuckle NuGet package to

dynamically generate Swagger API metadata.

Swashbuckle automatically generates Swagger metadata to your ASP.NET Web API projects. It

supports either ASP.NET Core Web API projects and the traditional ASP.NET Web API and any other

“flavor”, such as Azure API App, Azure Mobile App, Azure Service Fabric microservices based on

ASP.NET, or plain Web API deployed on containers, as in this case.

Swashbuckle combines API Explorer and Swagger or swagger-ui to provide a rich discovery and

documentation experience for your API consumers. In addition to its Swagger metadata generator

engine, Swashbuckle also contains an embedded version of swagger-ui, which it will automatically

serve up once Swashbuckle is installed.

This means you can complement your API with a nice discovery UI to help developers to use your API.

It requires a very small amount of code and maintenance because it is automatically generated,

allowing you to focus on building your API. The result for the API Explorer looks like Figure 8-8.

Figure 8-8. Swashbuckle UI (API Explorer) based on Swagger metadata—eShop Catalog microservice example

The API explorer is not the most important thing here. Once you have a Web API that can describe

itself in Swagger metadata, your API can be used seamlessly from Swagger-based tools, including

client proxy-class code generators that can target many platforms. For example, as mentioned,

AutoRest automatically generates .NET client classes. But additional tools like swagger-codegen are

also available, which allow code generation of API client libraries, server stubs, and documentation

automatically.

Currently, Swashbuckle consists of two NuGet packages: Swashbuckle.SwaggerGen and

Swashbuckle.SwaggerUi. The former provides functionality to generate one or more Swagger

documents directly from your API implementation and expose them as JSON endpoints. The latter

provides an embedded version of the swagger-ui tool that can be served by your application and

http://aka.ms/swashbuckledotnetcore
https://github.com/swagger-api/swagger-ui
https://github.com/Azure/AutoRest
https://github.com/swagger-api/swagger-codegen

113 Designing and Developing Multi-Container and Microservice-Based .NET Applications

powered by the generated Swagger documents to describe your API. However, the latest versions of

Swashbuckle wrap these with the Swashbuckle.AspNetCore metapackage.

Note: For .NET Core Web API projects, you need to use Swashbuckle.AspNetCore version 1.0.0 or

later.

Once you have installed these Nuget packages in your Web API project, you need to configure

Swagger in the Startup class, as in the following code:

 public class Startup
 {
 public IConfigurationRoot Configuration { get; }

 // Other startup code...

 public void ConfigureServices(IServiceCollection services)
 {
 // Other ConfigureServices() code...

 services.AddSwaggerGen();
 services.ConfigureSwaggerGen(options =>
 {
 options.DescribeAllEnumsAsStrings();
 options.SingleApiVersion(new Swashbuckle.Swagger.Model.Info()
 {
 Title = "eShopOnContainers - Catalog HTTP API",
 Version = "v1",
 Description = "The Catalog Microservice HTTP API",
 TermsOfService = "eShopOnContainers terms of service"
 });
 });

 // Other ConfigureServices() code...
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 // Other Configure() code...
 // ...
 app.UseSwagger()
 .UseSwaggerUi();
 }
 }

Once this is done, you can start your app and browse the following Swagger JSON and UI endpoints

using URLs like these:

http://<your-root-url>/swagger/v1/swagger.json

http://<your-root-url>/swagger/ui

https://www.nuget.org/packages/Swashbuckle.AspNetCore/1.0.0

114 Designing and Developing Multi-Container and Microservice-Based .NET Applications

You previously saw the generated UI created by Swashbuckle for a URL like http://<your-root-

url>/swagger/ui. In Figure 8-9 you can also see how you can test any API method.

Figure 8-9. Swashbuckle UI testing the Catalog/Items API method

Figure 8-10 shows the Swagger JSON metadata generated from the eShopOnContainer microservice

(which is what the tools use underneath) when you request <your-root-

url>/swagger/v1/swagger.json using Postman.

Figure 8-10. Swagger JSON metadata

It is that simple. And because it is automatically generated, the Swagger metadata will grow when you

add more functionality to your API.

Additional resources

• ASP.NET Web API Help Pages using Swagger

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

https://www.getpostman.com/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

115 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Defining your multi-container application with

docker-compose.yml
In this guide, the docker-compose.yml file was introduced in the section “Step 4. Define your services

in docker-compose.yml when building a multi-container Docker app with multiple services.” However,

there are additional ways to use the docker-compose files that are worth exploring in further detail.

For example, you can explicitly describe how you want to deploy your multi-container application in

the docker-compose.yml file. Optionally, you can also describe how you are going to build your

custom Docker images (custom Docker images can also be built with the Docker CLI).

Basically, you define each of the containers you want to deploy plus certain characteristics for each

container deployment. Then, once you have a multi-container deployment description file, you can

deploy the whole solution in a single action orchestrated by the docker-compose up CLI command,

or you can deploy it transparently from Visual Studio. Otherwise, you would need to use the Docker

CLI to deploy container-by-container in multiple steps by using the command docker run from the

command line. Therefore, each service defined in docker-compose.yml must specify exactly one

image or build. Other keys are optional, and are analogous to their docker run command-line

counterparts.

The following YAML code is the definition of a possible global but single docker-compose.yml file for

the eShopOnContainers sample. This is not the actual docker-compose file from eShopOnContainers.

Instead, it is a simplified and consolidated version in a single file, which is not the best way to work

with docker-compose files, as will be explained later.

version: '2'
services:
 webmvc:
 image: eshop/webmvc
 environment:
 - CatalogUrl=http://catalog.api
 - OrderingUrl=http://ordering.api
 - BasketUrl=http://basket.api
 ports:
 - "5100:80"
 depends_on:
 - catalog.api
 - ordering.api
 - basket.api
 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=sql.data;Initial Catalog=CatalogData;
 User Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/overview/

116 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 ordering.api:
 image: eshop/ordering.api
 environment:
 - ConnectionString=Server=sql.data;Database=Services.OrderingDb;
 User Id=sa;Password=your@password
 ports:
 - "5102:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data
 basket.api:
 image: eshop/basket.api
 environment:
 - ConnectionString=sql.data
 ports:
 - "5103:80"
 depends_on:
 - sql.data
 sql.data:
 environment:
 - SA_PASSWORD=your@password
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"
 basket.data:
 image: redis

The root key in this file is services. Under that key you define the services you want to deploy and

run when you execute the docker-compose up command or when you deploy from Visual Studio by

using this docker-compose.yml file. In this case, the docker-compose.yml file has multiple services

defined, as described in the following table.

Service name in

docker-compose.yml

Description

webmvc
Container including the ASP.NET Core MVC app consuming the

microservices from server-side C#

catalog.api
Container including the Catalog ASP.NET Core Web API microservice

ordering.api
Container including the Ordering ASP.NET Core Web API microservice

sql.data
Container running SQL Server for Linux, holding the microservices

databases

basket.api
Container with the Basket ASP.NET Core Web API microservice

basket.data
Container running the REDIS cache service, with the basket database as a

REDIS cache

117 Designing and Developing Multi-Container and Microservice-Based .NET Applications

A simple Web Service API container

Focusing on a single container, the catalog.api container-microservice has a straightforward

definition:

 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=catalog.data;Initial Catalog=CatalogData;
 User Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"

 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"

 depends_on:
 - sql.data

This containerized service has the following basic configuration:

• It is based on the custom eshop/catalog.api image. For simplicity’s sake, there is no build:

key setting in the file. This means that the image must have been previously built (with

docker build) or have been downloaded (with the docker pull command) from any Docker

registry.

• It defines an environment variable named ConnectionString with the connection string to be

used by Entity Framework to access the SQL Server instance that contains the catalog data

model. In this case, the same SQL Server container is holding multiple databases. Therefore,

you need less memory in your development machine for Docker. However, you could also

deploy one SQL Server container per microservice database.

• The SQL Server name is sql.data, which is the same name used for the container that is

running the SQL Server instance for Linux. This is convenient; being able to use this name

resolution (internal to the Docker host) will resolve the network address so you don’t need to

know the internal IP for the containers you are accessing from other containers.

ImportantBecause the connection string is defined by an environment variable, you could set

that variable through a different mechanism and at a different time. For example, you could

set a different connection string when deploying to production in the final hosts, or by doing

it from your CI/CD pipelines in VSTS or your preferred DevOps system.

• It exposes port 80 for internal access to the catalog.api service within the Docker host. The

host is currently a Linux VM because it is based on a Docker image for Linux, but you could

configure the container to run on a Windows image instead.

• It forwards the exposed port 80 on the container to port 5101 on the Docker host machine

(the Linux VM).

• It links the web service to the sql.data service, (the SQL Server instance for Linux database

running in a container). When you specify this dependency, the catalog.api container won’t

start until the sql.data container has already started; this is important because need to have

the SQL Server database up and running first. However, this kind of container dependency is

118 Designing and Developing Multi-Container and Microservice-Based .NET Applications

not enough in many cases, because Docker checks only at the container level. Sometimes the

service (in this case SQL Server) might still not be ready, so it is advisable to implement retry

logic with exponential backoff in your client microservices. That way, if a dependency

container is not ready for a short time, the app will still be resilient.

• It is configured to allow access to external servers: The extra_hosts setting allows you to

access external servers or machines outside of the Docker host (that is, outside the default

Linux VM which is a development Docker host), such as a local SQL Server instance on your

development PC.

There are also other, more advanced docker-compose.yml settings that we will discuss in the

following sections.

Using docker-compose files to target multiple environments

The docker-compose.yml files are definition files and can be used by multiple infrastructures that

understand that format. The most straightforward tool is the docker-compose command, but other

tools like orchestrators (for example, Docker Swarm) also understand that file.

Therefore, by using the docker-compose command you can target the following main scenarios.

Development environments

When developing applications, it is important to be able to run an application in an isolated

development environment. You can use the docker-compose command line tool to create that

environment or use Visual Studio which used docker-compose under the covers.

The docker-compose.yml file allows you to configure and document all your application’s service

dependencies (other services, cache, databases, queues, etc). Using the “docker-compose” command

line tool you can create and start one or more containers for each dependency with a single

command (docker-compose up).

The docker-compose.yml files are configuration files interpreted by Docker engine but at the same

time are very convbenient documentation files about the composition of your multi-container

application.

Testing environments

An important part of any continuous deployment (CD) or continuous integration (CI) process are the

unit tests and integration tests. These automated tests require an isolated environment so they are

not impacted by the users or any otherchage in the application’s data.

With Docker Compose you can create and destroy that isolated environment very easily in a few

commands from your command prompt or scripts.

docker-compose up -d
./run_unit_tests
docker-compose down

Production deployments

You can also use Compose to deploy to a remote Docker Engine. A typical case is to deploy to a

single Docker host instance (like a production VM or server provisioned with Docker Machine), but it

https://docs.docker.com/machine/overview/

119 Designing and Developing Multi-Container and Microservice-Based .NET Applications

could also be an entire Docker Swarm cluster, which also is compatible with the docker-compose.yml

files.

If you are using any other orchestrator (Azure Service Fabric, Mesos DC/OS, Kubernetes, etc.), it is

possible that you must need to add setup and metadata configuration settings like those in docker-

compose.yml, but in the format required by the other orchestrator.

In any case, docker-compose is a convenient tool and metadata format for development, testing and

production workflows, although the production workflow might vary on the orchestrator you are

using.

Using multiple docker-compose files to handle several environments

When targeting different environments, you should use multiple compose files. This lets you create

multiple configuration variants depending on the environment.

Overriding the base docker-compose file

You could use a single docker-compose.yml file as in the initial simplified examples shown in previous

sections. However, that is not recommended for most applications.

By default, Compose reads two files, a docker-compose.yml and an optional docker-

compose.override.yml file. As shown in Figure 8-11, when you are using Visual Studio and enabling

Docker support, Visual Studio also creates those files plus some additional files used for debugging.

Figure 8-11. docker-compose files in Visual Studio 2017

You can edit the docker-compose files with any editor like Visual Studio Code or Sublime Text, and

run the application with the docker-compose up command.

By convention, the docker-compose.yml file contains your base and more static configuration. That

means that the service configuration should not change depending on the deployment environment

you are targeting.

The docker-compose.override.yml file, as its name suggests, contains configuration settings that

override the base configuration. For instance, configuration that depends on the deployment

environment. You can have multiple override files with different names, too. The override files usually

contain additional information needed by the application but specific to an environment or to a

deployment.

https://docs.docker.com/swarm/overview/

120 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Targeting multiple environments

A typical use case is when you define multiple compose files so you can target multiple environments,

like production, staging, CI, or development. To support these differences, you can split your

Compose configuration into multiple files, as shown in Figure 8-12.

Figure 8-12. Multiple docker-compose files overriding values in the base docker-compose.yml file

You start with the base docker-compose.yml file. This base file has to contain the base or static

configuration settings that do not change depending on the environment. For example, the

eShopOnContainers has the following docker-compose.yml file as the base file.

#docker-compose.yml (Base)
version: '2'
services:
 basket.api:
 image: eshop/basket.api
 build:
 context: ./src/Services/Basket/Basket.API
 dockerfile: Dockerfile
 depends_on:
 - basket.data
 - identity.api
 - rabbitmq

 catalog.api:
 image: eshop/catalog.api
 build:
 context: ./src/Services/Catalog/Catalog.API
 dockerfile: Dockerfile
 depends_on:
 - sql.data
 - rabbitmq

 identity.api:
 image: eshop/identity.api
 build:
 context: ./src/Services/Identity/Identity.API
 dockerfile: Dockerfile

121 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 depends_on:
 - sql.data

 ordering.api:
 image: eshop/ordering.api
 build:
 context: ./src/Services/Ordering/Ordering.API
 dockerfile: Dockerfile
 depends_on:
 - sql.data
 - rabbitmq

 webspa:
 image: eshop/webspa
 build:
 context: ./src/Web/WebSPA
 dockerfile: Dockerfile
 depends_on:
 - identity.api
 - basket.api

 webmvc:
 image: eshop/webmvc
 build:
 context: ./src/Web/WebMVC
 dockerfile: Dockerfile
 depends_on:
 - catalog.api
 - ordering.api
 - identity.api
 - basket.api

 sql.data:
 image: microsoft/mssql-server-linux

 basket.data:
 image: redis
 expose:
 - "6379"

 rabbitmq:
 image: rabbitmq
 ports:
 - "5672:5672"

 webstatus:
 image: eshop/webstatus
 build:
 context: ./src/Web/WebStatus

 dockerfile: Dockerfile

The Values in the base docker-compose.yml file should not change because of different target

deployment environments.

If you focus on the webmvc service definition, for instance, you can see how that information is much

the same no matter what environment you might be targeting. You have the following information:

122 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• The service name: webmvc.

• The container’s custom image: eshop/webmvc.

• The command to build the custom Docker image, indicating which Dockerfile to useDockerfile

• Dependencies on other services, so this container does not start until the other dependency

containers have started.

You can have additional configuration, but the important point is that in the base docker-

compose.yml file, you just want to set the information that is common across environments. Then in

the docker-compose.override.yml or similar files for production or staging, you should place

configuration that is specific for each environment.

Usually, the docker-compose.override.yml is used for your development environment, as in the

following example from eShopOnContainers:

#docker-compose.override.yml (Extended config for DEVELOPMENT env.)
version: '2'

services:
Simplified number of services here:
 catalog.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:5101

 - ConnectionString=Server=sql.data; Database =
Microsoft.eShopOnContainers.Services.CatalogDb; User Id=sa;Password=Pass@word

 - ExternalCatalogBaseUrl=http://localhost:5101
 ports:
 - "5101:5101"

 identity.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:5105
 - SpaClient=http://localhost:5104
 - ConnectionStrings__DefaultConnection =
Server=sql.data;Database=Microsoft.eShopOnContainers.Service.IdentityDb;User
Id=sa;Password=Pass@word
 - MvcClient=http://localhost:5100
 ports:
 - "5105:5105"

 webspa:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:5104
 - CatalogUrl=http://localhost:5101
 - OrderingUrl=http://localhost:5102
 - IdentityUrl=http://localhost:5105
 - BasketUrl=http:// localhost:5103
 ports:
 - "5104:5104"

 sql.data:
 environment:

123 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"

In this example, the development override configuration exposes some ports to the host, defines

environment variables with redirect URLs, and specifies connection strings for the development

environment. These settings are all just for the development environment.

When you run docker-compose up (or launch it from Visual Studio), the command reads the overrides

automatically as if it is merging both files.

Suppose that you want another Compose file for the production environment, with different

configuration values. You can create another override file, like the following. (This file might be stored

in a different Git repo or managed and secured by a different team.)

#docker-compose.prod.yml (Extended config for PRODUCTION env.)
version: '2'

services:
Simplified number of services here:
 catalog.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Production
 - ASPNETCORE_URLS=http://0.0.0.0:5101
 - ConnectionString=Server=sql.data; Database =
Microsoft.eShopOnContainers.Services.CatalogDb; User Id=sa;Password=Prod@Pass
 - ExternalCatalogBaseUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5101
 ports:
 - "5101:5101"

 identity.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Production
 - ASPNETCORE_URLS=http://0.0.0.0:5105
 - SpaClient=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5104
 - ConnectionStrings__DefaultConnection =
Server=sql.data;Database=Microsoft.eShopOnContainers.Service.IdentityDb;User
Id=sa;Password=Pass@word
 - MvcClient=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5100
 ports:
 - "5105:5105"

 webspa:
 environment:
 - ASPNETCORE_ENVIRONMENT= Production
 - ASPNETCORE_URLS=http://0.0.0.0:5104
 - CatalogUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5101
 - OrderingUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5102
 - IdentityUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5105
 - BasketUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5103
 ports:
 - "5104:5104"

 sql.data:
 environment:

124 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 - SA_PASSWORD=Prod@Pass
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"

How to deploy with a specific override file

To use multiple override files, or an override file with a different name, you can use the -f option with

the docker-compose command and specify the files. Compose merges files in the order they’re

specified on the command line. The following example shows how to deploy with a override files.

docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d

Using environment variables in docker-compose files

It is convenient, especially in production environments, to be able to get configuration information

from environment variables, as we’ve shown in previous examples. You reference an environment

variable in your docker-compose files using the syntax ${MY_VAR}. The following line from a docker-

compose.prod.yml file shows how to reference the value of an environment variable.

IdentityUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5105

Environment variables are created and initialized in different ways, depending on your host

environment (Linux, Windows, Cloud cluster, etc.). However, a convenient approach is to use an .env

file. The docker-compose files support declaring default environment variables in the .env file. These

values for the environment variables are the “by default” values but could be overridden by the values

you might have defined in each of your environments (host OS or env vars coming from your cluster)

You placethis .env file in the same folder where the docker-compose command is executed from.

The following example shows an .env file like the .env defined at eShopOnContainers.

.env file
ESHOP_EXTERNAL_DNS_NAME_OR_IP=localhost
ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP=10.121.122.92

Docker-compose expects each line in an .env file to be in the format <variable>=<value>.

Note that the values set in the runtime environment will always override the values defined inside the

.env file. In a similar way, values passed via command-line command arguments will also override the

default values set at the .env file.

Additional resources

• Overview of Docker Compose

https://docs.docker.com/compose/overview/

• Multiple Compose files

https://docs.docker.com/compose/extends/#multiple-compose-files

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/.env
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/extends/#multiple-compose-files

125 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Building optimized ASP.NET Core Docker images

If you are exploring Docker and .NET Core on sources on the Internet, you will find Dockerfiles that

demonstrate the simplicity of building a Docker image by copying your source into a container. These

examples suggest that by using a simple configuration, you can have a Docker image with the

environment packaged with your app. The following example shows a simple Dockerfile in this vein.

FROM microsoft/dotnet
WORKDIR /app
ENV ASPNETCORE_URLS http://+:80
EXPOSE 80
COPY . .
RUN dotnet restore
ENTRYPOINT ["dotnet", "run"]

A Dockerfile like this will work, but you can substantially optimize your images, especially your

production images.

In the container and microservices model, you are constantly starting containers. The common way of

using containers does not restart a sleeping container, because the container is disposable.

Orchestrators (like Docker Swarm, Kubernetes, DCOS or Azure Service Fabric) simply create new

instances of images. What this means is that you need to optimize, pre-compile the app when built so

the instantiation process will be faster. When the container is started, it should be ready to run, you

shouldn’t restore and compile at run time (like if using dotnet restore and dotnet build commands

from the dotnet cli that you can see in many blog posts about .NET Core and Docker in the Internet).

The .NET team has been doing important work to make .NET Core and ASP.NET Core a container-

optimized framework. Not only is .NET Core a lightweight framework with a small memory footprint,

but the team has focused on startup performance and produced some optimized Docker images, like

the microsoft/aspnetcore image available at Docker Hub, in comparison to the regular

microsoft/dotnet or microsoft/nanoserver images. The microsoft/aspnetcore image provides

automatic setting of aspnetcore_urls to port 80 and the pre-ngend cache of assemblies; both of

these settings result in faster startup.

Additional resources

• Building Optimized Docker Images with ASP.NET Core

https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-

net-core/

Building the application from a build (CI) container

Another benefit of Docker is that you can build your application from a preconfigured container, so

you do not need to create a build machine or VM to build your application. You can use or test that

build container running it at your development machine. But what’s even more interesting is that you

can use the same build container from your CI (Continuous Integration) pipeline.

https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/
https://github.com/dotnet/dotnet-docker/blob/master/1.0/nanoserver/runtime/Dockerfile
https://hub.docker.com/r/microsoft/aspnetcore/
https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/
https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/

126 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 8-13. Components building .NET bits from a container

For this scenario we provide the microsoft/aspnetcore-build image, which you can use to compile and

build your ASP.NET Core apps. The output is placed in an image based on the microsoft/aspnetcore

image, which is an optimized runtime image, as previously noted.

The aspnetcore-build image contains everything you need in order to compile an ASP.NET Core

app, including:

• .NET Core

• The ASP.NET SDK

• npm

• Bower

• Gulp

We need these dependencies at build time. But we do not want to carry these with the application at

runtime, because it would make the image unnecessarily large. In the eShopOnContainers you can

build the application bits from a container by just running the following docker-compose command.

docker-compose -f docker-compose.ci.build.yml up

Figure 8-14 shows this command running at the command line.

Figure 8-14. Building your .NET application bits from a container

https://hub.docker.com/r/microsoft/aspnetcore-build/
https://hub.docker.com/r/microsoft/aspnetcore/

127 Designing and Developing Multi-Container and Microservice-Based .NET Applications

As you can see, the container running is the ci-build_1 container. This is based on the aspnetcore-

build image so that it can compile and build your whole application from within that container

instead of from your PC. That’s why, in reality, it is building and compiling the .NET Core projects in

Linux—because that container is running on the default Docker Linux host.

The docker-compose.ci.build.yml file for that image (at eShopOnContainers) contains the following

code. You can see that will start a build container using the microsoft/aspnetcore-build image.

version: '2'

services:
 ci-build:

 image: microsoft/aspnetcore-build:1.0-1.1
 volumes:
 - .:/src
 working_dir: /src
 command: /bin/bash -c "pushd ./src/Web/WebSPA && npm rebuild node-sass && pushd
./../../.. && dotnet restore ./eShopOnContainers-ServicesAndWebApps.sln && dotnet
publish ./eShopOnContainers-ServicesAndWebApps.sln -c Release -o
./obj/Docker/publish"

Once the build container is up and running, it runs the .NET SDK dotnet restore and

dotnet publish commands against all the projects in the solution to compile the .NET bits. In this

case, because eShopOnContainers also has an SPA based on TypeScript and Angular for the client

code, it also needs to check JavaScript dependencies with npm, but that action is not related to the

.NET bits.

The dotnet publish command builds and publishes the compiled bits within each project’s folder to

the ../obj/Docker/publish folder, as shown in Figure 8-15.

Figure 8-15. Binary files generated by the dotnet publish command

Creating the Docker images from the CLI

Once the application bits are published at the related folders (witih each project), the next step is to

actually build the Docker images. To do this, you use the docker-compose build and docker-

compose up commands, as shown in Figure 8-16.

https://github.com/dotnet/eShopOnContainers/blob/master/docker-compose.ci.build.yml
https://hub.docker.com/r/microsoft/aspnetcore-build/

128 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 8-16. Building Docker images and running the containers

In Figure 8-17, you can see how the docker-compose build command runs.

Figure 8-17. Building the Docker images with the docker-compose build command

The difference between the docker-compose build and docker-compose up commands is that

docker-compose up both builds and starts the images.

When you use Visual Studio, all these steps are performed under the covers. Visual Studio compiles

your .NET application bits, creates the Docker images, and deploys the containers into the Docker

host. Visual Studio offers additional features, like the ability to debug your containers running in

Docker, directly from Visual Studio.

The overall takeway here is that you are able to build your application the same way your CI/CD

pipeline should build it—from a container instead of from a local machine. After having the images

created, then you just need to run the Docker images using the docker-compose up command.

Additional resources

• Building bits from a container: Setting the eShopOnContainers solution up in a Windows CLI

environment (dotnet CLI, Docker CLI and VS Code)

https://github.com/dotnet/eShopOnContainers/wiki/03.-Setting-the-eShopOnContainers-solution-up-

in-a-Windows-CLI-environment-(dotnet-CLI,-Docker-CLI-and-VS-Code)

https://github.com/dotnet/eShopOnContainers/wiki/03.-Setting-the-eShopOnContainers-solution-up-in-a-Windows-CLI-environment-(dotnet-CLI,-Docker-CLI-and-VS-Code)
https://github.com/dotnet/eShopOnContainers/wiki/03.-Setting-the-eShopOnContainers-solution-up-in-a-Windows-CLI-environment-(dotnet-CLI,-Docker-CLI-and-VS-Code)

129 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Using a database server running as a container
You can have your databases (SQL Server, PostgreSQL, MySql, etc.) on regular standalone servers, in

on-premises clusters, or in PaaS services in the cloud like Azure SQL DB. However, for development

and test environments, having your databases running as containers is convenient, because you do

not have any external dependency, and a simply running the docker-compose command starts the

whole application. Having those databases as containers is also great for integration tests, because

the database is started in the container and is always populated with the same sample data, so tests

can be more predictable.

SQL Server running as a container with a microservice-related database

In eShopOnContainers, there is a container named sql.data defined at the docker-compose.yml that

runs SQL Server for Linux with all the SQL Server databases needed for the microservices. You could

also have one SQL Server container for each database, but that would require more memory assigned

to Docker. The important point in microservices is that each microservice owns its related data,

therefore, its related SQL database, in this case. But the databases can be anywhere.

The SQL Server container in the sample application is configured with the following YAML code in the

docker-compose.yml file that is executed when you run docker-compose up. Note that the YAML

code has consolidated configuration information from the generic docker-compose.yml and the

docker-compose.override.yml. (Usually you would separate the environment settings from the base or

static information related to the SQL Server image.)

 sql.data:
 image: microsoft/mssql-server-linux
 environment:
 - SA_PASSWORD=your@password
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"

The following docker run command could run that container:

docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD= your@password' -p 1433:1433 -d
microsoft/mssql-server-linux

However, if you are deploying a multi-container application like eShopOnContainers, it is more

convenient to use the docker-compose up command so that it deploys all the required containers for

the application.

When you start this SQL Server container for the first time, the container initializes SQL Server with the

password that you provide. Once SQL Server is running as a container, you can update the database

by connecting through any regular SQL connection, such as from SQL Server Management Studio,

Visual Studio, or C# code.

The eShopOnContainers application initializes each microservice database with sample data by

seeding it with data on startup, as explained in the following section.

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/docker-compose.yml

130 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Having SQL Server running as a container is not just useful for a demo where you might not have

access to an instance of SQL Server. As noted, it is also great for development and testing

environments so that you can easily run integration tests starting from a clean SQL Server image and

known data by seeding new sample data.

Additional resources

• Run the SQL Server Docker image on Linux, Mac, or Windows

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-docker

• Connect and query SQL Server on Linux with sqlcmd

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-connect-and-query-sqlcmd

Seeding with test data on Web application startup

To add data to the database when the application starts up, you can add code like the following to

the Configure method in the Startup class of the Web API project:

 public class Startup
 {
 // Other Startup code...

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 // Other Configure code...

 // Seed data through our custom class
 CatalogContextSeed.SeedAsync(app)
 .Wait();

 // Other Configure code...
 }
 }

The following code in the custom CatalogContextSeed class populates the data.

 public class CatalogContextSeed
 {
 public static async Task SeedAsync(IApplicationBuilder applicationBuilder)
 {
 var context = (CatalogContext)applicationBuilder
 .ApplicationServices.GetService(typeof(CatalogContext));
 using (context)
 {
 context.Database.Migrate();

 if (!context.CatalogBrands.Any())
 {
 context.CatalogBrands.AddRange(
 GetPreconfiguredCatalogBrands());

 await context.SaveChangesAsync();
 }
 if (!context.CatalogTypes.Any())

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-docker
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-connect-and-query-sqlcmd

131 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 {
 context.CatalogTypes.AddRange(
 GetPreconfiguredCatalogTypes());

 await context.SaveChangesAsync();
 }
 }
 }
 static IEnumerable<CatalogBrand> GetPreconfiguredCatalogBrands()
 {
 return new List<CatalogBrand>()
 {
 new CatalogBrand() { Brand = "Azure"},
 new CatalogBrand() { Brand = ".NET" },
 new CatalogBrand() { Brand = "Visual Studio" },
 new CatalogBrand() { Brand = "SQL Server" }
 };
 }

 static IEnumerable<CatalogType> GetPreconfiguredCatalogTypes()
 {
 return new List<CatalogType>()
 {
 new CatalogType() { Type = "Mug"},
 new CatalogType() { Type = "T-Shirt" },
 new CatalogType() { Type = "Backpack" },
 new CatalogType() { Type = "USB Memory Stick" }
 };
 }
 }

When you run integration tests, having a way to generate data consistent with your integration tests is

useful. Being able to create everything from scratch, including an instance of SQL Server running on a

container, is great for test environments.

EF Core InMemory database versus SQL Server running as a container

Another good choice when running tests is to use the Entity Framework InMemory database provider.

You can specify that configuration in the ConfigureServices method of the Startup class in your

Web API project.

public class Startup
{
 // Other Startup code ...
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IConfiguration>(Configuration);

 // DbContext using an InMemory database provider
 services.AddDbContext<CatalogContext>(opt => opt.UseInMemoryDatabase());

 //(Alternative: DbContext using a SQL Server provider
 //services.AddDbContext<CatalogContext>(c =>
 //{
 // c.UseSqlServer(Configuration["ConnectionString"]);

132 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 //
 //});
 }
 // Other Startup code ...
}

There is an important catch, though. The in-memory database does not hold any constraints that are

specific to a particular database. For instance, you might add a unique index on a column in your EF

Core model and write a test against your in-memory database to check that it does not let you to add

a duplicate value. But when using the in-memory database, you cannot handle that. Therefore, the in-

memory database does not behave 100% the same as a real SQL Server database—it doesn't emulate

database-specific constraints.

Even so, an in-memory database is still useful for testing and prototyping. But if you want to create

accurate integration tests that take into account the behavior of a specific database implementation,

you need to use a real database like SQL Server. For that purpose, running SQL Server in a container is

a great choice and more accurate than the EF Core InMemory database provider.

Using a Redis cache service running in a container

You can run Redis on a container, especially for development and testing and for proof-of-concept

scenarios. This scenario is convenient, because you can have all your dependencies running on

containers—not just for your local development machines, but for your testing environments in your

CI/CD pipelines.

However, when you run Redis in production, it is better to look for a high availability solution like

Redis Microsoft Azure, which runs as a PaaS (Platform as a Service). In your code, you just need to

change your connection strings.

Redis provides a Docker image with Redis. That image is available from Docker Hub at this URL:

https://hub.docker.com/_/redis/

You can directly run a Docker Redis container by executing the following Docker CLI command in your

commad prompt:

docker run --name some-redis -d redis

The Redis image includes expose:6379 (the port used by Redis), so standard container linking will

make it automatically available to the linked containers.

In eShopOncontainers, the basket.api microservice uses a Redis cache running as a container. That

basket.data container is defined as part of the multi-container docker-compose.yml file, as shown in

the following example:

//docker-compose.yml file
//...
 basket.data:
 image: redis
 expose:
 - "6379"

https://hub.docker.com/_/redis/

133 Designing and Developing Multi-Container and Microservice-Based .NET Applications

This code in the docker-compose.yml defines a container named basket.data based on the redis

image and publishing the port 6379 internally, meaning that it will be accessible only from other

containers running within the Docker host.

Finally, in the docker-compose.override.yml file, the basket.api microservice for the

eShopOnContainers sample defines the connection string to use for that Redis container:

 basket.api:
 environment:
 // Other data ...
 - ConnectionString=basket.data
 - EventBusConnection=rabbitmq

134 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Implementing event-based communication between

microservices (integration events)
As described earlier, when you use event-based communication, a microservice publishes an event

when something notable happens, such as when it updates a business entity. Other microservices

subscribe to those events. When a microservice receives an event, it can update its own business

entities, which might lead to more events being published. This publish/subscribe system is usually

performed by using an implementation of an event bus. The event bus can be designed as an

interface with the API needed to subscribe and unsubscribe to events and to publish events. It can

also have one or more implementations based on any inter-process or messaging communication,

such as a messaging queue or a service bus that supports asynchronous communication and a

publish/subscribe model.

You can use events to implement business transactions that span multiple services, which gives you

eventual consistency between those services. An eventually consistent transaction consists of a series

of distributed actions. At each action, the microservice updates a business entity and publishes an

event that triggers the next action.

Figure 8-18. Event-driven communication based on an event bus

This section describes how you can implement this type of communication with .NET by using a

generic event bus interface, as shown in Figure 8-18. There are multiple potential implementations,

each using a different technology or infrastructure such as RabbitMQ, Azure Service Bus, or any other

third party open source or commercial service bus.

135 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Using message brokers and services buses for production systems

As noted in the architecture section, you can choose from multiple messaging technologies for

implementing your abstract event bus. But these technologies are at different levels. For instance,

RabbitMQ (a messaging broker transport) is at a lower level than commercial products like Azure

Service Bus, NServiceBus, MassTransit, or Brighter. Most of these products can work on top of either

RabbitMQ or Azure Service Bus. Your choice of product depends on how many features and how

much out-of-the-box scalability you need for your application.

For implementing just an event bus proof-of-concept for your development environment, as in the

eShopOnContainers sample, a simple implementation on top of RabbitMQ running as a container

might be enough. But for mission-critical and production systems that need high scalability, you

might want to evaluate and use Azure Service Fabric. If you require high-level abstractions and richer

features like Sagas for long-running processes that make distributed development easier, other

commercial and open-source service buses like NServiceBus, MassTransit, and Brighter are worth

evaluating. Of course, you could always build your own service bus features on top of lower-level

technologies like RabbitMQ and Docker, but the work needed to reinvent the wheel might be too

costly for a custom enterprise application.

To reiterate: the sample event bus abstractions and implementation showcased in the

eShopOnContainers sample are intended to be used only as a proof of concept. Once you have

decided that you want to have asynchronous and event-driven communication, as explained in the

present section, you should choose the service bus product in the market that best fits your needs.

Integration events

Integration events are used for bringing domain state in sync across multiple microservices or external

systems. This is done by publishing integration events outside the microservice. When an event is

published to multiple receiver microservices (to as many microservices as are subscribed to the

integration event), the appropriate event handler in each receiver microservice handles the event.

An integration event is basically a data-holding class, as in the following example:

public class ProductPriceChangedIntegrationEvent : IntegrationEvent
{
 public int ProductId { get; private set; }
 public decimal NewPrice { get; private set; }
 public decimal OldPrice { get; private set; }

 public ProductPriceChangedIntegrationEvent(int productId, decimal newPrice,
 decimal oldPrice)
 {
 ProductId = productId;
 NewPrice = newPrice;
 OldPrice = oldPrice;
 }
}

The integration event class can be simple; for example, it might contain a GUID for its ID.

The integration events can be defined at the application level of each microservice, so they are

decoupled from other microservices, in a way comparable to how ViewModels are defined in the

https://docs.particular.net/nservicebus/sagas/

136 Designing and Developing Multi-Container and Microservice-Based .NET Applications

server and client side. What is not recommended is sharing a common integration events library

across multiple microservices; doing that would be coupling those microservices with a single event

definition data library. You do not want to do that for the same reasons that you do not want to share

a common domain model across multiple microservices: microservices must be completely

autonomous.

There are only a few kinds of libraries you should share across microservices. One is libraries that are

final application blocks, like your Event Bus client API, like in eShopOnContainers. Another is libraries

that constitute tools that could also be shared as NuGet components, like JSON serializers.

The event bus

An event bus allows a publish/subscribe-style communication between microservices without

requiring the components to explicitly be aware of each other, as shown in the Figure 8-19.

Figure 8-19. Publish/subscribe basics with an event bus

The event bus is related to the Observer pattern and the publish-subscribe pattern.

Observer pattern

In the Observer pattern, your primary object (known as the Observable) notifies other interested

objects (known as Observers) with relevant information (events).

Publish-subscribe (Pub/Sub) pattern

The purpose of the Pub/Sub pattern is the same as the Observer pattern: you want to notify other

services when certain events take place. But there is an important semantic difference between the

Observer and Pub/Sub patterns. In the Pub/Sub pattern, the focus is on broadcasting messages. In

contrast, in the Observer pattern, the Observable does not want to know who the events are going to,

just that they have gone out. In other words, the Observable (the publisher) does not want to know

who the Observers (the subscribers) are.

The middleman or event bus

How do you achieve anonymity between publisher and subscriber? An easy way is let a middleman

take care of all the communication. An event bus is one such middleman.

../Forms/AllItems.aspx?id=%2Fteams%2FDotNetStrategyTeam%2FShared%20Documents%2FArchitecting%20and%20Developing%20Microservice%2DDocker%20Apps%20%28Guide%2DeBook%29&newTargetListUrl=%2Fteams%2FDotNetStrategyTeam%2FShared%20Documentshttps://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/BuildingBlocks/EventBus
https://en.wikipedia.org/wiki/Observer_pattern
https://msdn.microsoft.com/en-us/library/ff649664.aspx

137 Designing and Developing Multi-Container and Microservice-Based .NET Applications

An event bus is typically composed of two parts:

• The abstraction or interface.

• One or more implementations.

In Figure 8-19 you can see how, from an application point of view, the event bus is nothing more than

a Pub/Sub channel. The way you implement this asynchronous communication can vary. It could have

multiple implementations so that you can swap between them, depending on the environment

requirements (production versus development environments, for instance).

In Figure 8-20 you can see an abstraction of an event bus with multiple implementations based on

infrastructure messaging technologies like RabbitMQ, Azure Service Bus, or other service buses like

NServiceBus, MassTransit, etc.

Figure 8- 20. Multiple implementations of an event bus

However, as highlighted previously, using abstractions (the event bus interface) is a possibility only if

you need basic event bus features supported by your abstractions. If you need richer service bus

features, you should probably use the API provided by your preferred service bus instead of your own

abstractions.

Defining an event bus interface

Let’s start with some implementation code for the event bus interface and possible implementations

for exploration purposes. The interface should be generic and straightforward, as in the following

interface.

public interface IEventBus
{
 void Publish(IntegrationEvent @event);
 void Subscribe<T>(IIntegrationEventHandler<T> handler)
 where T: IntegrationEvent;
 void Unsubscribe<T>(IIntegrationEventHandler<T> handler)
 where T : IntegrationEvent;
}

138 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The Publish method is straightforward. The event bus will broadcast the integration event passed to

it to any microservice subscribed to that event. This method is used by the microservice that is

publishing the event.

The Subscribe method is used by the microservices that want to receive events. This method has two

parts. The first is the integration event to subscribe to (IntegrationEvent). The second part is the

integration event handler (or callback method) to be called (IIntegrationEventHandler<T>) when the

microservice receives that integration event message.

Implementing an event bus with RabbitMQ for the development or test environment

We should start by saying that if you create your custom event bus based on RabbitMQ running in a

container, as the eShopOnContainers application does, it should be used only for your development

and test environments. You should not use it for your production environment, unless you are

building it as a part of a production-ready service bus. A simple custom event bus might be missing

many production-ready critical features that a commercial service bus already has.

eShopOnContainer’s custom implementation of an event bus is basically a library using RabbitMQ API.

The implementation lets microservices subscribe to events, publish events, and receive events, as

shown in Figure 8-21.

Figure 8-21. RabbitMQ implementation of an event bus

In the code, the EventBusRabbitMQ implements the generic IEventBus interface. This is based on

Dependency Injection so that you can swap from this dev/test version to a production version.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Implementation using RabbitMQ API
 //...

The RabbitMQ implementation of a sample dev/test event bus is boilerplate code. It has to handle the

connection to the RabbitMQ server and provide code for publishing a message event to the queues. It

also has to implement a dictionary of collections of integration event handlers for each event type;

139 Designing and Developing Multi-Container and Microservice-Based .NET Applications

these event types can have a different instantiation and different subscriptions for each each receiver

microservice, as shown in Figure 8-21.

Implementing a simple publish method with RabbitMQ

The following code is part of the eShopOnContainers event bus implementation for RabbitMQ, so you

usually do not need to code it unless you are making improvements. The code gets a connection and

channel to RabbitMQ, creates a message, and then publishes the message into the queue.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Member objects and other methods ...
 // ...
 public void Publish(IntegrationEvent @event)
 {
 var eventName = @event.GetType().Name;
 var factory = new ConnectionFactory() { HostName = _connectionString };
 using (var connection = factory.CreateConnection())
 using (var channel = connection.CreateModel())
 {
 channel.ExchangeDeclare(exchange: _brokerName,
 type: "direct");

 string message = JsonConvert.SerializeObject(@event);
 var body = Encoding.UTF8.GetBytes(message);

 channel.BasicPublish(exchange: _brokerName,
 routingKey: eventName,
 basicProperties: null,
 body: body);
 }
 }
}

The actual code of the Publish() method at eShopOnContainers is improved by using a Polly’s retry

policy in order to make a certain number of retries in case the RabbitMQ container is not ready for

any reason, like when starting the containers whtih Docker-compose, when the RabbitMQ container

might start slower than the other containers,

As mentioned earlier, there are many possible configurations in RabbitMQ, so this code should be

used only for dev/test environments.

Implementing the subscription code with the RabbitMQ API

As with the publish code, the following code is a simplification of part of the event bus

implementation for RabbitMQ. Again, you usually do not need to change it unless you are improving

it.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Member objects and other methods ...
 // ...
 public void Subscribe<T>(IIntegrationEventHandler<T> handler)
 where T : IntegrationEvent

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/BuildingBlocks/EventBus/EventBusRabbitMQ/EventBusRabbitMQ.cs
https://github.com/App-vNext/Polly

140 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 {
 var eventName = typeof(T).Name;
 if (_handlers.ContainsKey(eventName))
 {
 _handlers[eventName].Add(handler);
 }
 else
 {
 var channel = GetChannel();
 channel.QueueBind(queue: _queueName,
 exchange: _brokerName,
 routingKey: eventName);

 _handlers.Add(eventName, new List<IIntegrationEventHandler>());
 _handlers[eventName].Add(handler);
 _eventTypes.Add(typeof(T));
 }
 }
}

Each event type has a related channel to get events from RabbitMQ. You can then have as many event

handlers per channel and event type as needed.

The Subscribe method accepts an IntegrationEventHandler object, which is like a callback method

in the current microservice, plus its related IntegrationEvent object. The code then adds that event

handler to the list of event handlers that each integration event type can have per client microservice.

If the client code has not already been subscribed to the event, the code creates a channel for the

event type so it can receive events in a push style from RabbitMQ when that event is published from

any other service.

Subscribing to events

The first step for using the event bus is to subscribe the microservices to the events they want to

receive. That should be done in the receiver microservices.

The following simple code shows what each receiver microservice needs to implement when starting

the service (that is, in the Startup class) so it subscribes to the events it needs. For instance, the

basket.api microservice needs to subscribe to ProductPriceChangedIntegrationEvent messages.

This makes the microservice aware of any changes to the product price and lets it warn the user about

the change if that product is in the user’s basket.

var eventBus = app.ApplicationServices.GetRequiredService<IEventBus>();
 eventBus.Subscribe<ProductPriceChangedIntegrationEvent>(
 ProductPriceChangedIntegrationEventHandler);

After this code runs, the subscriber microservice will be listening through RabbitMQ channels. When

any message of type ProductPriceChangedIntegrationEvent comes, the code invokes the event

handler that is passed to it and processes the event.

141 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Publishing events through the event bus

Finally, the message sender (origin microservice) publishes the integration events with code similar to

the following example. (This is a simplified example not that does not take atomicity into account.)

You would implement this code whenever an event has to be propagated across multiple

microservices, usually right after committing data or transactions from the origin microservice.

First, the event bus implementation object (like based on RabbitMQ, or one based on a service bus)

would be injected at the controller constructor, as in the following code:

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 private readonly CatalogContext _context;
 private readonly IOptionsSnapshot<Settings> _settings;
 private readonly IEventBus _eventBus;

 public CatalogController(CatalogContext context,
 IOptionsSnapshot<Settings> settings,
 IEventBus eventBus)
 {
 _context = context;
 _settings = settings;
 _eventBus = eventBus;
 // ...
 }

Then you use it from your controller’s methods, like in the UpdateProduct() method.

[Route("update")]
[HttpPost]
public async Task<IActionResult> UpdateProduct([FromBody]CatalogItem product)
{
 var item = await _context.CatalogItems.SingleOrDefaultAsync(
 i => i.Id == product.Id);
 // ...
 if (item.Price != product.Price)
 {
 var oldPrice = item.Price;
 item.Price = product.Price;
 _context.CatalogItems.Update(item);

 var @event = new ProductPriceChangedIntegrationEvent(item.Id,
 item.Price,
 oldPrice);
 // Commit changes in original transaction
 await _context.SaveChangesAsync();

 // Publish Integration Event to the event bus
 // (RabbitMQ or a service bus underneath)
 _eventBus.Publish(@event);
 // ...
 }
 return Ok();

}

142 Designing and Developing Multi-Container and Microservice-Based .NET Applications

In this case, since the origin microservice is a simple CRUD microservice, that code is placed right into

a Web API controller. In more advanced microservices, it could be implemented in the

CommandHandler or DomainEventHandler classes right after the original data is committed.

Designing atomicity and resiliency when publishing to the event bus

When you publish integration events through a distributed messaging system like your event bus, you

have the problem of atomically updating the original database and publishing an event. For instance,

in the simplified example shown earlier, the code commits data to the database when the product

price is changed and then publishes a ProductPriceChangedIntegrationEvent message. Initially, it

might look essential that these two operations be performed atomically. However, if you are using a

distributed transaction involving the database and the message broker, as you do in older systems like

Microsoft Message Queuing (MSMQ), this is not recommended for the reasons described by the CAP

theorem.

Basically, you use microservices to build scalable and highly available systems. Simplifying somewhat,

the CAP theorem says that you cannot build a database (or a microservice that owns its model) that is

continually available, strongly consistent, and tolerant to any partition. You must choose two of these

three properties.

In microservices-based architectures, you should choose availability and tolerance, and you

deemphasize strong consistency. Therefore, in most modern microservice-based applications, you

usually do not want to use distributed transactions in messaging, as you do when you implement

distributed transactions based on the Windows Distributed Transaction Coordinator (DTC) with

MSMQ.

Let’s go back to the initial issue and its example. If the service crashes after the database is updated

(in this case, right after the line of code with _context.SaveChangesAsync()), but before the

integration event is published, the overall system could become inconsistent. This might be business

critical, depending on the specific business operation you are dealing with.

As mentioned earlier in the architecture section, you can have several approaches for dealing with this

issue:

• Using the full Event Sourcing pattern.

• Using transaction log mining.

• Using the Outbox pattern: A transactional table to store the integration events (extending the

local transaction).

For this scenario, using the full Event Sourcing (ES) pattern is one of the best approaches, if not the

best. However, in many application scenarios, you might not be able to implement a full ES system. ES

means storing only domain events in your transactional database, instead of storing current state

data. Storing only domain events can have great benefits, such as having the history of your system

available and being able to determine state of your system at any moment in the past. However,

implementing a full ES system requires you to rearchitect most of your system and introduces many

other complexities and requirements. For example, you would want to use a database specifically

made for event sourcing, such as Event Store, or a document-oriented database such as Azure

https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
https://www.quora.com/What-Is-CAP-Theorem-1
https://www.quora.com/What-Is-CAP-Theorem-1
https://msdn.microsoft.com/en-us/library/ms978430.aspx#bdadotnetasync2_topic3c
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://www.scoop.it/t/sql-server-transaction-log-mining
http://gistlabs.com/2014/05/the-outbox/
https://geteventstore.com/

143 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Document DB, MongoDB, Cassandra, CouchDB, or RavenDB. ES is a great approach for this problem,

but not the most easiest solution unless you are already familiar with Event Sourcing.

The option to use transaction log mining initially looks very transparent. However, to use this

approach, the microservice has to be coupled to your RDBMS transaction log, such as the SQL Server

transaction log. This is probably not desirable. Another drawback is that the low-level updates

recorded in the transaction log might not be at the same level as your high-level integration events. If

so, the process of reverse-engineering those transaction log operations can be difficult.

A balanced approach is a mix of a transactional database table and a simplified Event Sourcing

pattern. You can use a state such as “ready to publish the event,” which you set in the original event

when you commit it to the integration events table. You then try to publish the event to the event bus.

If the publish-event action succeeds, you start another transaction in the origin service and move the

state from “ready to publish the event” to “event already published”.

If the publish-event action in the event bus fails, the data still won’t be inconsistent within the origin

microservice—it is still marked as “ready to publish the event,” and with respect to the rest of the

services, it will eventually be consistent. You can always have background jobs checking the state of

the transactions or integration events. If the job finds an event in the “ready to publish the event”

state, it can try to republish that event to the event bus.

Notice that with this approach, you are persisting only the integration events for each origin

microservice, and only the events that you want to communicate to other microservices or external

systems. In contrast, in a full ES system, you store all domain events as well.

Therefore, this balanced approach is a simplified ES system. You need a list of integration events with

their current state (“ready to publish” versus “published”). But you only need to implement these

states for the integration events. And in this approach, you do not need to store all your domain data

as events in the transactional database, as you would in a full ES system.

If you are already using a relational database, you can use a transactional table to store integration

events. To achieve atomicity in your application, you use a two-step process based on local

transactions. Basically, you have an IntegrationEvent table in the same database where you have

your domain entities. That table works as an insurance for achieving atomicity so that you include

persisted integration events into the same transactions that are committing your domain data.

Step by step, the process goes like this: the application begins a local database transaction. It then

updates the state of your domain entities and inserts an event into the integration event table. Finally,

it commits the transaction. You get the desired atomicity.

When implementing the steps of publishing the events, you have these choices:

• Publish the integration event right after committing the transaction and use another local

transaction to mark the events in the table as being published. Then, use the table just as an

artifact to track the integration events in case of issues happended in the remote

microservices and perform compensatory actions based on the stored integration events.

• Use the table as a kind of queue. A separate application thread or process queries the

integration event table, publishes the events to the event bus, and then uses a local

transaction to mark the events as published.

Figure 8-22 shows the architecture for the first of these approaches.

144 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 8-22. Atomicity when publishing events to the event bus

The approach illustrated in Figure 8-22 is missing an additional worker microservice that is in charge

of checking/confirming the success of the published integration events. In case of failure, that

additional checker worker microservice can read events from the table and republish them.

About the second approachyou would be using the EventLog table as a queue and always using a

worker microservice to publish the messages, so the process would be like that shown in Figure 8-23.

This shows an additional microservice, and the table is the single source when publishing events.

Figure 8-23. Atomicity publishing events to the event bus with a worker microservice

For simplicity, the eShopOncontainers sample uses the first approach (with no additional processes or

checkers/workers microservices) plus the event bus. However, the eShopOncontainers is not handling

all possible failure cases. In a real application imkplementation deployed to the cloud, you must

145 Designing and Developing Multi-Container and Microservice-Based .NET Applications

embrace the fact that issues will happen eventually and implement that check/validation and resend

logic. Using the table as a queue can be more effective than the firt approach by having that table as a

single source of events when publishing them through the event bus.

Implementing atomicity when publishing integration events through the event bus

The following code shows how you can create a single transaction involving multiple DbContext

objects—one context related to the original data being updated, and the second context related to

the IntegrationEventLog table being used.

Note that the transaction in the example code below will not be resilient if connections to the

database have any issue at the time that the code runs. This is possible in cloud-based systems like

Azure SQL DB, which might move databases across servers. For implementing resilient transactions

across multiple contexts, check the “Resilient Entity Framework Core Sql Connections” section later in

this guide.

For clarity, the example shows the whole process in a single piece of code. However, the

eShopOnContainers implementation might be slightly refactored and split this logic into multiple

classes so it is easier to maintain.

// Update Product from the Catalog microservice
//
public async Task<IActionResult> UpdateProduct([FromBody]CatalogItem
 productToUpdate)
{
 var catalogItem =
 await _catalogContext.CatalogItems.SingleOrDefaultAsync(i => i.Id ==
 productToUpdate.Id);
 if (catalogItem == null) return NotFound();

 bool raiseProductPriceChangedEvent = false;
 IntegrationEvent priceChangedEvent = null;
 if (catalogItem.Price != productToUpdate.Price)
 raiseProductPriceChangedEvent = true;

 if (raiseProductPriceChangedEvent) // Create event if price has changed
 {
 var oldPrice = catalogItem.Price;
 priceChangedEvent = new ProductPriceChangedIntegrationEvent(catalogItem.Id,
 productToUpdate.Price,
 oldPrice);
 }
 // Update current product
 catalogItem = productToUpdate;

 // Achieving atomicity between original DB and the IntegrationEventLog
 // with a local transaction
 using (var transaction = _catalogContext.Database.BeginTransaction())
 {
 _catalogContext.CatalogItems.Update(catalogItem);
 await _catalogContext.SaveChangesAsync();

 // Save to EventLog only if product price changed
 if(raiseProductPriceChangedEvent)

146 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 await _integrationEventLogService.SaveEventAsync(priceChangedEvent);

 transaction.Commit();
 }
 // Publish to Event Bus only if product price changed
 if (raiseProductPriceChangedEvent)
 {
 _eventBus.Publish(priceChangedEvent);

 integrationEventLogService.MarkEventAsPublishedAsync(
 priceChangedEvent);
 }
 return Ok();
}

Note how after the integration event “ProductPriceChangedIntegrationEvent” to be puglished is

created, the transaction that stores the original domain operation (update the catalog item) also

includes the persistence of the event in the EventLog table, so it is a single transaction and you will

always be able to check what event messages where properly sent ot not.

The event log table is updated atomically with the original database operation using a local

transaction against the same database. If any of the operations fail, an exception is thrown and the

transaction rolls back any completed operation, thus maintaining consistency between the domain

operations and the event messages sent.

Receiving messages from subscriptions: event handlers in receiver microservices

In addition to the event subscription logic, you need to implement the internal code for the

integration event handlers (like a callback method). The event handler is where you specify where the

event messages of a certain type will be received and processed.

An event handler first receives an event instance from the event bus. Then it locates the component

to be processed related to that integration event, propagating and persisting the event as a change in

state in the receiver microservice. For example, if a ProductPriceChanged event originated in the

catalog microservice, it will be handled in the basket microservice and change the state in this receiver

basket microservice, as well, as shown in the following code.

Namespace Microsoft.eShopOnContainers.Services.
 Basket.API.IntegrationEvents.EventHandling
{
 public class ProductPriceChangedIntegrationEventHandler :
 IIntegrationEventHandler<ProductPriceChangedIntegrationEvent>
 {
 private readonly IBasketRepository _repository;
 public ProductPriceChangedIntegrationEventHandler(IBasketRepository repository)
 {
 _repository = repository;
 }

 public async Task Handle(ProductPriceChangedIntegrationEvent @event)
 {
 var userIds = await _repository.GetUsers();
 foreach (var id in userIds)
 {
 var basket = await _repository.GetBasket(id);

147 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 await UpdatePriceInBasketItems(@event.ProductId, @event.NewPrice,
 basket);
 }
 }

 private async Task UpdatePriceInBasketItems(int productId, decimal newPrice,
 CustomerBasket basket)
 {
 var itemsToUpdate = basket?.Items?.Where(x => int.Parse(x.ProductId) ==
 productId).ToList();
 if (itemsToUpdate != null)
 {
 foreach (var item in itemsToUpdate)
 {
 if(item.UnitPrice != newPrice)
 {
 var originalPrice = item.UnitPrice;
 item.UnitPrice = newPrice;
 item.OldUnitPrice = originalPrice;
 }
 }
 await _repository.UpdateBasket(basket);
 }
 }
 }
}

The event handler needs to verify whether the product exists in any of the basket instances. It also

updates the item price for each related basket line item. Finally, it creates an alert to be displayed to

the user about the price change, as shown in Figure 8-24.

Figure 8-24. Displaying an item price change in a basket, as communicated by integration events

148 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Idempotency in update message events

An important aspect of update message events is that a failure at any point in the communication

should cause the message to be retried. Otherwise a background task might try to publish an event

that had already been published, creating a race condition. You need to make sure that the updates

are either idempotent or that they provide enough information to ensure that you can detect a

duplicate, discard it, and send back only one response.

As noted earlier, idempotency means that an operation can be performed multiple times without

changing the result. In a messaging environment, as when communicating events, an event is

idempotent if it can be delivered multiple times without changing the result for the receiver

microservice. This may be necessary because of the nature of the event itself, or because of the way

the system handles the event. Message idempotency is important in any application that uses

messaging, not just in applications that implement the event bus pattern.

An example of an idempotent operation is a SQL sentence that inserts data into a table only if that

same data is not already stored in the table. It doesn’t matter how many times you run that insert SQL

sentence, the result will be the same, the table will contain that data. Idempotency like this can also be

necessary when dealing with messages if the messages could potentially be send and therefore

processed more than once. For instance, if because of a retry logic the sender sends exactly the same

message, you need to make sure that it will be idempotent.

It is possible to design idempotent messages. For example, you can create an event that says "set the

product price to $25" instead of "add $5 to the product price." You could safely process the first

message any number of times and the result will be the same, but not the second message. But even

in the first case, you might not want to process the first event, becasuse the system could also have

sent a newer price-change event and you’d be losing that new price.

Another example would be an order-completed event being propagated to multiple subscribers. It is

important that any order is propagated or updated in other systems just once, even if there are

duplicated message events for the same order-completed event.

It is convenient to have some kind of identity per event so based on that you can create logic

enforcing that each event is processed only once per recipient.

Some message processing is inherently idempotent. For example, if a system generates image

thumbnails, it might not matter how many times the message about the generated thumbnail is

processed; the outcome is that the thumbnails are generated and they are the same every time. On

the other hand, operations such as calling a payment gateway to charge a credit card may not be

idempotent, at all. In these cases, you need to ensure that processing a message multiple times has

the effect that you expect.

Additional resources

• Honoring message idempotency (subhead on this page)

https://msdn.microsoft.com/en-us/library/jj591565.aspx

https://msdn.microsoft.com/en-us/library/jj591565.aspx

149 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Deduplicating integration event messages

You can make sure that message events are sent and processed just once per subscriber at different

levels. One way is to use a deduplication feature offered by the messaging infrastructure you are

using. Another is to implement custom logic in your destination microservice. Having validations at

both the transport level and the application level is your best bet.

De-duplicating message events at the EventHandler level

One way to do make sure that an event is processed just once by each destination recipient is by

implementing certain logic when processing the message events at the event handlers. That approach

is for instance the one chose by eShopOnContainers when receiving the CreateOrderCommand,

although in this case is an Http request command, not a message-based command, but in regards the

logic you need to implement to make a command idempotent, can be pretty similar.

De-duplicating messages when using RabbitMQ

When intermittent network failures happen, messages can be duplicated and the message receivers

must be ready to handle them. If possible, those receivers should handle messages in an idempotent

way which would be better than explicitely handling with deduplication.

According to the RabbitMQ documentation, “if a message is sent to a comsumer and the requeued

(because it was not acknowledged before the consumer connection dropped, for example), RabbitMQ will

set the redelivered flag on it when it is delivered again (whether to the same consumer or to a

different one)”.

If the “redelivered” flag is set, the receiver must take that into account as that message might has

already been processed, but it’s not guaranteed, it might never have reached the receiver after it went

out of the message broker because of any network issue.

On the other hand, if the “redelivered” flag is not set, it is for sure that the message has not been sent

more than once. So, the receiver would only need to deduplicate messages or process messages in an

idempotent way if the “redelivered” flag is set in the message.

Additional resources

• Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

• Jimmy Bogard. Refactoring Towards Resilience: Evaluating Coupling

https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

• Publish-Subscribe channel

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

• Communicating Between Bounded Contexts

https://msdn.microsoft.com/en-us/library/jj591572.aspx

• Eventual Consistency

https://en.wikipedia.org/wiki/Eventual_consistency

• Philip Brown. Strategies for Integrating Bounded Contexts

http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

• Chris Richardson. Developing Transactional Microservices Using Aggregates, Event Sourcing and

CQRS - Part 2

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Controllers/OrdersController.cs
https://www.rabbitmq.com/reliability.html#consumer
http://soapatterns.org/design_patterns/event_driven_messaging
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
https://msdn.microsoft.com/en-us/library/jj591572.aspx
https://en.wikipedia.org/wiki/Eventual_consistency
http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson

150 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Chris Richardson. Event Sourcing pattern

http://microservices.io/patterns/data/event-sourcing.html

• Introducing Event Sourcing

https://msdn.microsoft.com/en-us/library/jj591559.aspx

• Event Store database. Official site.

https://geteventstore.com/

• Patrick Nommensen. Event-Driven Data Management for Microservices

https://dzone.com/articles/event-driven-data-management-for-microservices-1

• The CAP Theorem

https://en.wikipedia.org/wiki/CAP_theorem

• What is CAP Theorem?

https://www.quora.com/What-Is-CAP-Theorem-1

• Data Consistency Primer

https://msdn.microsoft.com/en-us/library/dn589800.aspx

• Rick Saling. The CAP Theorem: Why “Everything is Different” with the Cloud and Internet

https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-everything-is-

different-with-the-cloud-and-internet/

• Eric Brewer. CAP Twelve Years Later: How the "Rules" Have Changed

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

• Participating in External (DTC) Transactions (MSMQ)

https://msdn.microsoft.com/en-us/library/ms978430.aspx#bdadotnetasync2_topic3c

• Azure Service Bus. Brokered Messaging: Duplicate Detection

• https://code.msdn.microsoft.com/Brokered-Messaging-c0acea25

• Reliability Guide (RabbitMQ documentation)

https://www.rabbitmq.com/reliability.html#consumer

Testing ASP.NET Core services and web apps
Controllers are a central part of any ASP.NET Core API service and ASP.NET MVC Web app. As such,

you should have confidence they behave as intended for your app. Automated tests can provide you

with this confidence and can detect errors before they reach production.

You need to test how the controller behaves based on valid or invalid inputs, and test controller

responses based on the result of the business operation it performs. However, you should have these

types of tests your microservices:

• Unit tests. These ensure that individual components of the app work as expected. Assertions

test the component API.

• Integration tests. These ensure that component interactions work as expected against external

artifacts like databases. Assertions can test component API, UI, or the side effects of actions

like database I/O, logging, etc.

• Functional tests for each microservice. These ensure that the app works as expected from the

user’s perspective.

• Service tests. These ensure that end-to-end service use cases, including testing multiple

services at the same time, are tested. For this type of testing, you need to prepare the

environment first. In this case, it means starting the services (for example, by using docker-

compose up).

http://microservices.io/patterns/data/event-sourcing.html
https://msdn.microsoft.com/en-us/library/jj591559.aspx
https://geteventstore.com/
https://dzone.com/articles/event-driven-data-management-for-microservices-1
https://en.wikipedia.org/wiki/CAP_theorem
https://www.quora.com/What-Is-CAP-Theorem-1
https://msdn.microsoft.com/en-us/library/dn589800.aspx
https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-everything-is-different-with-the-cloud-and-internet/
https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-everything-is-different-with-the-cloud-and-internet/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://msdn.microsoft.com/en-us/library/ms978430.aspx%23bdadotnetasync2_topic3c

151 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Implementing unit tests for ASP.NET Core Web APIs

Unit testing involves testing a part of an app in isolation from its infrastructure and dependencies.

When you unit test controller logic, only the contents of a single action or method is tested, not the

behavior of its dependencies or of the framework itself. Unit tests do not detect issues in the

interaction between components—that is the purpose of integration testing.

As you unit test your controller actions, make sure you focus only on their behavior. A controller unit

test avoids things like filters, routing, or model binding. By focusing on testing just one thing, unit

tests are generally simple to write and quick to run. A well-written set of unit tests can be run

frequently without much overhead.

Unit tests are implemented based on test frameworks like xUnit.net, MSTest, Moq, or NUnit. For the

eShopOnContainers sample application, we are using XUnit.

When you write a unit test for a Web API controller, you instantiate the controller class directly using

the new keyword in C#, so that the test will run as fast as possible. The following example shows how

to do this when using XUnit as the Test framework.

[Fact]
public void Add_new_Order_raises_new_event()
{
 // Arrange
 var street = " FakeStreet ";
 var city = "FakeCity";
 // Other variables omitted for brevity ...

 // Act
 var fakeOrder = new Order(new Address(street, city, state, country, zipcode),
 cardTypeId, cardNumber,
 cardSecurityNumber, cardHolderName,
 cardExpiration);

 // Assert
 Assert.Equal(fakeOrder.DomainEvents.Count, expectedResult);
}

Implementing integration and functional tests for each microservice

As noted, integration tests and functional tests have different purposes and goals. However, the way

you implement both when testing ASP.NET Core controllers is similar, so in this section we

concentrate on integration tests.

Integration testing ensures that an application's components function correctly when assembled.

ASP.NET Core supports integration testing using unit test frameworks and a built-in test web host that

can be used to handle requests without network overhead.

Unlike unit testing, integration tests frequently involve application infrastructure concerns, such as a

database, file system, network resources, or web requests and responses. Unit tests use fakes or mock

objects in place of these concerns. But the purpose of integration tests is to confirm that the system

works as expected with these systems, so for integration testing you do not use fakes or mock objects.

Instead, you include the infrastructure, like database access or service invocation from other services.

https://xunit.github.io/

152 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Because integration tests exercise larger segments of code than unit tests, and because integration

tests rely on infrastructure elements, they tend to be orders of magnitude slower than unit tests. Thus,

it is a good idea to limit how many integration tests you write and run.

ASP.NET Core includes a built-in test web host that can be used to handle http requests without

network overhead, so you can run those tests faster. It is available in a NuGet component as

Microsoft.AspNetCore.TestHost that can be added to integration test projects and used to host

ASP.NET Core applications. It can serve test requests without the need for a real web host.

As you can see in the following code, when you create integration tests for ASP.NET Core controllers,

you instantiate the controllers through the test host. This is comparable to an HTTP request, but it

runs faster.

public class PrimeWebDefaultRequestShould
{
 private readonly TestServer _server;
 private readonly HttpClient _client;
 public PrimeWebDefaultRequestShould()
 {
 // Arrange
 _server = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
 _client = _server.CreateClient();
 }
 [Fact]
 public async Task ReturnHelloWorld()
 {
 // Act
 var response = await _client.GetAsync("/");
 response.EnsureSuccessStatusCode();

 var responseString = await response.Content.ReadAsStringAsync();

 // Assert
 Assert.Equal("Hello World!",
 responseString);
 }
}

Additional resources

• Steve Smith. Testing controllers (ASP.NET Core)

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

• Steve Smith. Integration testing (ASP.NET Core)

https://docs.microsoft.com/en-us/aspnet/core/testing/integration-testing

• Unit testing in .NET Core using dotnet test

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test

• xUnit.net. Official site.

https://xunit.github.io/

• Unit Test Basics.

https://msdn.microsoft.com/en-us/library/hh694602.aspx

• Moq. GitHub repo.

https://github.com/moq/moq

• NUnit. Official site

https://www.nunit.org/

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing
https://docs.microsoft.com/en-us/aspnet/core/testing/integration-testing
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://xunit.github.io/
https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://github.com/moq/moq
https://www.nunit.org/

153 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Implementing service tests on a multi-container application

As noted earlier, when you test multi-container applications, all the microservices need to be running

within the Docker host or container cluster. End-to-end service tests that include multiple operations

involving several microservices require you to deploy and start the whole application in the Docker

host by running docker-compose up (or a comparable mechanism to run the whole application if you

are using an orchestrator). Once the whole application and all its services is running, you can execute

end-to-end integration and functional tests.

There are a few approaches you can use. In the docker-compose.yml file that you use to deploy the

application (or similar ones like docker-compose.ci.build.yml), at the solution level you can expand the

entrypoint to use dotnet test. You can also use another compose file that would run your tests in the

image you are targeting.

By using another compose file for integration tests that includes your microservices and databases on

containers, you can make sure that the related data is always reset to its original state before running

the tests.

Once the compose application is up-and-running, you can take advantage of breakpoints and

exceptions if you are running Visual Studio orr you can run those integration tests automatically in

your CI pipeline in Visual Studio Team Services or any other CI/CD system that supports Docker

containers.

https://docs.microsoft.com/en-us/dotnet/articles/core/tools/dotnet-test

154 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

S E C T I O N

8

S E C T I O N 9

Tackling Business
Complexity in a
Microservice with DDD
and CQRS Patterns

Most of the techniques for data-driven microservices, such as how to implement an ASP.NET Core

Web API service or how to expose Swagger metadata with Swashbuckle, are also applicable to the

more advanced microservices implemented internally with DDD (Domain-Driven Design) patterns.

This section is an extension of the previous sections, as most of the practices explained earlier also

apply here.

This section focuses on more advanced microservices that you implement when you need to tackle

complexity of subsystems, or microservices derived from the knowledge of domain experts with ever-

changing business rules.

This whole section focuses on the internal architecture, design and implementation of concrete

microservices following more advanced patterns like the once defined in DDD and CQRS, as illustrated

in figure 9-1.

155 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

This chapter provides details on the simplified CQRS patterns used in the eShopOnContainers

reference application. Later, you’ll get an overview of the DDD techniques that enable you find

common patterns that you can reuse in your applications.

DDD is a large topic with a rich set of resources you can use to learn. You can tart by reading books

like “Domain-Driven Design” by Eric Evans and many other literature from people like Vaughn Vernon,

Jimmy Nilsson, Greg Young, Udi Dahan, Jimmy Bogard, and many other DDD/CQRS experts, but most

of all, you need to try to learn how to apply DDD techniques from the conversations, whiteboarding,

and domain modeling sessions with the experts of your concrete business domain.

References – Domain-Driven Design (DDD)

DDD (Domain-Driven Design)

http://domainlanguage.com/

http://martinfowler.com/tags/domain%20driven%20design.html

https://lostechies.com/jimmybogard/2010/02/04/strengthening-your-domain-a-primer/

DDD Books

Domain-Driven Design: Tackling Complexity in the Heart of Software – Eric Evans

Domain-Driven Design Reference: Definitions and Pattern Summaries - Eric Evans

Implementing Domain-Driven Design - Vaughn Vernon

Domain-Driven Design Distilled - Vaughn Vernon

Applying Domain-Driven Design and Patterns - Jimmy Nilsson

Domain-Driven Design Quickly

DDD Training

Domain-Driven Design Fundamentals – Julie Lerman and Steve Smith

http://bit.ly/PS-DDD

Applying simplified CQRS and DDD patterns within

a microservice
CQRS (Command Query Responsibility Separation) is an architectural pattern that separates the

models for reading and writing data.

The related term CQS (Command Query Separation) was originally defined by Bertrand Meyer in his

book "Object Oriented Software Construction". The basic idea is that you can divide a system’s

operations into two sharply separated categories:

• Queries: Return a result and do not change the state of the system (and are free of side

effects).

• Commands: Change the state of a system.

CQS is a simple concept, it is about methods within the same object being either queries or

commands. Each method either returns state or mutates state but not both. Even a single Repository

pattern object can comply with CQS according with that definition. CQS could be It can be considered

as a foundational principle for CQRS.

CQRS (Command and Query Responsibility Segregation) was introduced by Greg Young and also

strongly promoted by Udi Dahan and other advocates. It is based on the CQS principle, although it is

more detailed and can be considered a pattern based on commands and events plus optionally based

on asynchronous messages. In many cases, CQRS is related to more advanced scenarios like having a

https://domainlanguage.com/ddd/
http://domainlanguage.com/
http://martinfowler.com/tags/domain%20driven%20design.html
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=sr_1_1?ie=UTF8&qid=1485298920&sr=8-1&keywords=Eric+Evans+book
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-2014-09-22/dp/B01N8YB4ZO/ref=sr_1_15?ie=UTF8&qid=1485299985&sr=8-15&keywords=%22Eric+Evans%22
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/ref=sr_1_1?ie=UTF8&qid=1485298971&sr=8-1&keywords=vaughn+vernon+book
https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420/ref=sr_1_2?ie=UTF8&qid=1485298971&sr=8-2&keywords=vaughn+vernon+book
https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202/ref=sr_1_2?ie=UTF8&qid=1485299155&sr=8-2&keywords=Jimmy+Nilsson+book
https://www.amazon.com/Domain-Driven-Design-Quickly-Abel-Avram/dp/1411609255/ref=sr_1_1?ie=UTF8&qid=1485299200&sr=8-1&keywords=Domain-Driven+Design+Quickly
http://bit.ly/PS-DDD
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CQRS.html

156 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

different physical database for the Reads/Queries than for the Writes/Updates. Going even further, a

more evolved CQRS system would implement Event-Sourcing (ES) for your Updates/Writes database,

so you would only store events in the Domain Model instead of the current state data. However, and

as mentioned, this is not the case of this approach used in this guidance where we are using the

simplest CQRS approach which is just separating the queries from the commands.

The separation pursued by CQRS is achieved by grouping query operations in one layer and

commands in another layer. Each layer has its own model of data and is built using its own

combination of patterns and technologies. More important, the two layers may be within the same

tier or microservice (like the simplified chosen example approach in this guide) or they could even be

on two distinct tiers/microservices/processes and be optimized separately without affecting each

other.

CQRS means two objects for read/write where once there was one. There are reasons why you would

want to have a de-normilized “reads-database” and you can learn about that in more advanced CQRS

literature, but this is not the case for this more simplifed approach where the main goal is to have

higher flexibility in the queries instead of limiting the queries by constraints from DDD patterns like

aggregates.

An example of this kind of service is the Ordering microservice from the eShopOnContainers reference

application. This type of service implements a microservice based on a simplified CQRS (using a single

data source or database, but two logical models) plus DDD patterns implementation for the

transactional Domain, as shown in the design diagram in figure 9-2.

The Application Layer can be the Web API itself. The important design decision here is that the

microservice has split the Queries and ViewModels (Data models especially made for the client

applications) from the Commands, Domain Model and transactions following a (CQRS or Command

and Query Responsibility Segregation). This approach keeps the queries independent from restrictions

Figure 9-2. Simplified CQRS and DDD based microservice

design

http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

157 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

and constraints coming from Domain-Driven Design patterns that only make sense to transactions

and updates, as explained in later sections.

CQRS and CQS approaches in a DDD microservice
The reference app design is based on CQRS principles but using the simplest approach, which is just

separating the queries from the commands/updates and initially using the same database for both

actions.

The essence of those patterns and the important point here is that queries are idempotent: no matter

how many times you query a system, the state of that system won’t change because of the querying.

Therefore, you could use a different “reads-data-model” than the transactional logic “writes-domain-

model”.

On the other hand, commands (which will trigger transactions and data updates) are what change

state in your system. The commands and updates are where you need to be careful when dealing with

complexity and ever-changing business rules. This is the area where you want to apply Domain-Driven

Design techniques to have a more better modelled system.

The DDD patterns presented here should not be applied universally. They introduce constraints on

your design. Those constraints provide benefits such as higher quality over time, especially in

commands and other code that modifies system state. However, those constraints add complexity

with fewer benefits for reading and querying data.

One such pattern is the Aggregate pattern. In the Aggregate pattern, you treat many domain objects

as a single unit, because of their relationship in the domain. You may not always gain advantages

from this patterns in queries. It will increase the complexity of query logic. For read-only queries, you

don’t gain the advantages of treating multiple objects as a single entity. You only get the complexity.

This guide suggests, as shown in image 9-2, DDD patterns only to the transactional/updates area of

your microservice (triggered by Commands). Queries can follow a simpler approach, but should be

separated from commands and updates following a CQRS approach. You can do this by implementing

straight queries using a Micro ORM like Dapper or any other Micro ORM. You could choose to

implement any query based on SQL sentences to get the best performance, thanks to a very light

framework with very little overhead.

Note that when using this approach, updates to your model that impact how entities are persisted to

a SQL database will necessitate separate updates to SQL queries used by Dapper or other separate

(non-EF) approaches to querying.

CQRS and DDD patterns are not top-level architectures

It’s important to highlight that CQRS and most DDD patterns (like DDD Layers or a Domain Model

with Aggregates) are not architectural styles but only architectural.Microservices, SOA, Event Driven

Architecture are examples of architectural styles. They describe a system of many components (like an

architecture composed by many microservices). CQRS and DDD patterns describe something inside a

single system or component, in this case, something inside a microservice.

https://github.com/StackExchange/dapper-dot-net

158 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Different bounded contexts will employ different patterns. They have different responsibilities, and

that leads to different solutions. It’s worth emphasizing: forcing the same pattern everywhere leads to

failure. Don’t use CQRS and DDD patterns everywhere because many subsystems, Bounded Contexts

or microservices are simpler and can be implemented in an easier way as simple CRUD services or any

other approach depending on what you need to create.

There is only one architecture. It is the one of the system or end-to-end application you are designing.

It has its own set of tradeoffs and decisions that have been made per Bounded Context, microservice

or any boundary you can have per subsystems. Do not try to apply the same architectural patterns like

CQRS or DDD everywhere.

References – CQRS

CQRS

https://martinfowler.com/bliki/CQRS.html

CQS vs. CQRS (by Greg Young)

http://codebetter.com/gregyoung/2009/08/13/command-query-separation/

CQRS Documents (Greg Young)

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

CQRS, Task Based UIs and Event Sourcing (Greg Young)

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Clarified CQRS (Udi Dahan)

http://udidahan.com/2009/12/09/clarified-cqrs/

CQRS

http://cqrs.nu/Faq/command-query-responsibility-segregation

Event-Sourcing (ES)

http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/

Implementing the Reads/Queries in a CQRS

microservice
As the chosen Reads/Queries implementation example, the Ordering microservice from the

eShopOnContainers reference application has implemented the queries independently from the

Domain-Driven Design model and transactional area. Mainly because the demands for each are

drastically different (Reads vs. Writes).

It is a very simple approach as show in figure 9-3 where the API interface would be implemented by

the Web API controllers using any infrastructure (like a MicroORM like Dapper) and returning dynamic

ViewModels depending on the needs from the UI applications.

http://udidahan.com/2009/12/09/clarified-cqrs/

159 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

This is the simplest possible approach for queries. The query definitions query the database and

return a dynamic ViewModel built “on-the-fly” per each query. Since the queries are idempotent, you

don’t need to be restricted by any DDD pattern used in the transactional side (like Aggregates and

other patterns) but simply query the database for the data the UI needs and return that as a dynamic

ViewModel that doesn’t need to be statically defined anywhere (no classes for the ViewModels) but in

the SQL sentences themselves.

Since it is very simple approach, the required code for the “Queries side” like code using a MicroORM

as Dapper can be implemented within the same Web API project as shown in figure 9-4 where the

queries are defined in the Ordering.API microservice project within the eShopOnContainers solution.

ViewModels specifically made for client apps, independent from the

domain model constraints

Since the queries are performed to obtain the data needed by the client applications, the returned

type can be specifically made for them, based on the data returned by the queries. These specific

models or DTOs (Data Transfer Object) are called ViewModels.

The returned data (ViewModel) can be the result of joining data from multiple entities or tables in the

database even across multiple Aggregates defined in the Domain model for the transactional area. In

this case, because you are creating queries independent of the Domain Model, the Aggregates

Figure 9-4. Queries in the Ordering microservice from eShopOnContainers

Figure 9-3. Simplest approach for queries in a CQRS microservice

https://github.com/StackExchange/Dapper

160 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

boundaries and constraints are completely ignored and you are free to query any table and column

you might need. This approach provides great flexibility and productivity for the developers creating

or updating the queries.

The ViewModels can be static types, defined in classes, or can also be created dynamically based on

the queries performed, which is very agile for developers.

Dapper: selected Micro ORM as mechanism to query in the

eShopOnContainers sample ordering microservice

You could use any Micro ORM, Entity Framework Core, or even plain ADO.NET for querying.

Dapper was selected for the Ordering microservice in the eShopOnContainers sample as a good

example of a solid and popular Micro ORM. It can run plain and fast SQL queries with great

performance, being a very light framework.

Dapper is an open source project (original created by Sam Saffron) and part of the building blocks

used in Stack Overflow.

Using Dapper, you can write a SQL query that could be accessing and joining multiple tables.

To use Dapper, you just need to install it through NuGet.

You will also need to add a using statement so your code has access to Dapper’s extension methods.

When using Dapper in your code, you directly use the SqlClient class available in

theSystem.Data.SqlClient namespace. Through the QueryAsync<>() method and other extension

methods which extend the SqlClient class, you can simply run queries in a very straightforward and

performant way.

Dynamic and static ViewModels

In the Ordering microservice, most of the ViewModels returned by the queries are implemented as

dynamic. That means that the subset of attributes to be returned will be based on the query itself. If

you add a new column to the query or join, that will be dynamically added to the returned

ViewModel. This reduces the need to modify queries in response to updates to the underlying data

model, making this design approach more flexible and tolerant of future changes.

using Dapper;
using Microsoft.Extensions.Configuration;
using System.Data.SqlClient;
using System.Threading.Tasks;
using System.Dynamic;
using System.Collections.Generic;

public class OrderQueries : IOrderQueries
{
 public async Task<dynamic> GetOrders()
 {

https://stackoverflow.com/

161 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();

 return await connection.QueryAsync<dynamic>(@"SELECT o.[Id] as
ordernumber,o.[OrderDate] as [date],os.[Name] as [status],SUM(oi.units*oi.unitprice) as total
 FROM [ordering].[Orders] o
 LEFT JOIN[ordering].[orderitems] oi ON o.Id = oi.orderid
 LEFT JOIN[ordering].[orderstatus] os on o.StatusId = os.Id
 GROUP BY o.[Id], o.[OrderDate], os.[Name]");
 }
 }

}

The important point to highlight is how by using a dynamic type, the returned collection of data will

be dynamically assembled as the desired ViewModel.

For most of the queries you don’t need to pre-define any DTO or ViewModel class so it is very

straightforward code and very productive. However, you could also pre-define ViewModels (like pre-

defined DTOs) if you want to have ViewModels with a more restricted definition as contracts.

References – Dapper

Dapper

https://github.com/StackExchange/dapper-dot-net

Data Points - Dapper, Entity Framework and Hybrid Apps (MSDN Mag. article by Julie Lerman)

https://msdn.microsoft.com/en-us/magazine/mt703432.aspx

https://github.com/StackExchange/dapper-dot-net

162 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Designing a domain-driven design-oriented

microservice
Domain Driven Design advocates modeling based on the reality of business as relevant to your use

cases. When building applications, DDD talks about problems as domains. It describes independent

problem areas as Bounded Contexts (each bounded context correlates to a microservice), and

emphasizes a common language to talk about these problems. It also suggests many technical

concepts and patterns, like Domain Entities with rich-models (no anemic-domain model), Value-

Objects, Aggregate and Aggregate-Root rules to support the internal implementation. This section

introduces the design and implementation of those internal patterns.

It is important to highlight that sometimes these DDD technical rules and patterns are perceived as

hard barriers implementing DDD, but in the end, people tend to forget that the important part is to

organize code artifacts in alignment with business problems and using the same common, ubiquitous

language. Also, DDD approaches should be applied only when implementing complex microservices

with ever-changing business rules. Simpler responsibilities, like a CRUD service can be managed with

simpler solutions.

Where to draw the boundaries is the key task when designing, and defining a microservice. The

Domain Driven Design patterns help you understand the complexity in the domain. You draw a

bounded context around Entities, Value Objects, and Aggregates that model your domain. You build

and refine a model that represents your domain and that model is contained within a boundary that

defines your context. And that is very explicit in the form of a microservice. The components within

those boundaries end up being your microservices. Microservices are about boundaries and so is

DDD.

Keep the microservice context boundaries relatively small

Determining where to place boundaries between Bounded Contexts balances two competing goals:

First, you want to create the smallest possible microservices. Second, you want to avoid chatty

communications between microservices. These goals contradict each other. You should balance them

by decomposing the system into as many small microservices as you can, until you start to see

communication boundaries growing quickly with each additional attempt to separate a new Bounded

Context.

Layers in domain-driven design microservices

All sufficiently complex enterprise applications consist of multiple layers. From a user’s perspective,

the layers are abstracted away and they exist solely to assist the programmer in managing all the

emergent complexity. Distinct layers imply that translation must happen between some of the layers

for information to propagate. For example, in a typical enterprise use case, an entity is loaded from

the database, operated upon, persisted back to the database and information regarding the operation

is returned to the user client app through a service/application layer, perhaps via a REST Web API

service. The entity is contained within the domain layer and should not be forced into areas it doesn’t

belong, like in the presentation layer where a specific MVC view may require a user to enter

information in several steps (basket, buying process, etc.). For instance, the user can enter the order’s

product item first, but the order might still have unspecified info about shipping or billing information.

If the client application was using the Domain Entity, that target entity could be in invalid state. That is

https://martinfowler.com/bliki/AnemicDomainModel.html

163 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

not good. You need to have Always-valid entities (see the Validations in Domain-Driven Design

section) controlled by Aggregate-Roots, so entities should not be bound to the client Views - this is

what the ViewModel is for. The ViewModel is a building block of the presentation layer and the

domain entity doesn’t belong there. Instead, an appropriate domain layer entity should be created

based on data contained in the view model. This can be done directly or by passing a DTO to a

service. When tackling complexity, it is important to have a Domain Model controlled by Aggregate-

Roots and following Domain-Driven Design patterns.

A service designed based on DDD patterns will usually be composed by several internal layers.

The following figure 9-5 shows how that design is implemented in the eShopOnContainers app.

Layers are abstractions. You want to design the system so that each layer communications only with

adjacent layers. That may be easier to enforce if layers are implemented as distinct class libraries. For

instance, the Domain-Model Layer should not take any dependency on any other layer (the Domain

Model classes should be POCO classes) as shown in figure 9-6 below about the Ordering.Domain

layer library which only has dependencies with the .NET Core libraries.

Eric Evans's excellent book Domain Driven Design says the following about the Domain Model Layer

and Application Layer.

Figure 9-5. DDD Layers in the Ordering microservice from eShopOnContainers

Figure 9-6. Layers implemented as libraries allow a better control of

dependencies

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
http://domainlanguage.com/ddd/

164 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

“Domain Model Layer: Responsible for representing concepts of the business, information about the

business situation, and business rules. State that reflects the business situation is controlled and used

here, even though the technical details of storing it are delegated to the infrastructure. This layer is the

heart of business software.”

The Domain Layer is where the business is expressed. When implementing a microservice’s Domain

Model Layer in .NET, that layer would be coded as a class library with the domain entities that will

capture data plus behavior (methods).

Following the Persistence Ignorance and the Infrastructure Ignorance principles, this layer must

completely ignore the data persistence details. These persistence tasks should be performed by the

infrastructure layer. Therefore, this layer should not take direct dependencies on the infrastructure,

which means that an important rule should be that your Domain Model entity classes should be

POCO (Plain-Old CLR Objects). Domain Entities should not have any direct dependency with any data-

access infrastructure framework like Entity Framework or NHibernate or any other data-access

framework. Ideally, your Domain entities should not derive or implement any type defined in any

infrastructure framework.

Luckily, most modern ORM frameworks like Entity Framework Core allow this approach so your

domain model classes are not coupled to the infrastructure. However, having POCO entities is not

always possible when using certain NoSQL persistence and frameworks like Actors and Reliable

Collections in Azure Service Fabric.

 “Application Layer: Defines the jobs the software is supposed to do and directs the expressive domain

objects to work out problems. The tasks this layer is responsible for are meaningful to the business or

necessary for interaction with the application layers of other systems. This layer is kept thin. It does not

contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of

domain objects in the next layer down. It does not have state reflecting the business situation, but it can

have state that reflects the progress of a task for the user or the program.”

A microservice’s Application Layer in .NET is coded as an ASP.NET Core Web API project which

implements the microservice’s interaction, remote network access and external Web APIs to be used

from the UI or client apps. It includes queries if using a CQRS approach, commands accepted by the

microservice, and even the event-driven communication between microservices. The ASP.NET Core

Web API (representing the Appliation Layer) must not contain business rules or domain knowledge

(especially domain rules for transactions or updates), which should be owned by the Domain Model

class library. The Application Layer (in this case an ASP.NET Core Web API project) must only

coordinate tasks and must not hold or define any domain state (domain model), but it will delegate

the business rules execution to be run by the domain model classes themselves (Aggregate Roots and

Domain Entities), which will ultimately update the data within those domain entities.

Basically, the application logic is where you implement all use cases that depend on a given front end,

implementation for instance related to Web API or specific interfaces/contracts for your services front-

end. The domain logic placed in the domain layer, however, is invariant to use cases and entirely

reusable across all flavors of presentation and application layers you might have, and it must not

depend on any infrastructure framework.

Infrastructure Layer: How the data initially held in domain entities in-memory will be persisted in

databases or any other persistent store is a different matter. It will be implemented in the

http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

165 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Infrastructure Layer, as when using Entity Framework Core code to implement the Repository pattern

classes that use DBContext to persist data in a relational database.

In accordance with the previously mentioned Persistence Ignorance and the Infrastructure Ignorance

principles, the Infrastructure Layer must not contaminate the Domain-Model layer. You must keep the

Domain-Model entity classes agnostic from the infrastructure that you use to persist data (EF or any

other framework) by not taking hard dependencies on frameworks. Your Domain-Model layer class

library should have only your domain code, just POCO entity classes implementing the heart of your

software completely decoupled from invasive infrastructure technologies.

Thus, your layers or class libraries and projects should ultimately depend on your Domain Model

layer/library, not vice versa, as shown in the figure 9-7.

That layer’s design should be independent per microservice, and as mentioned previously, you can

implement your most complex microservices following DDD patterns, while implementing them in a

much simpler way (simple CRUD in a single layer) for simpler data-driven microservices.

References – Persistence Ignorance principles

Persistence Ignorance principle

http://deviq.com/persistence-ignorance/

Infrastructure Ignorance principle

https://ayende.com/blog/3137/infrastructure-ignorance

Designing a microservice domain model
One rich Domain Model per Microservice

Your goal is to create a single cohesive domain model for each microservice. Each Bounded Context

has its own Domain Model, and the implementation of that Domain Model is a Microservice.

The Domain model must capture the rules, behavior, business language and constraints of the single

Bounded Context it represents.

Figure 9-7. Dependencies between Layers in DDD

http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance

166 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The Domain Entity pattern

Entities represent domain objects and are primarily defined by their identity, continuity, and

persistence over time, not only by the attributes that comprise them.

Per Eric Evans’ definition, “An object primarily defined by its identity is called an Entity”. Entities are very

important in the Domain model and they should be carefully identified and designed.

Entities across multiple microservices or Bounded Contexts

The same identity may be modelled in multiple different bounded contexts. However, that does not

imply that the same entity wo0uld be implemented in multiple bounded contexts. Rather, entities in

each bounded context would limit its attributes and behaviors to those required in that bounded

context. For instance, the Customer entity might have most of the person’s attributes in the Profile or

Membership microservice. However, the Buyer entity in the Ordering microservice (which shares its

identity with the Customer entity) might have fewer attributes, because you only care about certain

Buyer data related to the order process. The context of each microservice impacts the microservice’s

domain model.

Domain Entities must implement behavior in addition to data attributes

A Domain Entity in DDD must implement the domain logic related to the entity data (the object

accessed in memory). For example, as part of an Order entity class you must have business logic and

operations like adding an order item, data validation, or total calculation implemented as methods

within the same entity class.

Figure 9-8 shows a diagram of a Domain Entity which clearly implements not only data attributes but

also operations or methods with related domain logic.

Of course, you could also have entities that do not implement any logic as part of the entity class, but

this should only happen if that entity represents a DTO or other type with no domain logic. If you

have a complex microservice that has a lot of logic implemented in the service classes instead of

Figure 9-8. Example of Domain Entity Design implementing data plus

behavior

167 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

within the domain entities, you could be falling into the Anemic Domain Model, explained in the

following section.

Rich Domain Model vs. Anemic Domain Model

As Martin Fowler described in Anemic Domain Model, an Anemic Domain Model is basically a data

model implemented as a collection of classes with attributes or properties. There are entity objects,

most of them based on the nouns in the domain space, and these objects related to the domain’s

logic. The catch comes when you look at the behavior of those entity objects, and you realize that

there is hardly any behavior in these objects, making them little more than a DTO data class with

getters and setters. Of course, these data models will be used from a set of service objects (typically

named Business Layer) which capture all the domain or business logic. The Business Layer sits on top

of the data-model and use that data-model just for data.

The anemic domain model is just a procedural style design. Anemic entity objects are not real objects

because they lack behavior (methods). They only hold data properties and thus completely miss the

point of what object-oriented design is all about. By putting all the behavior out into service objects

(Business Layer) you essentially end up with spaghetti code or Transaction Scripts, and therefore you

lose the advantages that a domain model provides.

Regardless, if your microservice (or Bounded Context) is very simple, data-driven or CRUD, the anemic

domain model (entity objects with just data properties) might be good enough and it might not be

worth implementing more complex DDD patterns.

Some people might say that the Anemic Domain Model is an anti-pattern. It really depends on what

you are implementing. If the microservice you are creating is simple enough and CRUD, probably it is

not an anti-pattern. However, if you need to tackle the complexity of a specific microservice’s Domain

which has a lot of ever-changing business rules, then the Anemic Domain Model might be an anti-

pattern for that particular microservice or Bounded Context and designing it as a rich model with

entities containing data plus behavior as well as implementing additional DDD patterns (Aggregates,

Value-Objects, etc.) might have huge benefits for the long-term success of such a microservice.

References – Domain Entity pattern , Domain Model and Anemic Domain Model

Domain Entity

http://deviq.com/entity/

The Domain Model

https://martinfowler.com/eaaCatalog/domainModel.html

The Anemic Domain Model

https://martinfowler.com/bliki/AnemicDomainModel.html

The Value-Object pattern

“Many objects do not have conceptual identity. These objects describe certain characteristics of a thing.”

[Eric Evans]

There are many objects in a system that do not require an identity, whereas an Entity does.

The definition of Value-Object is: An object with no conceptual identity that describes a domain

aspect. In short, these are objects that you instantiate to represent design elements which only

concern you temporarily. You care about what they are, not who they are. Basic examples are

numbers, strings, and such, but they also exist for higher level concepts like groups of attributes.

https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/eaaCatalog/transactionScript.html

168 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

What may be an Entity in a microservice may not be an Entity in another microservice, because in the

second case, Bounded Context might have a different meaning. For example, an address in some

systems may not have an identity at all, since it may only represent a set of attributes of a person or

company. That would be a Value-Object. That could be the case in an e-commerce application; the

address may simply be a group of attributes of the customer’s profile. In this case, the address doesn’t

have an identity per se and should be classified as a Value-Object pattern.

However, in other systems such as an application for an electric power utility company, the customer’s

address could be important for the business domain. Therefore, the address must have an identity so

the billing system can be directly linked to the address. In this case, an address should be classified as

a Domain Entity.

References – Value-Object pattern

• https://martinfowler.com/bliki/ValueObject.html

• http://deviq.com/value-object/

• https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects

• Value-Object in ”Domain Driven Design” Book - Eric Evans.

The Aggregate pattern

A Domain-Model contains clusters of different data entities and processes that can control a

significant area of functionality such as order fulfilment or inventory. A more finely grained DDD unit

is the Aggregate which describes a cluster or group of entities and behaviors that can be treated as a

single cohesive unit.

You usually define an Aggregate based on the transactions that you need. A classic example is an

order that also contains a list of order items. An OrderItem will usually be an Entity, but it will be a

child entity within the Order Aggregate which will also contain the Order entity as its root-entity,

typically called an Aggregate Root.

Identifying Aggregates can be hard. An aggregate is a group of objects that must be consistent

together, but you can’t just pick some objects and say “this is an aggregate”. You start with modelling

a Domain concept and thinking about the entities that need to be used within your most common

transactions, and then you can identify the aggregates in your model. Thinking about transaction

operations is probably the best way to identify aggregates.

The Aggregate-Root or Root-Entity pattern

An aggregate will be composed of at least one entity: the Aggregate Root (AR), also called root-entity

or primary entity. Additionally, it can have multiple child entities and Value-Objects, with all entities

and objects working together to implement required behavior and transactions.

The purpose of an Aggregate Root is to ensure the consistency of the aggregate; it should be the only

entry point for updates to the aggregate through methods or operations placed in the Aggregate

Root class. You should make changes to entities within the aggregate only via the Aggregate-Root. It

is the aggregate’s consistency guardian, taking into account all the invariants and consistency rules

you might need to comply with in your aggregate. If you change a child entity or VO (Value Object)

independently, the Aggregate Root cannot ensure the aggregate is in a valid state. It would be like a

table with a loose leg. Maintaining consistency is the main purpose of the Aggregate Root.

https://martinfowler.com/bliki/ValueObject.html
http://deviq.com/value-object/
https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects
http://domainlanguage.com/ddd/

169 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

In figure 9-9, you can see sample aggregates like the Buyer aggregate which contains a single entity

(the Aggregate Root “Buyer”); the Order aggregate contains multiple entities and a Value-Object.

Note that the Buyer aggregate could have additional child entities depending on your Domain, as it

has in the sample Ordering microservice in the eShopOnContainers sample reference application. The

figure 9-9 is just a case supposing that it could have a single entity, as an example of aggregate

holding only an aggregate-root.

Identifying and working with aggregates requires research and experience. Below are a few articles

and blog posts which drill down deeply into the subject and are very much recommended.

References – Aggregate related patterns

The Aggregate pattern

http://deviq.com/aggregate-pattern/

Effective Aggregate Design - Part I: Modeling a Single Aggregate

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_1.pdf

Effective Aggregate Design - Part II: Making Aggregates Work Together

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_2.pdf

Effective Aggregate Design - Part III: Gaining Insight Through Discovery

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_3.pdf

DDD Tactical Design Patterns

https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part

Developing Transactional Microservices Using Aggregates

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

Figure 9-9. Aggregate pattern examples

http://deviq.com/aggregate-pattern/
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

170 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Implementing a microservice’s domain model with

.NET Core
In the previous section, the fundamental design principles and patterns to design a domain model

were explained. Now it’s time to drill down into possible ways to implement the Domain Model by

using .NET Core (plain C# code) and EF Core. (EF Core model requirements only. You shouldn’t have

hard dependencies or references to EF Core in your Domain Model).

Domain model structure in a .NET Core Standard Library

The folder organization used for the eShopOnContainers reference application demonstrates the DDD

model for the application. You may find that a different folder organization more clearly

communicates the design choices made for your application.As you can see in figure 9-10, in the

Ordering Domain-Model there are two identified Aggregates, the Order aggregate and the Buyer

aggregate. Each aggregate is a group of domain entities and value-objects, although you could have

an aggregate composed of a single domain entity (the Aggregate-Root or Root Entity) as well.

Additionally, in the Domain-Model layer includes the Repository contracts and interfaces that are the

infrastructure requirements of your model, but not the infrastructure implementation of those

repositories. They should be implemented outside of the domain model layer, in the infrastructure

layer library.

Figure 9-11. Domain Model structure for the Ordering

microservice

171 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

You can also see a SeedWork folder which contains custom base classes that you can use as a base for

your domain entities and value-objects, so you don’t have to repeat redundant code in each domain’s

object class.

Structuring aggregates in a .NET Standard Library

The concept of an aggregate refers to a cluster of domain objects grouped together to match

transactional consistency. Those objects could be instances of entities (one of which is the Aggregate-

Root or Root-entity) plus any additional Value-Objects.

Transactional consistency means that an aggregate is guaranteed to be consistent and up-to-date at

the end of a business action.

For example, the Order aggregate is composed of the following elements extracted from the

eShopOnContainers Ordering microservice domain model, as shown in the figure 9-12.

To see what kind of entity or object is contained in each class within an aggregate, you need to open

its code and see how it is marked with the custom base classes or Interfaces implemented in the

SeedWork folder.

Implementing domain Entities as POCO classes

The way you implement a domain model in .NET is by creating POCO classes that implement your

domain entities. In the following code, the Order class is defined as an entity and also as an

Aggregate Root. Because the Order class is deriving from the base class Entity, it can re-use common

code related to entities. Keep in mind that these base classes and interfaces are defined by you here

in the domain model project, so it is your code, not infrastructure code from any ORM like EF.

Entity Framework Core 1.0

 // Entity is a custom base class with the Id
 public class Order : Entity, IAggregateRoot
 {
 public int BuyerId { get; private set; }
 public DateTime OrderDate { get; private set; }
 public int StatusId { get; private set; }
 public ICollection<OrderItem> OrderItems { get; private set; }
 public Address ShippingAddress { get; private set; }
 public int PaymentId { get; private set; }

 protected Order() { } //Needed only by EF Core 1.0

 public Order(int buyerId, int paymentId)

Figure 9-12. The “Order” aggregate in the VS solution

https://martinfowler.com/bliki/Seedwork.html
https://martinfowler.com/bliki/Seedwork.html

172 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 {
 BuyerId = buyerId;
 PaymentId = paymentId;
 StatusId = OrderStatus.InProcess.Id;
 OrderDate = DateTime.UtcNow;
 OrderItems = new List<OrderItem>();
 }
 public void AddOrderItem(productName,
 pictureUrl,
 unitPrice,
 discount,
 units)
 {
 //...
 // Domain Rules/Logic related to the OrderItem being added to the order
 // ...
 OrderItem item = new OrderItem(this.Id, ProductId, ProductName,
 PictureUrl, UnitPrice, Discount, Units);
 OrderItems.Add(item);
 }

 // ...
 // Additional methods with Domain Rules/Logic related to the Order Aggregate
 // ...

The important fact to highlight about the above code snippet is that this is a Domain Entity

implemented as a POCO class. It doesn’t have any direct dependency to Entity Framework Core or any

other infrastructure framework. It is as it should be, just your C# code implementing your Domain

Model.

In addition to that, it is also decorated with an interface named IAggregateRoot. That interface is an

empty interface, sometimes called a marker interface, which is used just to say that this entity class is

also an Aggregate-Root or the root entity of the aggregate. That means that most of the code related

to the consistency and business rules of the aggregate’s entities should be implemented as methods

in the Order Aggregate-Root class (for example, AddOrderItem() when adding an OrderItem to the

Aggregate). You should not create or update OrderItems independently or directly; the

AggregateRoot class must keep the control and consistency of any update operation against its child

entities.

For example, you shouldn’t do the following from any CommandHandler method or application layer

class:

Wrong according to DDD patterns – Code at the application layer or Command Handlers

//My code in CommandHandlers or Web API controllers

//... (WRONG) Some code with business logic out of the Domain classes…

OrderItem myNewOrderItem = new OrderItem(orderId, productId, productName, pictureUrl, unitPrice,

discount, units);

//... (WRONG) Accessing the OrderItems colletion directly from the application layer or command handlers

myOrder.OrderItems.Add(myNewOrderItem);

//...

173 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

In this case, the Add() operation is purely an operation to add data, with direct access to the

OrderItems collection. Therefore, most of the domain logic, rules or validations related to that

operation with the child entities will be spread across the application layer (Command-Handlers and

Web API controllers). Eventually you’ll have spaghetti code, or a transactional script code

implementation.

Following DDD patterns entities must not have public setters in any entity’s property.

Going further, collections within the entity (like the order items) should be read-only properties (check

the “.AsReadOnly()” pattern explained later) so you should be only able to update it from within the

Aggregate root class methods.

As you can see in the code implementing the Order Aggregate-Root, all setters should be private, so

any operation against the entity’s data or its child entities will need to be performed through methods

in the Aggregate-Root class. This will keep consistency in a more controlled and object-oriented way

instead of doing a transactional script code implementation.

The following code snippet shows the proper code when adding an OrderItem to the Order

aggregate.

Right according to DDD – Code at the application layer or Command Handlers

//My code in CommandHandlers or WebAPI controllers, only related to application stuff

// NO code here related to OrderItem’s business logic

myOrder.AddOrderItem(productId, productName, pictureUrl, unitPrice, discount, units);

// The code related to OrderItem params validations or domain rules should be within AddOrderItem()

//...

The important point here is that most of the validations or logic related to the creation of an

OrderItem will be under the control of the Order aggregate-root, within the AddOrderItem()

method, especially validations and logic related to other elements in the Aggregate. For instance, you

might get the same product item as multiple AddOrderItem(params) invocations. In this method,

you could check that out and consolidate the same product items in a single OrderItem with several

units. Additionally, if there are different discount amounts but the product Id is the same, you would

likely apply the higher discount. This principle applies to any other domain logic for the OrderItem.

In addition, the operation new OrderItem(params) will also be controlled and performed by the

AddOrderItem() method from the Order aggregate-root, so most of the logic or validations related

to that operation (especially if it impacts the consistency between other child entities) will be in a

single place within the aggregate root. That is the ultimate purpose of the Aggregate Root pattern.

When using Entity Framework 1.1, a DDD entity can be better expressed because one of the new

features of Entity Framework Core 1.1 is that it allows mapping to fields in addition to properties. This

is extremely useful when protecting collections of child entities or value objects.

Now, you can use simple fields instead of properties and implement any update to the field collection

in public methods and providing read only access through the “.AsReadOnly()” pattern.

https://docs.microsoft.com/en-us/ef/core/modeling/backing-field

174 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

In DDD you want to update the entity only through methods in the entity (or the constructor) in order

to control any invariant and consistency of the data, so properties with only a get accessor are

defined. The properties are backed by private fields. Private members can only be accessed from

within the class. However, there’s one exception: EF Core needs to set these fields as well.

Entity Framework Core 1.1 or later

// Entity is a custom base class with the Id
public class Order : Entity, IAggregateRoot
{
 // DDD Patterns comment
 // Using private fields, allowed since EF Core 1.1, is a much better encapsulation
 // aligned with DDD Aggregates and Domain Entities (Instead of properties
 // and property collections)
 private bool _someOrderInternalState;
 private DateTime _orderDate;

 public Address Address { get; private set; }

 public Buyer Buyer { get; private set; }
 private int _buyerId;

 public OrderStatus OrderStatus { get; private set; }
 private int _orderStatusId;

 // DDD Patterns comment
 // Using a private collection field, better for DDD Aggregate's encapsulation
 // so OrderItems cannot be added from "outside the AggregateRoot" directly
 // to the collection, but only through the
 // OrderAggrergateRoot.AddOrderItem() method which includes behavior.
 private readonly List<OrderItem> _orderItems;

 public IEnumerable<OrderItem> OrderItems => _orderItems.AsReadOnly();
 // Using List<>.AsReadOnly()
 // This will create a read-only wrapper around the private list so is protected
 // against "external updates". It's much cheaper than .ToList() because it will
 // not have to copy all items in a new collection.
 // (Just one heap alloc for the wrapper instance)
 // https://msdn.microsoft.com/en-us/library/e78dcd75(v=vs.110).aspx

 public PaymentMethod PaymentMethod { get; private set; }
 private int _paymentMethodId;

 protected Order() { }

 public Order(int buyerId, int paymentMethodId, Address address)
 {
 _orderItems = new List<OrderItem>();
 _buyerId = buyerId;
 _paymentMethodId = paymentMethodId;
 _orderStatusId = OrderStatus.InProcess.Id;
 _orderDate = DateTime.UtcNow;
 Address = address;
 }

 // DDD Patterns comment
 // This Order AggregateRoot's method "AddOrderitem()" should be the only way
 // to add Items to the Order, so any behavior (discounts, etc.) and validations are
 // controlled by the AggregateRoot in order to maintain consistency
 // between the whole Aggregate.

175 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 public void AddOrderItem(int productId, string productName, decimal unitPrice,
 decimal discount, string pictureUrl, int units = 1)
 {
 // ...
 // Domain Rules/Logic related to the OrderItem being added to the order
 // ...
 OrderItem item = new OrderItem(this.Id, productId, productName,
 pictureUrl, unitPrice, discount, units);
 OrderItems.Add(item);
 }

 // ...
 // Additional methods with Domain Rules/Logic related to the Order Aggregate
 // ...

}

Mapping properties with only get accessors to the fields in the database table

When using EF 1.0, within the DbContext, you need to map the properties that you defined with only

get accessors to the actual fields in the database table. This is done with the HasField method of the

PropertyBuilder.

Mapping Fields without Properties

With this new feature in EF Core 1.1 to map columns to fields, it’s also possible to not use properties,

and instead just to map columns from a table to fields. A common use for that would be private fields

for any internal state that doesn’t need to be accessed from outside the entity.

For example, the _someOrderInternalState field has no related property for either setter or getter.

That field will also be calculated within the order’s business logic and used from the order’s methods,

but it needs to be persisted in the database as well. So, in EF 1.1 there’s a way to map a field without a

related property to a column in the database. This is also explained in the Infrastructure Layer section

of this guide.

References – Implementing Aggregates and Domain Entities

Modeling Aggregates with DDD and Entity Framework (By Vaughn Vernon)

https://vaughnvernon.co/?p=879 (Note that this is NOT Entity Framework Core)

Coding for Domain-Driven Design: Tips for Data-Focused Devs (Julie Lerman)

https://msdn.microsoft.com/en-us/magazine/dn342868.aspx

How to create fully encapsulated Domain Models (Udi Dahan)

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

The SeedWork or reusable base classes and interfaces for your domain

model

As mentioned, in the solution folder you can also see a SeedWork folder which contains custom base

classes that you can use as a base for your domain entities and value-objects, so you don’t have to

repeat redundant code in each domain’s object class.

It’s called SeedWork instead of framework because it is just a small subset of reusable classes, but it

cannot be considered a framework. Seedwork is a term introduced by Martin Fowler, but you could

also name that folder “Common” or any other name.

https://vaughnvernon.co/?p=879
https://msdn.microsoft.com/en-us/magazine/dn342868.aspx
https://www.martinfowler.com/bliki/Seedwork.html

176 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 9-12 shows the classes that form the SeedWork of the Domain Model in the Ordering

microservice. It is just the custom “Entity” base class plus a few interfaces of the requirements asked to

the implementation layer to have implemented. Those interfaces are also used through Dependency

Injection from the application layer.

This is the type of copy and paste reuse that many developers share between projects, not a formal

framework. You can have SeedWorks within any layer or library, however, when it gets big enough,

you might want to create a single class library just for itself.

The custom Entity base class

The following code is an example of an Entity base class where you can place code that can be used

the same way by any Domain Entity, such as the entity Id, equality operators, etc.:

Entity Framework Core 1.1

 public abstract class Entity
 {

 int? _requestedHashCode;
 int _Id;

 public virtual int Id
 {
 get
 {
 return _Id;
 }
 protected set
 {
 _Id = value;
 }
 }

 public bool IsTransient()
 {
 return this.Id == default(Int32);
 }

 public override bool Equals(object obj)
 {
 if (obj == null || !(obj is Entity))
 return false;

 if (Object.ReferenceEquals(this, obj))
 return true;

 Entity item = (Entity)obj;

 if (item.IsTransient() || this.IsTransient())
 return false;

Figure 9-12. A sample Domain Model “Seedwork” with base classes and

interfaces/contracts

https://msdn.microsoft.com/en-us/library/c35t2ffz.aspx

177 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 else
 return item.Id == this.Id;
 }

 public override int GetHashCode()
 {
 if (!IsTransient())
 {
 if (!_requestedHashCode.HasValue)
 _requestedHashCode = this.Id.GetHashCode() ^ 31;
 // XOR for random distribution. See:
 // http://blogs.msdn.com/b/ericlippert/archive/2011/02/28/guidelines-
 // and-rules-for-gethashcode.aspx
 return _requestedHashCode.Value;
 }
 else
 return base.GetHashCode();
 }

 public static bool operator ==(Entity left, Entity right)
 {
 if (Object.Equals(left, null))
 return (Object.Equals(right, null)) ? true : false;
 else
 return left.Equals(right);
 }

 public static bool operator !=(Entity left, Entity right)
 {
 return !(left == right);
 }
 }
}

Repository contracts and interfaces placed in the domain model layer

The Repository contracts are simply .NET interfaces that express the contract requirements of the

Repositories to be used per each Aggregate. The Repositories themselves, with EF Core code or any

other infrastructure dependencies and code, must not be implemented within the Domain Model;

only the contracts or interfaces you demand to be implemented.

A pattern related to this practice (placing the Repository Interfaces in the Domain Layer) is the

Separated Interface pattern defined by Martin Fowler as “Use Separated Interface to define an interface

in one package but implement it in another. This way a client that needs the dependency to the interface

can be completely unaware of the implementation”. Following the Separated Interface pattern enables

the application layer (in this case, the Web API project for the microservice) to have a dependency on

the requirements defined in the Domain Model, but not a direct dependency to the

infrastructure/persistence layer. In addition, you can use Dependency Injection to isolate the

implementation, which is implementedin the infrastructure/ persistence layer using Repositories.

For example, the following code snippet with the IOrderRepository interface defines what

operations need to implement the OrderRepository in the infrastructure layer library. In the current

implementation of the application it just needs to add the order to the database, since queries are

split following the CQS approach and updates to Orders are not implemented in this implementation.

 public interface IOrderRepository : IRepository<Order>

178 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 {
 Order Add(Order order);
 }

 public interface IRepository<T> where T : IAggregateRoot
 {
 IUnitOfWork UnitOfWork { get; }
 }

References – Repository Contracts

Separated Interface pattern (By Martin Fowler)

http://www.martinfowler.com/eaaCatalog/separatedInterface.html

Value objects

“Many objects do not have conceptual identity. These objects describe certain characteristics of a

thing.” [E.E.]

As shown in previos sections when drilling down on entities and aggregates, the identity is

fundamental for the entities; however, there are many objects and data in a system that do not

require such an identity and identity tracking.

The definition of Value Obects is: Objects that describe things; to be more accurate, an object with no

conceptual identity that describes a domain aspect. In short, these are objects that we instantiate to

represent design elements which only concern us temporarily. We care about what they are, not who

they are. Basic examples are numbers, strings, etc. but they also exist in higher level concepts. For

example, an “Address” in some systems/domains could be an entity because in that system an address

is important as an identity, like in an electric power utility. But in most domain/systems, the “Address”

can be simply a Value Object, a descriptive attribute of a company or person.

A Value Obects can also reference other entities. For example, in an application that generates a

Route about how to get from one point to another, that route would be a Value Obect (it would be a

“snapshot” of points on how to go through an specific route, but this suggested route won’t have an

identity) even though internally it is referring to different entities (City, Roads, etc. if those were

entities in that domain).

The following example shows a diagram of the Address Value Object within the Aggregate Order:

179 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 9-13. Value Object “Address” within the Order Agreggate

As shown in figure 9-13, an Entity is usually composed by multiple attributes. For example, the Order

can be modeled as an Entity with an identity and composed internally by a set of attributes such as

OrderId, date, Items, etc. But then, the address, which is simply a “complex value” composed by

country, street, city, etc. must be modeled and treated as a Value Object.

Important characteristics of the Value Object

There are two main characteristics for the Value Objects:

- No Identity

- Immutable

The first characteristic was already introduced. In regards immutability, it is an important requirement.

The values of a Value Object must be immutable once it is created. Therefore, at its construction, youy

must provide the required values but you must not allow them to change during the object’s lifetime.

Regarding performance, Value Objects allow you to perform certain “tricks”, thanks to their immutable

nature. This is especially true in systems where there may be thousands of VALUE-OBJECT instances

with many coincidences of the same values. Their immutable nature would allow us to reuse them;

they would be “interchangeable” objects, since their values are the same and they have no identity.

This type of optimization can sometimes make a difference between software that runs slowly and

another with good performance. Of course, all these recommendations depend on the application

environment and deployment context.

Value object implementation in C#

In terms of implementation, you can have a Value Object base class that with basic utility methods like

equality based on comparison between all the attributes (since it must not be based on identity) and

180 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

other fundamental characteristics, like the following base class used in the Ordering microservice from

eShopOnContainers.

public abstract class ValueObject
{
 protected static bool EqualOperator(ValueObject left, ValueObject right)
 {
 if (ReferenceEquals(left, null) ^ ReferenceEquals(right, null))
 {
 return false;
 }
 return ReferenceEquals(left, null) || left.Equals(right);
 }

 protected static bool NotEqualOperator(ValueObject left, ValueObject right)
 {
 return !(EqualOperator(left, right));
 }

 protected abstract IEnumerable<object> GetAtomicValues();

 public override bool Equals(object obj)
 {
 if (obj == null || obj.GetType() != GetType())
 {
 return false;
 }
 ValueObject other = (ValueObject)obj;
 IEnumerator<object> thisValues = GetAtomicValues().GetEnumerator();
 IEnumerator<object> otherValues = other.GetAtomicValues().GetEnumerator();
 while (thisValues.MoveNext() && otherValues.MoveNext())
 {
 if (ReferenceEquals(thisValues.Current, null) ^ ReferenceEquals(otherValues.Current,
 null))
 {
 return false;
 }
 if (thisValues.Current != null && !thisValues.Current.Equals(otherValues.Current))
 {
 return false;
 }
 }
 return !thisValues.MoveNext() && !otherValues.MoveNext();
 }

 // Other utilility methods
}

Then you can use it when implementing your actual Value Object, like the Address Value Object.

public class Address : ValueObject
{
 public String Street { get; private set; }
 public String City { get; private set; }
 public String State { get; private set; }
 public String Country { get; private set; }
 public String ZipCode { get; private set; }
 public Address(string street, string city, string state,
 string country, string zipcode)
 {
 Street = street;
 City = city;
 State = state;
 Country = country;
 ZipCode = zipcode;
 }

 protected override IEnumerable<object> GetAtomicValues()

181 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 {
 yield return Street;
 yield return City;
 yield return State;
 yield return Country;
 yield return ZipCode;
 }
}

No Identity characteristic when using Entity Framework Core

A limitation when using EF Core is that in its current version (EF Core 1.1) you cannot use complex-

types. Therefore, you must store your Value Object as an EF entity. However, you can hide its Id so you

make clear that the identity is not important in the model of your value-object. The way you hide the

Id is by using the ID as a “shadow property”. Since that configuration is set up in the infrastructure

level it will be transparent for your domain model and its infrastructure implementation could change

in the future.

In eShopOnContainers that “hidden Id” needed by EF Core infrastructure is implemented in the

following way in the DbContext level, using Fluent API, at the infrastructure project.

//Fluent API within the OrderingContext:DbContext at Ordering.Infrastructure project
void ConfigureAddress(EntityTypeBuilder<Address> addressConfiguration)
{
 addressConfiguration.ToTable("address", DEFAULT_SCHEMA);

 addressConfiguration.Property<int>("Id")
 .IsRequired();

 addressConfiguration.HasKey("Id");
}

Therefore, it is hidden from the domain model point of view and in the future, the Value Object

infrastructure could also be implemented as a complex type or any other way.

References – Implementing Value-Objects in C#

Value Object pattern [Martin Fowler]

https://martinfowler.com/bliki/ValueObject.html

Value Object pattern [Eric Evans book]

Value Object discussion [Vaughn Vernon book]

Shadow Properties in EF Core

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

Complex types and/or value objects discussion for EF Core

https://github.com/aspnet/EntityFramework/issues/246

Base Value Object class at eShopOnContainers

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs

Sample Address Value Object class at eShopOnContainers

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs

Using Enumeration classes instead of Enums

Enums are a thin language wrapper around an integral type. You should limit their use to when you

are storing one one value from a closed set of values. Classification based on gender (Male, Female,

https://martinfowler.com/bliki/ValueObject.html
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=sr_1_1?s=books&ie=UTF8&qid=1491505165&sr=1-1&keywords=%5BEric+Evans+book%5D+domain
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/ref=sr_1_1?s=books&ie=UTF8&qid=1491505041&sr=1-1&keywords=Implementing+Domain-Driven+Design
https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs

182 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Unnown), or sizes (S, M, L, XL) are good examples. Using enums for control flow, or more robust

abstractions is a code smell. It will lead to fragile code with many control flow statements checking

values of the enum.

Instead, create enum classes that enable all the rich features of an object oriented language.

Implementing Enumeration classes

The eShopOnContainers application, within the Ordering microservice, provides a sample Enum base

class implementation like the following.

public abstract class Enumeration : IComparable
{
 public string Name { get; private set; }

 public int Id { get; private set; }

 protected Enumeration()
 {
 }
 protected Enumeration(int id, string name)
 {
 Id = id;
 Name = name;
 }
 public override string ToString()
 {
 return Name;
 }
 public static IEnumerable<T> GetAll<T>() where T : Enumeration, new()
 {
 var type = typeof(T);
 var fields = type.GetTypeInfo().GetFields(BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.DeclaredOnly);
 foreach (var info in fields)
 {
 var instance = new T();
 var locatedValue = info.GetValue(instance) as T;

 if (locatedValue != null)
 {
 yield return locatedValue;
 }
 }
 }
 public override bool Equals(object obj)
 {
 var otherValue = obj as Enumeration;

 if (otherValue == null)
 {
 return false;
 }

 var typeMatches = GetType().Equals(obj.GetType());

http://deviq.com/code-smells/

183 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 var valueMatches = Id.Equals(otherValue.Id);

 return typeMatches && valueMatches;
 }

 // Other utility methods ...
}

Then you can use it as a type in any entity or value object like for the “CardType” enum class.

public class CardType : Enumeration
{
 public static CardType Amex = new CardType(1, "Amex");
 public static CardType Visa = new CardType(2, "Visa");
 public static CardType MasterCard = new CardType(3, "MasterCard");

 protected CardType() { }
 public CardType(int id, string name)
 : base(id, name)
 {
 }
 public static IEnumerable<CardType> List()
 {
 return new[] { Amex, Visa, MasterCard };
 }
 // Other util methods
}

References – Enumeration classes

Why Enums are dangerous for your Domain Model

http://www.planetgeek.ch/2009/07/01/enums-are-evil/

https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/

Implementing Enumeration classes in .NET

https://lostechies.com/jimmybogard/2008/08/12/enumeration-classes/

Base Enumeration class at eShopOnContainers

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeratio

n.cs

Sample “CardType” enumeration class at eShopOnContainers

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/Buy

erAggregate/CardType.cs

Enum Alternatives in C#

http://ardalis.com/enum-alternatives-in-c

Designing validations in the domain model layer

From the DDD perspective, validation rules can be viewed as invariants. One of the central

responsibilities of an aggregate is enforcement of invariants across state changes for all the entities

within that aggregate.

Domain Entities should always be valid entities. There are a certain number of invariants for an object

that should always be true. For example, an OrderItem object always has to have a quantity and a

name. From that point of view, invariant enforcement is the responsibility of the domain entity itself

(especially of the Aggregate-Root) and therefore an entity shouldn't be able to exist without being

http://www.planetgeek.ch/2009/07/01/enums-are-evil/
https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs
http://ardalis.com/enum-alternatives-in-c

184 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

valid. Invariant rules are simply expressed as contracts, and exceptions or notifications are raised when

they are violated.

The reasoning behind this is many bugs occur because objects are in a state they should never have

been in. The following is a good and practical explanation from Greg Young:

Let's propose we now have a SendUserCreationEmailService that takes a UserProfile ... how can we

rationalize in that service that Name is not null? Do we check it again? Or more likely ... you just

don't bother to check and "hope for the best" you hope that someone bothered to validate it

before sending it to you. Of course, using TDD one of the first tests we should be writing is that if

I send a customer with a null name that it should raise an error. But once we start writing these

kinds of tests over and over again we realize ... ‘wait if we never allowed name to become null we

wouldn't have all of these tests’…

Implementing validations in the domain model layer

Validations are usually implemented in the Domain entities constructors, or within methods that can

update the entity. There are multiple ways to implement validations, such as verifying data and raising

exceptions if the validation fails. There are also more advanced patterns such as using the

Specification pattern for validations, and the Notification pattern to return a collection of errors

instead of returning an exception for each validation as it occurs.

Validating conditions and throwing exceptions

The following code example shows the simplest approach to validation in a Domain Entity by raising

an exception. In the references table at the end of this section you can see more advanced

implementations based on the previously mentioned patterns and others.

public void SetAddress(Address address)
{
 _shippingAddress = address?? throw new ArgumentNullException(nameof(address));
}

A similar approach can be used in the entity’s constructor, raising an exception to make sure that the

entity is valid once it is created.

Using validation attributes in the model based on Data Annotations

Another approach is to use validation attributes based on Data Annotations. Validation attributes

provide a way to configure model validation, similar conceptually to validation on fields in database

tables. This includes constraints such as assigning data types or required fields. Other types of

validation include applying patterns to data to enforce business rules, such as a credit card number,

phone number, or email address. Validation attributes make it easy to enforce requirements.

However, this approach might be too intrusive in a Domain-Driven Design Model, as it takes a

dependency on ModelState.IsValid from Microsoft.AspNetCore.Mvc.ModelState, which you must

call from your MVC controllers. The model validation occurs prior to each controller action being

invoked, and it is the controller method’s responsibility to inspect ModelState.IsValid() and react

appropriately. The decision to use it depends on how tightly coupled you’d like your model to be with

that infrastructure:

185 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

using System.ComponentModel.DataAnnotations;
// Other using statements ...

// Entity is a custom base class which has the Id
public class Product : Entity
{
 [Required]
 [StringLength(100)]
 public string Title { get; private set; }

 [Required]
 [Range(0, 999.99)]
 public decimal Price { get; private set; }

 [Required]
 [VintageProduct(1970)]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; private set; }

 [Required]
 [StringLength(1000)]
 public string Description { get; private set; }

 // Constructor...

 // Additional methods for entity logic and constructor...
}

However, from a DDD point of view, the domain model is best kept lean with the use of exceptions in

your entity’s behavior methods, or by implementing the Specification and Notification patterns to

enforce validation rules. Validation frameworks like Data Annotations in ASP.NET Core or any other

validation frameworks like FluentValidation carry a requirement to invoke the application framework.

For example, when calling the ModelState.IsValid() method in Data Annotations, you need to invoke

ASP.NET controllers.

It can make sense to use DataAnnotations at the application layer on ViewModel classes (instead of

Domain Entities) that will accept input, to allow for model validation within the UI layer. However, this

should not be done at the exclusion of validation within the domain model.

Validating entities by implementing the Specification pattern and the Notification pattern

Finally, a more elaborate approach to implementing validations in the domain model is by

implementing the Specification pattern in conjunction with the Notification pattern, as explained in

some of the referenced articles below.

It is worth mentioning that you can also use just one of those patterns, for example validating

manually with sentences of control but using the Notification pattern to be able to stack and return a

list of validation errors.

Dealing with deferred validation in the domain

There are various approaches to deal with deferred validations in the domain, such as the

Implementing Domain-Driven Design book by Vaughn Vernon, from pages 208-215.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577

186 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

References – Validations in the Domain Model

Model Validation in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation

Adding Validation in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation

Using the Notification Pattern to replace throwing exceptions with notification in validations

https://martinfowler.com/articles/replaceThrowWithNotification.html

Specification and Notification Patterns

https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns

Validation in Domain-Driven Design (DDD)

http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/

Domain Model Validation

http://colinjack.blogspot.com/2008/03/domain-model-validation.html

Validation in a DDD world

https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

Client side validation (validation in the presentation layers)

Even when the source of truth is the Domain Model and ultimately you must have validation at the

Domain Model level, validation can still be handled at both the domain model level (server side) and

the client side.

Client side validation is a great convenience for users. It saves time they would otherwise spend

waiting for a round-trip to the server that might return validation errors. In business terms, even a few

fractions of seconds multiplied hundreds of times each day adds up to a lot of time, expense, and

frustration. Straightforward and immediate validation enables users to work more efficiently and

produce better quality input and output.

Just as the view model and the domain model are different, view model validation and domain

validation might be similar but serve a different purpose. If you're concerned about being DRY (the

“Don’t Repeat Yourself” principle), consider that in this case code reuse might also mean coupling,

and in enterprise applications it is more important not to couple the server side to the client side than

to follow the DRY principle.

You could also validate your commands or input DTOs in the server side code, especially if your

system doesn’t have a client UI application, for example, if you are only creating a public API. If you

have a client application, from a UX perspective, it is best to be proactive and not allow the user to

type in stuff that makes no sense.

Therefore, in the client side code you will typically be validating the ViewModels in the client app. You

could also validate the client output DTOs or commands to be sent to the server before you send

them to the services.

The implementation of client side validation depends on what kind of client application you are

building. It will be different if you are validating data in a web MVC web application with most of the

code in .NET, or a SPA web app with that validation being coded in JavaScript or TypeScript, or a

mobile app coded with Xamarin and C#.

Below are a few references for various types of client apps and technologies.

References – Validation in the Client side (Presentation Layer apps)

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation
https://martinfowler.com/articles/replaceThrowWithNotification.html
https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns
http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/
http://colinjack.blogspot.com/2008/03/domain-model-validation.html
https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

187 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Validation in Xamarin mobile apps

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/

https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/

Validation in ASP.NET Core apps

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation

Validation in SPA web apps (Angular 2 / TypeScript / Javascript)

https://scotch.io/tutorials/angular-2-form-validation

https://angular.io/docs/ts/latest/cookbook/form-validation.html

http://breeze.github.io/doc-js/validation.html

In summary, the following are the most important concepts in regards to validation:

Entities and Aggregates should enforce their own consistency and be “always-valid”. Aggregate-Roots

are responsible for multi-entity consistency within the same aggregate.

If you think that an entity needs to enter an invalid state, consider using a different object model, for

example, using a temporary DTO until you create the final domain entity. Consider a Builder type to

create the entity in a valid state. Or, consider the ‘With’ pattern for creating an entity that is similar to

an existing entity.

If you need to create several related objects, such as an aggregate, and they are only valid once all of

them have been created, consider using the Factory pattern for this purpose.

Validation frameworks are best used in specific layers such as the presentation layer or the

application/service layer, but usually not in the Domain Layer, as you would need to take a strong

dependency on an infrastructure framework.

It is easier to duplicate validation logic than to keep it consistent across application layers, and in

many cases having redundant validation in the client side is good, as you can be proactive.

Domain events
Use domain events to explicitly implement side effects of changes within your domain.

In other words, and using DDD lingo, use domain events to explicitly implement side effects across

multiple aggregates. Optionally, for better scalability and less impact in database locks, use eventual

consistency between aggregates within the same domain.

What is a domain event?

An event is “something that has happened in the past.” A domain event is, logically, something that

happened in a particular domain and you wish other parts of the same domain could be aware and

react based of that.

An important benefit from domain events is that side effects, after something happened in a domain,

can be expressed explicitly instead of implicitly. For example, if you were using just Entity Framework

and entities or even aggregates, if there is a change to the side effects of a use case, it will be implicit

concept implemented by code after something happened. Sometimes you don’t know if that side

effect is part of the main operation or if it is really a side effect. When using domain events, it makes

the concept explicit and part of the Ubiquitous Language; in the eShopOnContainers application, for

example, creating an order is not just about that order, it updates or even creates a Buyer aggregate

originated from the original user, because the user is not a buyer until and after he has bought. If

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/
https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation
https://scotch.io/tutorials/angular-2-form-validation
https://angular.io/docs/ts/latest/cookbook/form-validation.html
http://breeze.github.io/doc-js/validation.html

188 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

using domain events, we can explicitly express that domain rule based on the ubiquitous language

provided by the domain/business experts.

Domain events are partially similar to messaging-style events, with one important difference. With

true messaging, queuing and a service bus, a message is sent and always received asynchronously and

communicated across processes and machines. This is useful for integrating multiple Bounded

Contexts, microservices or even different applications. However, with domain events, you want to raise

an event from the domain operation you are currently running but you want any side effects of the

domain event to occur within the same domain.

Independently of the chosen implementation, the domain events and their side effects (the actions

triggered afterwards that are managed by event-handlers) should occur almost immediately, usually

in-process, and within the same domain.

Thus, domain events could be synchronous or asynchronous. Integration events, however, should

always be asynchronous.

Domain events versus integration events

Semantically, domain and integration events are the same thing: notifications about something that

just happened. However, their implementation must be different. Domain Events are just messages

pushed to a Domain Event Dispatcher, which could be implemented as an in-memory mediator based

on an IoC container or any other method.

On the other hand, the purpose of Integration events is to propagate committed transactions and

updates to additional subsystems, whether they are other microservices, Bounded Contexts or even

external applications. Hence, they should occur only if the entity is successfully persisted, since in

many scenarios if this fails, the entire operation effectively never happened.

In addition, and as mentioned, integration events must be based on asynchronous communication

between multiple microservices (other Bounded Contexts) or even external systems/applications.

Thus, the Event Bus interface needs some infrastructure that allows inter-process and distributed

communication between potentially remote services. It can be based on a commercial service bus,

queues, a shared database used as a mailbox, or any other distributed and ideally push based

messaging system.

Domain Events as a preferred way to trigger side effects across multiple aggregates within

the same domain

If executing a command related to one aggregate instance requires additional domain rules to be run

on one or more additional aggregates, you should design and implement those side effects to be

triggered by domain events.

As shown in the image 9-14, and as one of theS most important use cases, a domain event should be

used to propagate state changes across multiple aggregates within the same domain model.

189 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

In the example above, the domain event “OrderStarted” might trigger a Buyer creation (if it doesn’t

exist) based on the original user’s data when the user initiates an order. A buyer, in the ordering

microservice, will be created based on the original user info from the identity microservice (info

provided in the CreateOrderCommand). But the domain event is generated by the Order aggregate

when it is created in the first place.

Alternately, you can also have the Aggregate Root subscribed for events raised by members of its

Aggregate (child entities). For instance, each OrderItem child entity could be raising an event when

the item price is higher than some amount or when the product item amount is too high, then having

the aggregate root to receive those events and make any kind of global calculus or aggregation.

It is important to highlight that this event based communication is not implemented directly within

the aggregates but you need to implement domain event handlers. Doing so, you could have any

number of handlers triggering actions when a domain event happens.

Domain events can also be used to simply trigger an open number of application actions when that

event happens. For instance, when the order is started, we might also want publish an "Integration

Event" into an Event Bus and finally handled to propagate that info to other microservices or to send

an email to the buyer/user saying that the order process has started. That action is not really related

to any other aggregate, it is only a simple application action, but since it has to be performed *after*

the transaction is committed, it is safer to use an integration event for that which are raised/published

to any Event Bus only after the original transaction is performed. Therefore, this is a sample case of

"connecting a Domain Event to an Integration Event" and publishing the Integration Event for

"external actions" or to other microservices. Integration Events and the Event Bus are in a different

subject, as introduced previosly.

That “open number of actions” to be executed when a domain event happens is the key point.

Eventually, the actions and rules in the domain and application will be growing. The complexity or

number of actions “when something happens” will be growing and if your code is coupled with “glue”,

like just instantiating objects, every time you need to add a new action you will need to change the

original code. At that moment, you could be introducing new bugs because with each new

requirement you would need to change the original code flow which is going against the Open/Close

Figure 9-14. Domain Events to enforce consistency between multiple aggregates within the same domain

https://en.wikipedia.org/wiki/Open/closed_principle

190 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

principle from S.O.L.I.D.. Not only that, the original class that was orchestrating the operations will be

growing and growing which is going against the Single Responsibility Principle (SRP).

On the other hand, if you use domain events, you can create a fine-grained and decoupled

implementation by segregating responsibilities like in the following approach:

1. Send Command (CreateOrderCommand)

2. Command Handler

o Single Aggregate transaction

o Raise Domain Event (like OrderStarted)

3. Handle (within the current process) an open number of side effects in multiple aggregates or

application actions

o Verify or create buyer and payment method

o Create and send a related integration event to the Event Bus to propagate states

across microservices or trigger external actions like sending an email to the buyer

o Other side effects

As shown in the following image 9-15, starting from the same domain event you can handle multiple

actions related to other aggregates in the domain or additional application actions you need to

perform across microservices connecting with Integration Events and the Event Bus.

The event handlers are typically placed at the application layer as you will be using specific

infrastructure objects like Repositories, or any application API for the microservice’s behavior. From

that sense, event handlers are similar to command handlers, so both are part of the application layer.

The important difference is that a command should be processed just once. A domain event could be

processed zero or ‘n’ times targeting multiple purposes.

Figure 9-15. Handling multiple actions per domain

event

https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/Single_responsibility_principle

191 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Having the possibility of an open number of handlers per domain event would allow you to add many

more domain rules without impacting/changing your current code. For instance, adding the following

domain/business rule would be as easy as adding one or several new handlers for the following event:

“When a customer’s total amount purchased in the store (including any number of orders) exceeds

$6,000, apply a 10% off discount to every new order and notify the customer with an email about that

discount for future orders”

Implementing domain events

How to implement a domain event

In terms of C# code implementation, a domain event is simply a data-holding structure or class, like a

DTO (Data Transfer Object) with all the information related to what just happened in the domain, like

in the following code.

Regarding the ubiquitous language to be used, since an event is “something that happened in the

past” it is very important that the class name of the event must be represented as a verb in the past

tense such as OrderStartedDomainEvent,or OrderShippedDomainEvent. For example, the following

domain event is how it is implemented in the Ordering microservice at the eShopOnContainers

application.

public class OrderStartedDomainEvent : IAsyncNotification
{
 public int CardTypeId { get; private set; }
 public string CardNumber { get; private set; }
 public string CardSecurityNumber { get; private set; }
 public string CardHolderName { get; private set; }
 public DateTime CardExpiration { get; private set; }
 public Order Order { get; private set; }

 public OrderStartedDomainEvent(Order order,
 int cardTypeId, string cardNumber,
 string cardSecurityNumber, string cardHolderName,
 DateTime cardExpiration)
 {
 Order = order;
 CardTypeId = cardTypeId;
 CardNumber = cardNumber;
 CardSecurityNumber = cardSecurityNumber;
 CardHolderName = cardHolderName;
 CardExpiration = cardExpiration;
 }
}

Basically, it is a class that holds all the data related to the OrderStarted event.

Events must be immutable. An important characteristic of events is that since an event is something

that happened in the past, it shouldn’t change, therefore it must be an immutable class, as you can

notice in the previous code where the properties are read only from the outside of the object and the

only way to update the object is through the constructor when you actually create the event object.

192 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Raising domain events

The next question you might have is, “ok, this is cool, but how do I raise a domain event so it reaches its

related event handlers?”. Well, you could choose between multiple techniques or approaches for that.

Udi Dahan originally proposed in several related posts like Domain Events – Take 2, to use a static

class for managing and raising the events, like a static class named DomainEvents which would raise

domain events immediately when calling the DomainEvents.Raise(Event myEvent).

Jimmy Bogard also wrote a good post following a similar approach at Strengthening your domain:

Domain Events.

However, when the domain events class is static, it also dispatches to handlers immediately. This

makes testing and debugging more difficult because the event handlers with the side effects logic will

be executed immediately right after raising the event. When you are testing and debugging you

would want to focus and run just what’s happening on the current aggregate classes instead of

suddenly being redirected to other event handlers running side effects related to other aggregates or

application logic. This is why other evolved approaches appeared, as explained in the next section.

The deferred approach for raising and dispatching events

Instead of dispatching to a domain event handler immediately, a better approach is to store/add the

domain events in a collection and right after or before committing the transaction (like with

SaveChanges() in EF), dispatch those domain events. That approach was neatly described also by

Jimmy Bogard at the “A better domain events pattern post”.

Deciding if you send the domain events right before or after commiting the transaction is very

important as depending on that you will include the side effects as part of the same transaction or in

different transactions. In the last case, you would need to deal with eventual consistency

implementations. This topic is precisely discussed in the next section.

The deferred approach is what the reference application eShopOnContainers uses. First, you add/store

the events happening in your entities into a collection or list of events per entity. That list would be

part of the entity object, better if coming from your base entity class, as shown in the code below.

public abstract class Entity
{
 // ...

 private List<IAsyncNotification> _domainEvents;
 public List<IAsyncNotification> DomainEvents => _domainEvents;

 public void AddDomainEvent(IAsyncNotification eventItem)
 {
 _domainEvents = _domainEvents ?? new List<IAsyncNotification>();
 _domainEvents.Add(eventItem);
 }
 public void RemoveDomainEvent(IAsyncNotification eventItem)
 {
 if (_domainEvents is null) return;
 _domainEvents.Remove(eventItem);
 }
 // ...
}

Thus, whenever you want to raise an event, you would just add it to the event collection like in the

following code to be placed within any aggregate entity method.

http://udidahan.com/2008/08/25/domain-events-take-2/
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/
https://github.com/dotnet/eShopOnContainers

193 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

var orderStartedDomainEvent = new OrderStartedDomainEvent(this, //Order object
 cardTypeId, cardNumber,
 cardSecurityNumber,
 cardHolderName,
 cardExpiration);
this.AddDomainEvent(orderStartedDomainEvent);

Notice that the method “AddDomainEvent” the only thing is doing is “adding an event to the list”,

nothing more. It is still not reaching the event handler.

Later on, when committing the transaction into the database is when you really want to dispatch the

events. If using Entity Framework Core, that means at the “SaveChanges” method level of your EF

DbContext, as in the following code.

// EF Core DbContext

public class OrderingContext : DbContext, IUnitOfWork
{
 // ...
 public async Task<int> SaveEntitiesAsync()
 {

 // Dispatch Domain Events collection.
 // Choices:
 // A) Right BEFORE committing data (EF SaveChanges) into the DB. Will make a single
 // transaction including side effects from the domain event handlers that are
 // using the same DbContext with Scope lifetime
 // B) Right AFTER committing data (EF SaveChanges) into the DB. Will make multiple
 // transactions. You will need to handle eventual consistency and compensatory
 // actions in case of failures.

 await _mediator.DispatchDomainEventsAsync(this);

 // After this line runs, all the changes (from the Command Handler and Domain
 // Event Handlers) performed thought the DbContext will be commited

 var result = await base.SaveChangesAsync();
 }
}

With that code, you dispatch the entity events to their respective event handlers but you decouple the

raising of a domain event (a simple add in memory) from dispatching to an event handler.

In addition to that, depending on what kind of dispatcher you are using, you could be dispatching the

events synchronously or asynchronously.

Single transaction across aggregates versus eventual consistency

across aggregates

This is an arguable topic. Many DDD authors like Eric Evans, Vaughn Vernon and others defend the

rule of “1 Transaction = 1 Aggregate” and therefore, eventual consistency across aggregates, for

instance:

E.E. DDD p128: Any rule that spans AGGREGATES will not be expected to be up-to-date at all times.

Through event processing, batch processing, or other update mechanisms, other dependencies can be

resolved within some specific time.

V.V. Effective Aggregate Design. Part II: Making Aggregates Work Together. p9: …Thus, if executing a

command on one aggregate instance requires that additional business rules execute on one or more

aggregates, use eventual consistency... …There is a practical way to support eventual consistency in a

http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf

194 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

DDD model. An aggregate method publishes a domain event that is in time delivered to one or more

asynchronous subscribers.

This rationale is based on embracing fine-grained transactions instead of transactions spanning many

aggregates or entities because in the second case the database locks amount will be pretty bad in

large scale applications with a high scalability needs. Embracing the fact that high-scalable

applications must not have instant transactional consistency between multiple aggregates helps

accepting the concept of eventual consistency. Atomic changes are in many cases not needed by the

business, and it is in any case responsibility of the domain experts to say that something really needs

atomic transactions or not. Then, if some operation always needs an atomic transaction between

multiple aggregates, you should at least wonder if your aggregate should be larger and was not

correctly designed.

However, other developers and architects, like Jimmy Bogard, are okay by spanning a single

transaction across several aggregates but only when those additional aggregates are related to side

effects for the same original command, for instance:

J.B. A better domain events pattern: … Typically, I want the side effects of a domain event to occur

within the same logical transaction, but not necessarily in the same scope of raising the domain event…

… Just before we commit our transaction (DbContext SaveChanges()), we dispatch our events to their

respective handlers.

If you are dispatching the domain events right before committing the original transaction is because

you want the side effects of those events to be included in the same transaction so, for instance, if the

EF DbContext SaveChanges() fails the transaction will roll back all changes, including the rest of the

side effect operations implemented by the related domain event handlers because the DbContext life

scope is by default defined as “scoped”, so the DbContext object is shared across multiple

Repositories objects being instantiated within the same scope or object graph which also coincides

with the HttpRequest scope when developing Web API or MVC apps.

In reality, both approaches (single atomic transaction vs. eventual consistency) can be right, it really

depends on your domain/business requirements and what the domain experts tell you. Also,

depending on how scalable you need it to be (more granular transactions will provoke less impact in

regards database locks) and how much investment you are willing to do in your code, since eventual

consistency will require a more complex code in order to detect possible inconsistencies across

aggregates and the need to implement compensatory actions. Take into account that it you commit

changes on the original aggregate in the first place and afterwards, when the events are being

dispatched there is any issue and the events handlers cannot commit their side effects, you will have

inconsistencies between aggregates.

A way to allow compensatory actions would be to store the domain events into additional database

tables so it can be part of the original transaction. Afterwards, you could have batch processing

detecting inconsistencies and running compensatory actions in case of issues by comparing the list of

events with the current state of the aggregates.

In any case, you can choose the approach you might need, but the initial “deferred approach”

implementation for raising and dispatching domain events would be pretty similar.

That is neat, but, how do you actually dispatch those events to their respective event handlers? What

is that _mediator object that you see in the previous code? Well, that has to do with the techniques

and artifacts you can use to map between events and their event handlers.

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/

195 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The domain event dispatcher: mapping from events to event handlers

Once you are able to dispatch or publish the events you need any kind of artifact that will publish the

event so every related handler would get it and will process side effects based on that event.

One way to do it would be with a real messaging system or even an Event Bus possibly based on a

Service Bus. However, that might be too much for processing domain events since you just need to

process those events within the same process (same domain and application layer).

One way to map from events to multiple event handlers is by using types registration in an IoC

container so you can dynamically infer where to dispatch the events. In other words, you need to

know what event handlers need to get any specifc event. You can see a simplified approach for that in

the image 9-15.

You can build all the “plumbing” and artifacts to implement that approach by yourself, however, you

can also use already available libraries like MediatR which underneath uses your IoT container, so you

can directly use the pre-defined interfaces and mediator’s publish/dispatch methods.

In terms of code, you first need to register the event handler types in your IoC container.

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {

 // Other registrations ...

 // Register the DomainEventHandler classes (they implement
 // IAsyncNotificationHandler<>) in assembly holding the Domain Events
 builder.RegisterAssemblyTypes(
 typeof(ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler).

 GetTypeInfo().Assembly)
 .Where(t => t.IsClosedTypeOf(typeof(IAsyncNotificationHandler<>)))
 .AsImplementedInterfaces();

 // Other registrations ...
 }
}

Figure 9-15. Domain Event Dispatcher

https://github.com/jbogard/MediatR

196 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

That code first identifies the assembly holding the domain event handlers based on the assembly that

holds any of them. Then, since all the event handlers implement the interface

IAsyncNotificationHandler it just searched for those types and registers all the event handlers.

How to subscribe to domain events

When using MediatR, each event handler is enforced to use an event type to be provided on the

generic’s parameter of the IAsyncNotificationHandler interface, as you can see in the following code.

public class ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler
 : IAsyncNotificationHandler<OrderStartedDomainEvent>

Based on that relationship between event and event handler (that can be considered the subscription),

the mediator artifact is able to discover all the event handlers per event and trigger each of those

event handlers.

How to handle domain events

Finally, the event handler will usually implement application layer code which will be using

infrastructure repositories to obtain the required additional aggregates and execute side effect

domain logic.

public class ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler
 : IAsyncNotificationHandler<OrderStartedDomainEvent>
{
 private readonly ILoggerFactory _logger;
 private readonly IBuyerRepository<Buyer> _buyerRepository;
 private readonly IIdentityService _identityService;

 public ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler(ILoggerFactory logger,
IBuyerRepository<Buyer> buyerRepository, IIdentityService identityService)
 {
 //Parameter’s validations
 //...
 }

 public async Task Handle(OrderStartedDomainEvent orderStartedEvent)
 {

var cardTypeId = (orderStartedEvent.CardTypeId != 0) ? orderStartedEvent.CardTypeId : 1;

var userGuid = _identityService.GetUserIdentity();

var buyer = await _buyerRepository.FindAsync(userGuid);
bool buyerOriginallyExisted = (buyer == null) ? false : true;

if (!buyerOriginallyExisted)
{
 buyer = new Buyer(userGuid);
}

buyer.VerifyOrAddPaymentMethod(cardTypeId,
 $"Payment Method on {DateTime.UtcNow}",
 orderStartedEvent.CardNumber,
 orderStartedEvent.CardSecurityNumber,
 orderStartedEvent.CardHolderName,
 orderStartedEvent.CardExpiration,
 orderStartedEvent.Order.Id);

var buyerUpdated = buyerOriginallyExisted ? _buyerRepository.Update(buyer) :
 _buyerRepository.Add(buyer);

197 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

await _buyerRepository.UnitOfWork
 .SaveEntitiesAsync();

 //Logging code using buyerUpdated info, etc.
 }

}

The former event handler’s code is considered application layer as it is using infrastructure

repositories explained in the next section focusing on the infrastructure-persistence layer. Event

Handlers could also use other infrastructure components.

Domain events could generate Integration events to be published outside of the

microservice boundaries

Finally, is important to mention that sometimes you might want to propagate events across multiple

microservices. That is considered an integration event and it could be published through an Event Bus

from any specific domain event handler.

Conclusions on domain events

As stated, use domain events to explicitly implement side effects of changes within your domain.

In other words, and using DDD lingo, use domain events to explicitly implement side effects across

one or multiple aggregates. Additionally, and for better scalability and less impact in database locks,

use eventual consistency between aggregates within the same domain.

For additional information on domain events, read the following references.

References – Implementing Domain Events

What is a Domain Event? [Greg Young]

http://codebetter.com/gregyoung/2010/04/11/what-is-a-domain-event/

Domain Events [Jan Stenberg]

https://www.infoq.com/news/2015/09/domain-events-consistency

A Better Domain Events Pattern [Jimmy Bogard]

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/

Effective Aggregate Design Part II: Making Aggregates Work Together [Vaughn Vernon]

http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf

Strengthening your domain: Domain Events [Jimmy Bogard]

https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/

Domain Events Pattern Example [Tony Truong]

http://www.tonytruong.net/domain-events-pattern-example/

Domain Events – Take 2 [Udi Dahan]

http://udidahan.com/2008/08/25/domain-events-take-2/

Domain Events – Salvation [Udi Dahan]

http://udidahan.com/2009/06/14/domain-events-salvation/

How to create fully encapsulated Domain Models [Udi Dahan]

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

Don't publish Domain Events, return them! [Jan Kronquist]

https://blog.jayway.com/2013/06/20/dont-publish-domain-events-return-them/

Domain Events vs. Integration Events in DDD and microservices architectures [Cesar de la Torre]

https://blogs.msdn.microsoft.com/cesardelatorre/2017/02/07/domain-events-vs-integration-events-in-domain-driven-design-

and-microservices-architectures/

http://codebetter.com/gregyoung/2010/04/11/what-is-a-domain-event/
https://www.infoq.com/news/2015/09/domain-events-consistency
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
http://www.tonytruong.net/domain-events-pattern-example/
http://udidahan.com/2008/08/25/domain-events-take-2/
http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/
https://blog.jayway.com/2013/06/20/dont-publish-domain-events-return-them/

198 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Designing the infrastructure persistence layer
The data persistence components provide access to the data hosted within the boundaries of your

microservice (i.e. your microservice’s database). They contain the actual implementation of

components such as Repositories and Unit of Work patterns that provide functionality to access data

hosted within the boundaries of your microservice.

The Repository pattern

Repositories are classes/components that encapsulate the logic required to access data sources. They

centralize common data access functionality, providing better maintainability and decoupling the

infrastructure or technology used to access databases from the Domain layer. If you use an ORM like

Entity Framework, the code that must be implemented is highly simplified thanks to Linq and strong

typing. This lets you focus on the data persistence logic rather than on data-access plumbing.

The Repository pattern is one of the well documented ways of working with a data source. Martin

Fowler in his PoEAA book describes a repository as follows:

“A repository performs the tasks of an intermediary between the domain model layers and data

mapping, acting in a similar way to a set of domain objects in memory. Client objects declaratively build

queries and send them to the repositories for answers. Conceptually, a repository encapsulates a set of

objects stored in the database and operations that can be performed on them, providing a way that is

closer to the persistence layer. Repositories, also, support the purpose of separating, clearly and in one

direction, the dependency between the work domain and the data allocation or mapping”.

Define one repository per aggregate

For each aggregate (or Aggregate-Root) you should create one Repository class that allows you to

populate data in-memory, coming from the database in the form of the Domain Entities. This also

allows you to persist updated data in the entities of the aggregate back into the database.

If you are using the CQS/CQRS architectural pattern, then most of the public methods you will have in

a Repository will create/update/delete in the database from your Domain Model. You won’t need any

methods for queries in such a Repository.

It is important to re-emphasize that only one Repository should be defined for each Aggregate-Root.

Following the goals of the aggregate-root to maintain transactional consistency between all the

objects within an aggregate, you should never create a Repository for each table in the database, just

one for each aggregate-root.

In a microservice based on DDD, the only channel you should use to update the database should be

through the Repositories. This is because they have a one-to-one relationship with the Aggregate-

Root, which controls the aggregate’s invariants and transactional consistency. It is okay to query the

database through other channels (as you can do following a CQRS approach), because queries are

idempotent and no matter how many queries you do, the database won’t change. However, the

transactional area, the updates, must always be controlled by the Repositories and the Aggregate-

Roots.

https://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420/ref=sr_1_1?s=books&ie=UTF8&qid=1488684326&sr=1-1&keywords=martin+fowler+patterns+of+enterprise+architecture

199 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Figure X-XX. Relationship between Repositories, Aggregates and Database Tables

Enforcing one Aggregate Root per Repository

It can be valuable to implement your repository design in such a way that it enforces the rule that only

aggregate roots should have repositories. You can create a generic or base repository type that

constrains the type of entities it works with to ensure they have the IAggregateRoot market interface.

Thus, each repository class implemented at the infrastructure layer implements its own contract or

interface, like in the following code.

namespace Microsoft.eShopOnContainers.Services.Ordering.Infrastructure.Repositories
{
 public class OrderRepository : IOrderRepository
 {

Going further, each specific repository interface is implementing the generic IRepository.

 public interface IOrderRepository : IRepository<Order>
 {
 Order Add(Order order);
 // ...

 }

200 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

However, one way to have the code better enforce the DDD convention that each Repository should

be related to a single Aggregate would be to implement a generic repository type so it is explicit that

you are using a repository to target a specific aggregate. That can be easily done implementing that

generic at the IRepository base interface, as in the following code.

 public interface IRepository<T> where T : IAggregateRoot

The Repository pattern makes it easier to test your application logic

The Repository pattern allows you to easily test your application with unit tests. Remember that unit

tests only test our code, not infrastructure, so the repository abstractions will meka it easier to achieve

that goal.

As introduced in a previous section, it is recommended to define and place the Repository interfaces

in the domain layer so the application layer (for instance, your Web API microservice) doesn’t directly

depend on the Infrastructure layer where you have implemented the actual Repository classes. By

doing so and using Dependency Injection in the controllers of your Web API you could implement

mock Repositories that would return fake hard-coded data instead of accessing the database. That

decoupled approach allows you to create and run unit tests that can test just the logic of your

application without requiring connectivity to the database.

Connections to databases can fail and more importantly, running hundreds of tests against a database

is a bad thing for two reasons. First, it might take a lot of time because of the large number of tests,

and second, the database’s records might change and impact on the results of your tests, so they

might not be consistent. Testing against the database is not a Unit Tests but an Integration Test. You

should have many Unit Tests running fast but fewer Integration Tests against the databases.

The difference between the Repository pattern and the legacy Data Access class (DAL

class)

It is important to differentiate between a Repository class and the legacy Data Access (DAL) class. A

Data Access object directly performs data access and persistence operations against the storage. A

repository marks the data with the operations you want to perform in the memory of a Unit of Work

object (as in EF when using the DbContext), but these updates will not be performed immediately.

A Unit of Work is referred to as a single transaction that involves multiple insert/update/delete

operations. In simple terms, it means that for a specific user action (for example, registration on a

website), all the insert/update/delete transactions are handled in a single transaction. This is more

efficient than handling multiple database transactions in a chattier way.

These multiple persistence operations will be performed later in a single action when your code from

the Application layer commands it. The decision about applying the in-memory changes to the actual

database storage is typically based on the Unit of Work pattern. In EF the Unit of Work is

implemented as the DBContext.

In many cases, this pattern or way of applying operations against the storage can increase the

application performance and reduce the possibility of inconsistencies. Also, it reduces transaction

blocking in the database tables because all the intended operations will be committed as part of one

transaction. This is more efficient in comparison to executing many isolated operations against the

201 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

database. Therefore, the selected ORM will be able to optimize the execution against the database by

grouping several update actions, as opposed to many small separate executions.

References – Infrastructure and Persistence patterns

The Repository pattern

http://martinfowler.com/eaaCatalog/repository.html

https://msdn.microsoft.com/en-us/library/ff649690.aspx

http://deviq.com/repository-pattern/

-- The Repository pattern. By Eric Evans in his DDD book --

The Unit of Work pattern

http://martinfowler.com/eaaCatalog/unitOfWork.html

Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-

unit-of-work-patterns-in-an-asp-net-mvc-application

Implementing the infrastructure persistence layer

with Entity Framework Core
When using relational databases such as SQL Server, Oracle, or PostgreSQL a recommended approach

is to implement the persistence layer based on Entity Framework (EF). EF supports LINQ and provides

strongly typed objects for your model, as well as simplified persistence into your database.

Entity Framework has a long history as part of the .NET Framework. When using .NET Core, you should

also use Entity Framework Core, which runs on Windows or Linux in the same way as .NET Core. EF

Core is a complete rewrite of Entity Framework, implemented with a much smaller footprint and

important improvements in performance.

Introduction to Entity Framework Core

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology.

Since an introduction to EF Core is already available in Microsoft’s documentation, this guidance is

simply pointing to it with no further details:

References – Entity Framework Core

EF Core intro

https://docs.microsoft.com/en-us/ef/core/

Getting started with ASP.NET Core and Entity Framework Core

https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/

DbContext

https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.dbcontext

Compare EF Core & EF6.x

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index

http://martinfowler.com/eaaCatalog/repository.html
http://deviq.com/repository-pattern/
https://domainlanguage.com/ddd/
http://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/
https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index

202 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Infrastructure in Entity Framework Core from a DDD perspective

From a Domain-Driven Design point of view, an important of EF is the ability to use POCO Domain

Entities, also known as POCO Code-First entities in EF jargon. By using POCO Domain Entities, your

Domain Model classes are persistence ignorant, as the Persistence Ignorance and the Infrastructure

Ignorance principles state.

In addition, in EF Core 1.1 you can have plain fields in your entities instead of properties with

public/private setters. If you don’t want an entity field to be accessible from the outside, you just

create the attribute/field. There is no need to use private setters if you prefer this cleaner approach.

In a similar way, you can now have properly encapsulated collections (like a List<> or HashSet<>) in

your entities that rely on EF for persistence. Previous versions of Entity Framework required collection

properties to support ICollection<T>, which meant any developer using the parent entity class

could add or remove items from its property collections. Per DDD patterns you should encapsulate

domain behavior and rules within the entity class itself, so it can control invariants, validations and

rules when accessing any collection. Therefore, it is not a good practice in DDD to allow public access

to collections of child entities or value-objects. Instead, you want to expose methods that control how

and when your fields and property collections can be updated, and what behavior and actions should

occur when that happens.

You can use a private collection while exposing a read-only IEnumerable, as shown in the following

code example.

public class Order : Entity
{
 // Using private fields, allowed since EF Core 1.1
 private DateTime _orderDate;
 // Other fields ...
 private readonly List<OrderItem> _orderItems;
 public IEnumerable<OrderItem> OrderItems => _orderItems.AsReadOnly();

 protected Order() { }
 public Order(int buyerId, int paymentMethodId, Address address)
 {
 // Initializations ...
 }

 public void AddOrderItem(int productId, string productName,
 decimal unitPrice, decimal discount,
 string pictureUrl, int units = 1)
 {
 // Validation logic...

 var orderItem = new OrderItem(productId, productName, unitPrice, discount,
 pictureUrl, units);

 _orderItems.Add(orderItem);
 }
 }
}

Note that the property OrderItems can now only be accessed as read-only with

List<>.AsReadOnly(). This will create a read only wrapper around the private list so it’s protected

http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://ayende.com/blog/3137/infrastructure-ignorance

203 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

against external updates. It's much cheaper than using .ToList() because it won’t have to copy all of

the items in a new collection, just one heap alloc for the wrapper instance.

EF Core provides a way to map the domain model to the physical database without contaminating the

domain model. It’s pure .NET POCO code, because the mapping action is implemented in the

persistence layer. In that mapping action, you need to configure the fields to database mapping. In

the OnModelCreating,code shown below, the code in bold tells EF Core to access the OrderItems

property through its field.

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // ...
 modelBuilder.Entity<Order>(ConfigureOrder);
 // Other entities ...
}

void ConfigureOrder(EntityTypeBuilder<Order> orderConfiguration)
{
 // Other configuration ...

 var navigation =
orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));
 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 // Other configuration ...
 }

When using fields instead of properties, the OrderItem entity is persisted just as if it had a

List<OrderItem> property, but now it exposes a single interface (the AddOrderItem() method) for

adding new items to the order, so behavior and data are tied together and will be consistent

throughout any application code that uses the Domain Model.

Implementing custom repositories with Entity Framework Core

At the implementation level, a repository is simply a class with data persistence code coordinated by a

Unit of Work (DBContext in EF Core) when performing updates, as shown in the following class:

//usings...
namespace Microsoft.eShopOnContainers.Services.Ordering.Infrastructure.Repositories
{

 public class BuyerRepository : IBuyerRepository
 {
 private readonly OrderingContext _context;

 public IUnitOfWork UnitOfWork
 {
 get
 {
 return _context;
 }
 }
}

 public BuyerRepository(OrderingContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException(

Repository contract implemented

in the Domain Layer

The EF DbContext comes in the constructor

through Dependency Injection and is shared

between multiple Repositories within the same

HTTP request/scope thanks to its by default

lifetime (ServiceLifetime.Scoped) that can also

be explicitly set at services.AddDbContext<>

204 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 nameof(context));
 }

 _context = context;
 }

 public Buyer Add(Buyer buyer)
 {
 return _context.Buyers
 .Add(buyer)
 .Entity;
 }

 public async Task<Buyer> FindAsync(string BuyerIdentityGuid)
 {
 var buyer = await _context.Buyers
 .Include(b => b.Payments)
 .Where(b => b.FullName == BuyerIdentityGuid)
 .SingleOrDefaultAsync();

 return buyer;
 }
 }

Methods to implement in a Repository (Updates/Transactions versus Queries)

Within each Repository class, you should place the persistence methods that update the state of

entities contained by its related Aggregate. Remember there is 1:1 relationship between an Aggregate

and its related Repository. Take into account that an Aggregate-Root entity object might have

embedded child entities within its EF graph, For example, a Buyer might have multiple

PaymentMethods related as child entities.

Since the selected approach for the Ordering microservice in the eShopOnContainers sample

application is also based on CQS/CQRS, most of the queries are not implemented in custom

repositories. Developers have the freedom to create the queries and joins they need for the

presentation layer without the restrictions imposed by Aggregates, custom Repositories per

aggregate, and DDD in general. Most of the custom repositories suggested by this guidance might

only have update/transactional methods but not query methods, unless you need a specific query for

the transactional operations, For example, the BuyerRepository repository implements a

FindAsync() method, because the application needs to know if a particular buyer exists before

creating a new buyer related to the order. Therefore, having query methods in these repositories

would be optional if using CQRS approaches and only used if needed by validations of data required

for the transactions.

Using a custom repository versus using EF DbContext directly

The Entity Framework DbContext class is based on the UnitOfWork and Repository pattern and can

be used directly from your code, for example from an ASP.NET Core MVC controller. That is the way

you can create the simplest code, as in the CRUD Catalog microservice in the eShopOnContainers

sample sample. So, in cases where you just want to have the simplest code possible, you might want

to directly use the DbContext class.

However, implementing custom Repositories provides several benefits when implementing more

complex microservices or applications. The repository and unit of work patterns are intended to create

an abstraction layer between the infrastructure persistence layer and the application and domain

Adds a Buyer entity to the

UnitOfWork (DbContext)

Optional query method

205 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

layers. Implementing these patterns can help insulate your application from changes in the data store

and can facilitate automated unit testing.

Once you have implemented one repository class and repository interface per Aggregate-Root, when

you get the injected instance (through DI) of the repository implementation in your controller, you are

using the interface so that the controller will accept a reference to any object that implements that

repository interface. When the controller runs under a web server, it receives a repository that works

with the Entity Framework. When the controller runs under a unit test class, it could receive a mock

repository implementation that works with fake data, probably hard-coded so it is predictable and

stored in a way that you can easily manipulate for testing, such as an in-memory collection.

There are multiple alternatives when mocking. You could mock just repositories or you could also

mock a whole unit of work.

Later, when focusing on the application layer, you'll see how Dependency Injection works in ASP.NET

Core and how it is implemented when using Repositories.

In short, custom repositories allow you to test code easier with unit tests that aren’t impacted by the

data tier state. If you run tests that also access the actual database through the Entity Framework, they

are not unit tests but integration tests, which are a lot slower and more brittle.

If you were using DbContext directly, the only choice you have to run unit tests would be by using an

In-memory SQL Server with predictable data for unit tests. You wouldn’t be able to control mock

objects and fake data in the same way.

EF DbContext and IUnitOfWork instance lifetime in your IoC container

It’s important to highlight that the DbContext object (exposed as an IUnitOfWork) might need to be

shared among multiple repositories within the same HTTP request scope. For example, when the

operation being executed has to deal with multiple aggregates, or simply because you are using

Figure X-XX. Using custom Repositories vs. plain DbContext

206 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

multiple repository instances. It is also important to mention that the IUnitOfWork interface is part of

the domain, not an EF type.

In order to do that, and as shown in the code below, the instance of the DbContext object has to be

ServiceLifetime.Scoped, which is the default lifetime when registering your DbContext with

services.AddDbContext<> in your IoC container, from the ConfigureServices() method of your

Startup.cs file in your ASP.NET Core Web API project.

 public IServiceProvider ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc(options =>
 {
 options.Filters.Add(typeof(HttpGlobalExceptionFilter));
 }).AddControllersAsServices();

 services.AddEntityFrameworkSqlServer()

 .AddDbContext<OrderingContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlop => sqlop.MigrationsAssembly(typeof(Startup).GetTypeInfo().
 Assembly.GetName().Name));
 },

 ServiceLifetime.Scoped // Note that Scope is the ‘by default’ choice
 // in AddDbContext<>. It’s shown here only for
 // didactic purposes, but no need to be explicit
);

 }

The DbContext instantiation mode shouldn’t be configured as ServiceLifetime.Transient or

ServiceLifetime.Singleton.

The repository instance lifetime in your IoC container

In a similar way, repository’s lifetime should usually be set as scoped (InstancePerLifetimeScope in

Autofac). It could also be Transient (InstancePerDependency in Autofac), but your service will be more

efficient in regards memory when using the scoped lifetime.

// Registering a Repository in Autofac IoC container
builder.RegisterType<OrderRepository>()
 .As<IOrderRepository>()
 .InstancePerLifetimeScope();

Important: Be aware that using the singleton lifetime could cause you serious problems when your

DbContext is (by default) scoped.

References – Implementing Repositories with EF

Implementing Repositories with Entity Framework Core

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-

unit-of-work-patterns-in-an-asp-net-mvc-application

https://www.infoq.com/articles/repository-implementation-strategies

Comparing ASP.NET Core IoC container service lifetimes with Autofac IoC container instance scopes

https://blogs.msdn.microsoft.com/cesardelatorre/2017/01/26/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-

instance-scopes/

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.infoq.com/articles/repository-implementation-strategies

207 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Table mapping

Table mapping identifies the table data to be queried from and saved to in the database.

Previously you saw how your domain entities (i.e. Product or Order) can be used to generate a related

database schema. In EF, most of it is based on the concept of conventions. Conventions are topics like

“What will be the name of a table?” or “What property is going to be the primary key?”, and they are

typically based on conventionional names, for example “a property ending with the suffix ‘Id’ will be the

primary key‟.

By convention, each entity will be set up to map to a table with the same name as the

DbSet<TEntity> property that exposes the entity on the derived context. If no DbSet<TEntity> is

provided for the given entity, the class name is used.

Data Annotations versus Fluent API

There are many additional EF Core conventions and most of them can be changed by using either

Data Annotations or Fluent API, implemented within the OnModelCreating() method.

Data Annotations must be used on the entity model classes themselves, which is a more intrusive way

from a DDD point of view. This is because you are contaminating your model with data annotations

related to the infrastructure database. On the other hand, Fluent API is a convenient way to change

most conventions and mappings within your Data Persistence Infrastructure Layer, so the Entity Model

will be clean and decoupled from the persistence infrastructure.

Fluent API and the OnModelCreating method

As mentioned, in order to change conventions and mappings, you can use the method

OnModelCreating() from the DbContext class, as shown in the code below from the Ordering

microservice, part of the eShopOnContainers application.

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 //Other entities
 modelBuilder.Entity<OrderStatus>(ConfigureOrderStatus);
 //Other entities
 }
 void ConfigureOrder(EntityTypeBuilder<Order> orderConfiguration)
 {
 orderConfiguration.ToTable("orders", DEFAULT_SCHEMA);

 orderConfiguration.HasKey(o => o.Id);

 orderConfiguration.Property(o => o.Id)
 .ForSqlServerUseSequenceHiLo("orderseq", DEFAULT_SCHEMA);

 orderConfiguration.Property<DateTime>("OrderDate").IsRequired();
 orderConfiguration.Property<string>("Street").IsRequired();
 orderConfiguration.Property<string>("State").IsRequired();
 orderConfiguration.Property<string>("City").IsRequired();
 orderConfiguration.Property<string>("ZipCode").IsRequired();
 orderConfiguration.Property<string>("Country").IsRequired();
 orderConfiguration.Property<int>("BuyerId").IsRequired();
 orderConfiguration.Property<int>("OrderStatusId").IsRequired();

208 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 orderConfiguration.Property<int>("PaymentMethodId").IsRequired();

 var navigation =
orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));
 // DDD Patterns comment:
 //Set as Field (New since EF 1.1) to access the OrderItem collection
property as a field
 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 orderConfiguration.HasOne(o => o.PaymentMethod)
 .WithMany()
 .HasForeignKey("PaymentMethodId")
 .OnDelete(DeleteBehavior.Restrict);

 orderConfiguration.HasOne(o => o.Buyer)
 .WithMany()
 .HasForeignKey("BuyerId");

 orderConfiguration.HasOne(o => o.OrderStatus)
 .WithMany()
 .HasForeignKey("OrderStatusId");
 }
}

You could set all the Fluent API mappings within the same OnModelCreating() method, but it is

advisable to partition that code and have multiple sub-methods, one per entity, as shown in the code

above. Going further, for particularly large models, it can even be advisable to have separate source

files/static classes for configuring different entity types.

The above code is very explicit, however, EF Core conventions do most of this automatically, so the

actual code you would need to write to achieve the same thing would be much smaller.

The Hi/Lo pattern in EF Core

An interesting configuration in that code is that it is using HiLo as the key generation strategy, based

on the Hi/Lo pattern. EF Core supports HiLo with the ForSqlServerUseSequenceHiLo method.

The Hi/Lo pattern describes a mechanism for generating safe-ids on the client side rather than in the

database. Safe in this context means without collisions. This pattern is interesting for three reasons:

- It doesn’t break the Unit of Work pattern

- It doesn’t need many round-trips as the Sequence generators in other DBMS.

- It generates a human readable identifier, unlike GUID techniques.

Mapping fields instead of properties

With the new feature in EF Core 1.1 to map columns to fields, it is possible to not use any properties

in the entity class, and just to map columns from a table to fields. A common use for that would be

private fields for any internal state that needs not be accessed from outside the entity.

For example, the _someOrderInternalState field can’t have a property for either setter or getter.

That field could be calculated within the order’s business logic and also used by the order’s methods,

so it shouldn’t be a property. However, it needs to be persisted in the database. In EF 1.1 there’s a way

to map a field (without a related property) to a column in the database.

209 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

You can do this with single fields or also with collections, like a List<> field.

This point was mentioned when modeling the Domain Model classes, but here you can see how that

mapping is performed with the PropertyAccessMode.Field configuration highlighted in the

previous code.

Shadow properties and Value-Objects

Shadow properties are properties that do not exist in your entity class. The value and state of these

properties are maintained purely in the Change Tracker.

Shadow property values can be obtained and changed through the ChangeTracker API.

From a DDD point of view, shadow properties are a convenient way to implement Value-Objects by

hiding the Id as a shadow property primary key. This is important since a Value-Object shouldn’t have

identity or at least it is not important, as mentioned in the Domain Model Layer when shaping Value-

Objects. The point here is that at the time, EF Core doesn’t have any way to implement Value-Objects

as Complex Types, as it is possible in EF 6.x. That’s why it currently must be implemented as an entity

with a hidden Id (primary key) as a shadow property.

References – Table Mapping

Table Mapping

https://docs.microsoft.com/en-us/ef/core/modeling/relational/tables

Use HiLo to generate keys with Entity Framework Core

http://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/

Backing Fields

https://docs.microsoft.com/en-us/ef/core/modeling/backing-field

Encapsulated Collections in Entity Framework Core

http://ardalis.com/encapsulated-collections-in-entity-framework-core

Shadow Properties

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

Using NoSQL databases as a persistence

infrastructure
When using NoSQL databases for your infrastructure data tier, you wouldn’t typically be using an

ORM like Entity Framework Core. Instead you would use the API provided by the chosen NoSQL

engines such as Azure Document DB, MongoDB, Cassandra, RavenDB, CouchDB, or Azure Storage

Tables.

However, when using a No- SQL database, especially a Document-oriented database like Azure

Document DB, CouchDB, or RavenDb, the way you design your model with DDD Aggregates is similar

in regards to the identification of AggregateRoots, child entity classes, and value-object classes.

Basically, when using a document-oriented database, you would implement an Aggregate (group of

Domain entities and value-objects that must keep consistency) as a single document, serialized in

JSON or any other format.

http://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/
http://ardalis.com/encapsulated-collections-in-entity-framework-core

210 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The difference would be the way you persist that model. Therefore, when implementing a Domain

Model, you want to have a model based on POCO entity classes, agnostic to the infrastructure

persistence, so you could potentially move to a different persistence infrastructure. It wouldn’t be

trivial, as transactions and persistence operations will be very different, but at least you could have a

clean and protected Domain Model, following the Persistence Ignorant principle.

In any case, when using NoSQL databases the entities will be more denormalized, so it’s not a simple

table mapping. Your domain model might have a few impacts, after all.

However, if you were modelling your Domain Model based on Aggregates, moving to NoSQL and

document oriented databases might be easier, because you already defined the aggregate’s

boundaries which are similar to serialized documents in document-oriented databases.

For instance, the following JSON code is a sample implementation of an Order Aggregate when using

a Document oriented database, similar to the order aggregate we implemented in the

eShopOnContainers sample but not using EF Core underneath.

JSON example of the Order Aggregate when using a Document oriented DB
{
 "id": "2017001",
 "orderDate": "2/25/2017",
 "buyerId": "1234567",
 "address": [
 {
 "street": "100 One Microsoft Way",
 "city": "Redmond",
 "state": "WA",
 "zip": “98052”,
 "country": “U.S.”
 }
],
 "orderItems": [
 {"id": 20170011, "productId": "123456", "productName": ".NET T-Shirt",
 "unitPrice": 25, "units": 2, "discount": 0},
 {"id": 20170012, "productId": "123457", "productName": ".NET Mug",
 "unitPrice": 15, "units": 1, "discount": 0}
]
}

When using a C# model to implement that aggregate to be used by, for instance, the Azure

Document DB SDK, it would be similar to the C# POCO classes used with EF Core. The difference will

be the way to use them from the application and infrastructure layers, as in the following code.

//C# example of an Order Aggregate being persisted with DocumentDB API

// *** Domain Model Code ***
// Aggregate: Create an Order object with its child entities and/or value-objects.
// Then, use AggregateRoot’s methods to add the nested objects so invariants and
// logic is consistent across the nested properties (Value-Objects and entities).
// This can be saved as JSON as is without converting into rows/columns.

Order orderAggregate = new Order
{

211 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 Id = "2017001",
 OrderDate = new DateTime(2005, 7, 1),

 BuyerId = "1234567",
 PurchaseOrderNumber = "PO18009186470"
}

Address address = new Address
{

 Street = "100 One Microsoft Way",
 City = “Redmond”,
 State = “WA”,
 Zip = “98052”,
 Country = “U.S.”
}

orderAggregate.UpdateAddress(address);

OrderItem orderItem1 = new OrderItem
{

 Id = 20170011,
 ProductId = “123456”,
 ProductName = “.NET T-Shirt”,
 UnitPrice = 25,
 Units = 2,
 Discount = 0;
};

OrderItem orderItem2 = new OrderItem
{

 Id = 20170012,
 ProductId = “123457”,
 ProductName = “.NET Mug”,
 UnitPrice = 15,
 Units = 1,
 Discount = 0;
};
//Using methods with domain logic within the entity. No anemic-domain model

orderAggregate.AddOrderItem(orderItem1);
orderAggregate.AddOrderItem(orderItem2);
// *** End of Domain Model Code ***
//...

// *** Infrastructure Code using Document DB Client API ***
Uri collectionUri = UriFactory.CreateDocumentCollectionUri(databaseName,
 collectionName);
await client.CreateDocumentAsync(collectionUri, order);

// As your app evolves, let's say your object has a new schema. You can insert OrderV2
objects without any changes to the database tier.
Order2 newOrder = GetOrderV2Sample("IdForSalesOrder2");
await client.CreateDocumentAsync(collectionUri, newOrder);

You can see that the way you work with your Domain Model can be similar to the way you are using it

in your Domain Model Layer when the infrastructure was EF underneath. You still use the same

AggregateRoot’s methods to ensure consistency, invariants and validations within the aggregate.

212 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

However, when persisting your model into the NoSQL db, implemented in the infrastructure and

persistence layer, this is where the code and API will dramatically change internally.

References – NoSQL Databases

Azure Document DB

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-modeling-data

DDD Aggregate storage

https://vaughnvernon.co/?p=942

Event storage

https://github.com/NEventStore/NEventStore

Designing the microservice’s application layer and

Web API

Using S.O.L.I.D. principles and Dependency Injection

The S.O.L.I.D. principles and Dependency Injection (DI) are critical techniques to be used in any

modern and mission-critical application, such as developing a microservice with DDD patterns.

However, you should also use DI and apply the S.O.L.I.D. principles even when you aren’t using DDD

approaches or patterns.

S.O.L.I.D. is an acronym that groups five fundamental principles:

• Single Responsibility Principle

• Open/close principle

• Liskov substitution principle

• Inversion Segregation principle

• Dependency Inversion principle

S.O.L.I.D. and DI tackle more about how you design your application/microservice internal layers and

decoupled dependencies between them, so this is not related to the Domain but related to the

application’s technical design. But, DI allows you to decouple the infrastructure layer from the rest of

the layers allowing a better decoupled implementation of the DDD layers.

Dependency injection (DI) is a technique for achieving loose coupling between objects and their

dependencies. Rather than directly instantiating collaborators, or using static references, the objects a

class needs to perform its actions are provided to or injected into the class. Most often, classes will

declare their dependencies via their constructor, allowing them to follow the Explicit Dependencies

Principle. DI is usually based on specific Inversion of Control (IoC) containers. ASP.NET Core provides a

simple built-in IoC container, but you can also use your favorite IoC container, like Autofac or Ninject.

By following the S.O.L.I.D. Principles, your classes will naturally tend to be small, well-factored, and

easily tested. What if you find that your classes tend to have way too many dependencies being

injected? Using DI through the constructor it will be easy to detect by just taking a look at the number

of parameters of your constructor. If there are too many dependencies, this is generally a sign (code

smell) that your class is trying to do too much, and is probably violating SRP - the Single

Responsibility Principle.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-modeling-data
https://vaughnvernon.co/?p=942
http://deviq.com/code-smells/
http://deviq.com/code-smells/

213 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

There is much to be said about S.O.L.I.D. and DI. It would really take another guide/book to cover it in

detail, so this guide requires the reader to have a minimum knowledge or skills with these topics.

References – S.O.L.I.D. principles and Dependency Injection

S.O.L.I.D. principles

http://deviq.com/solid/

Dependency Injection

https://martinfowler.com/articles/injection.html

New is Glue

htthttp://ardalis.com/new-is-glue

Implementing the microservice’s application layer

and Web API

Using Dependency Injection to inject infrastructure objects into your

application layer

The application layer, as mentioned previously, is whatever artifact you are building. In the case of a

microservice built with ASP.NET Core, the application layer will usually be your Web API library. If

you’d like to separate what is coming from ASP.NET Core (its infrastructure plus your controllers) from

your custom application layer code, that could also be placed in a separate library.

ASP.NET Core includes a simple built-in IoC container (represented by the IServiceProvider

interface) that supports constructor injection by default, and ASP.NET makes certain services available

through DI. ASP.NET's container refers to the types it manages as services. You configure the built-in

container's services in the ConfigureServices method in your application's Startup class.

Typically, you’d want to inject dependencies that implement infrastructure objects. The most typical

dependencies to inject are Repositories, or for simpler implementations you could directly inject your

Unit of Work pattern object (the EF DbContext object), as they are the implementation of your

infrastructure persistence objects.

In the following example, you can see how .NET Core is injecting the needed Repository objects.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IOrderRepository _orderRepository;

 public CreateOrderCommandHandler(IOrderRepository orderRepository)
 {
 if (orderRepository == null)
 {
 throw new ArgumentNullException(nameof(orderRepository));
 }

 _orderRepository = orderRepository;
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {

http://ardalis.com/new-is-glue
http://ardalis.com/new-is-glue

214 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 //
 // ... Additional code
 //

 // Create the Order AggregateRoot
 // Add child entities and value-objects through the Order Aggregate-Root
 // methods and constructor so validations, invariants and business logic
 // make sure that consistency is preserved across the whole aggregate

 var address = new Address(message.Street, message.City, message.State,
 message.Country, message.ZipCode);
 var order = new Order(address, message.CardTypeId, message.CardNumber,
 message.CardSecurityNumber, message.CardHolderName,
 message.CardExpiration);

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 //Persist the Order through the Repository
 _orderRepository.Add(order);

 var result = await _orderRepository.UnitOfWork
 .SaveEntitiesAsync();

 return result > 0;
 }
}

Finally, it is using the injected repositories to execute the transaction and persist the state changes.

Registering the Dependency implementation types and interfaces/abstractions

You also need to know where to register the Interfaces and classes that will be injected to your

objects through DI based on the constructors.

Using the built-in IoC container provided by ASP.NET Core

When using the built-in IoC container provided by ASP.NET Core (as in the simple Catalog

microservice in the eShopOncontainers sample), you register the types in the ConfigureServices()

method in the MVC Startup.cs file.

// Registration of types into ASP.NET Core built-in container
public void ConfigureServices(IServiceCollection services)
{
 // Register out-of-the-box framework services.
 services.AddDbContext<CatalogContext>(c =>
 {
 c.UseSqlServer(Configuration["ConnectionString"]);
 },
 ServiceLifetime.Scoped
);

 services.AddMvc();

 // Register custom application dependencies.

215 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 services.AddScoped<IMyCustomRepository, MyCustomSQLRepository>();

}

In this example, the last line of code states that when any of your constructors have a dependency on

IMyCustomRepository (interface or abstraction), the IoC container will inject an instance of the

MyCustomSQLServerRepository implementation class.

Using Autofac as IoC container

You can also use additional IoC containers and plug them to the ASP.NET Core pipeline, as in the

Ordering microservice in the eShopOncontainers sample which uses Autofac. When using Autofac you

typically register the types via modules, which allow you to split the registration types between

multiple files depending on where your types are, just as you could have the application types

distributed across multiple class libraries.

For example, the following is the application module for one class library with the implemented

custom types.

public class ApplicationModule
 :Autofac.Module
{
 public string QueriesConnectionString { get; }

 public ApplicationModule(string qconstr)
 {
 QueriesConnectionString = qconstr;
 }
 protected override void Load(ContainerBuilder builder)
 {

 builder.Register(c => new OrderQueries(QueriesConnectionString))
 .As<IOrderQueries>()
 .InstancePerLifetimeScope();

 builder.RegisterType<BuyerRepository>()
 .As<IBuyerRepository>()
 .InstancePerLifetimeScope();

 builder.RegisterType<OrderRepository>()
 .As<IOrderRepository>()
 .InstancePerLifetimeScope();
 }
}

In the code above, the abstraction IOrderRepository is registered along with the implementation

class OrderRepository, which means that whenever a constructor is declaring a dependency through

the abstraction or interface IOrderRepository, the IoC container will inject an instance of the

OrderRepository class.

The instance scope type determines how an instance is shared between requests for the same service

or dependency. When a request is made for a dependency, the IoC container can return a single

instance per LifetimeScope (referred to in ASP.NET Core as “scoped”), a new instance per dependency

216 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

(referred to in ASP.NET Core as “transient”), or a single instance shared across all objects using the IoC

container (referred to in ASP.NET Core as “singleton”).

For additional information about DI, lifetime scopes and usage in ASP.NET Core, read the following

references.

References – ASP.NET Core DI and Autofac

Using Dependency Injection in ASP.NET Core and .NET Core

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

Autofac

http://docs.autofac.org/en/latest/getting-started/index.html

http://docs.autofac.org/en/latest/lifetime/instance-scope.html

Comparing lifetime scopes between ASP.NET Core built-in container and Autofac

https://blogs.msdn.microsoft.com/cesardelatorre/2017/01/26/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-

instance-scopes/

Implementing the Command and Command-Handlers patterns

In the DI through constructor example shown in the previous section, the IoC container was injecting

Repositories through a constructor, but exactly where were they injected? In a very simple Web API

(for example, the Catalog microservice in the eShopOnContainers sample), you would injecting them

at the MVC Controllers level, in a Controller constructor. However, in the previous example it is done

at a CommandHandler level, so let’s explain what a ComamndHandler is and why you would want to

use it.

The Command pattern is intrinsically related to the CQRS pattern that was previously introduced in

this guide. CQRS has two sides. The queries (previously explained using in this approach for simplified

queries with Dapper Micro ORM) and the Commands as the starting point for the transactions/writes.

Remember, CQRS is not an architecture, it’s a pattern which you can use in some microservices of

your application architecture, or in all of them. You decide if you implement CQRS per Bounded

Context or microservice. not as the top-level architecture for your whole application.

As shown in the high-level diagram below, the pattern is based on accepting commands from the

clisnt side and process those commands based on the Domain Model rules and finally persisting the

states with transactions.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://docs.autofac.org/en/latest/getting-started/index.html
http://docs.autofac.org/en/latest/lifetime/instance-scope.html
https://github.com/StackExchange/dapper-dot-net

217 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The Command

What is a command? – A command is a request for the system to perform an action that changes the

state of the system. Since Commands are imperatives, they are typically named with a verb in the

imperative tense and may include the aggregate type, for example CreateOrderCommand. Unlike an

event, a command is not a fact from the past; it's only a request, and thus may be refused.

Commands can originat from either the user interface (UI) as a result of a user initiating a request, or

from a process manager when the process manager is directing an aggregate to perform an action.

Another very important characteristic of a command is that a command must be processed just once by

a single recipient. This is because commands might not be idempotent, therefore it’s important that

they be processed only once. For example, the same Order creation request shouldn’t be processed

more than once. This is a very important difference when comparing commands versus events. Usually

you will want to process an event (something that happened in the past) multiple times, as many

systems might be interested in that event.

Idempotency. Idempotency is a characteristic of an operation that means the operation can be applied

multiple times without changing the result. For example, the operation "set the value x to ten" is

idempotent, while the operation "add one to the value of x" is not. A Command is idempotent if it can

be executed multiple times without changing the result, either because of the nature of the Command

itself, or because of the way the system handles the Command.

Therefore, it is a good practice to make your commands and updates idempotent, when it makes

sense. If for any reason (retry logic, hacking, etc.) the same CreateOrder command reaches your

system multiple times, you should be able to identify it, insuring that you don’t create multiple orders

based on the same original CreateOrder command. To do so, you need to attach some kind of

identity in the operations and identify whether that same command or update was already processed.

Figure X-XX. High level “Writes side” in a CQRS pattern

218 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

You send a command, you don’t publish a command. Publishing is reserved for events which state a

fact – that something has happened, and that the publisher has no concern about what receivers of

that event do with it. But events are a different story related to Domain events and Integration events.

How then do you implement a Command? It’s quite simple; a Command is implemented with a class

that contains data fields or collections with all the information you need to execute that command. So,

yes, a command is like a special kind of DTO (Data Transfer Object) used to request changes or

transactions. The command itself is based on exactly what information is needed to process the

command, and nothing more.

The following is an example of the simplified CreateOrderCommand, which is an immutable

command, used in the Ordering microservice in the eShopOnContainers sample.

// DDD and CQRS patterns comment: Note that it is recommended to implement immutable Commands
// In this case, its immutability is achieved by having all the setters as private
// plus only being able to update the data just once, when creating the object through its
constructor.
// References on Immutable Commands:
// http://cqrs.nu/Faq
// https://docs.spine3.org/motivation/immutability.html
// http://blog.gauffin.org/2012/06/griffin-container-introducing-command-support/
// https://msdn.microsoft.com/en-us/library/bb383979.aspx

[DataContract]
public class CreateOrderCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 private readonly List<OrderItemDTO> _orderItems;
 [DataMember]
 public string City { get; private set; }
 [DataMember]
 public string Street { get; private set; }
 [DataMember]
 public string State { get; private set; }
 [DataMember]
 public string Country { get; private set; }
 [DataMember]
 public string ZipCode { get; private set; }
 [DataMember]
 public string CardNumber { get; private set; }
 [DataMember]
 public string CardHolderName { get; private set; }
 [DataMember]
 public DateTime CardExpiration { get; private set; }
 [DataMember]
 public string CardSecurityNumber { get; private set; }
 [DataMember]
 public int CardTypeId { get; private set; }
 [DataMember]
 public IEnumerable<OrderItemDTO> OrderItems => _orderItems;

 public void AddOrderItem(OrderItemDTO item)
 {
 _orderItems.Add(item);
 }
 public CreateOrderCommand()
 {
 _orderItems = new List<OrderItemDTO>();
 }

 public CreateOrderCommand(string city, string street, string state, string country, string
zipcode,
 string cardNumber, string cardHolderName, DateTime cardExpiration,

219 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 string cardSecurityNumber, int cardTypeId) : this()
 {
 City = city;
 Street = street;
 State = state;
 Country = country;
 ZipCode = zipcode;
 CardNumber = cardNumber;
 CardHolderName = cardHolderName;
 CardSecurityNumber = cardSecurityNumber;
 CardTypeId = cardTypeId;
 CardExpiration = cardExpiration;
 }
 public class OrderItemDTO
 {
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public decimal UnitPrice { get; set; }
 public decimal Discount { get; set; }
 public int Units { get; set; }
 public string PictureUrl { get; set; }
 }
}

Basically, the Command class contains all the data you will need to perform a business transaction by

using the Domain Model objects. Thus, Commands are simply data structures that contain read-only

data, and no behavior. The Command’s name indicates it’s purpose. In many languages like C#,

Commands are represented as classes, but they are not true classes in the real OO sense.

As an additional characteristic, commands are immutable because their expected usage is to be

processed directly by the domain model. Usually, they do not need to change during their

projected lifetime. The same happens with Events, but that is a different story.

In a C# class, immutability can be achieved by not having any setters, or other methods which

change internal state. This immutability and lack of setters is an improvement in the Command’s

design, but it is not critical.

An example is a “Create an order” command. In this case, the Command class might be similar in

terms of data to the Order you want to create, but you probably don’t need the same attributes. For

instance, the CreateOrderCommand doesn’t have an Order Id because it hasn’t been created yet.

Many other Command classes can be very simple, requiring only a few fields about some state that

needs to be changed. For example, that would be the case if you are just changing the status of an

Order from “InProcess” to “Paid” or “Shipped” status by using a command similar to the following:

[DataContract]
public class UpdateOrderStatusCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 public string Status { get; private set; }
 [DataMember]
 public string OrderId { get; private set; }
 [DataMember]
 public string BuyerIdentityGuid { get; private set; }
}

220 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The Command-Handler class

The Command class example is pretty obvious. But where do you actually use that command object

and provide the needed data to the Domain objects? In a Web API controller? In an Application Layer

Service?

It turns out that it is pretty convenient to have a specific Command Handler class per Command. That

is how the pattern works and it is precisely where you will use the Command object, the Domain

objects and the infrastructure repository objects. The Command-Handler is in fact the heart of the

Application Layer in terms of DDD.

A command handler receives a command and brokers a result from the appropriate aggregate. A

result is either a successful application of the command, or an exception.

The command handler usually performs the following tasks:

• It receives the Command instance (from the mediator or any other infrastructure).

• It validates that the Command is a valid Command (if not validated by the mediator).

• It locates the aggregate instance that is the target of the Command.

• It invokes the appropriate method on the aggregate instance passing in any parameter from

the command.

• It persists the new state of the aggregate to storage, which is the actual transaction.

The important point here is that all the domain logic in processing the command should be inside the

domain model (the aggregates), fully encapsulated and unit-testable. The command-handler just acts

as a way to get the domain model out of the persistent store and tell the infrastructure layer

(Repositories) to persist the changes when the model is ready. The advantage of this approach is that

you can now refactor the domain logic in a fully encapsulated, behavioral domain model without

changing anything else in the application plumbing level (Web API, etc.).

When command handlers get complex with too much logic, review them and just push the behavior

down to the domain objects (aggregate-root’s and child entity’s) methods as needed by refactoring

them.

As an example of a Command-Handler class, the following code shows the same

CreateOrderCommandHandler class that uou saw earlier. In this case you can see highlighted the

actual Handle() method and the operations with the Domain model objects/aggregates.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IBuyerRepository _buyerRepository;
 private readonly IOrderRepository _orderRepository;

 public CreateOrderCommandHandler(IBuyerRepository buyerRepository,
 IOrderRepository orderRepository)
 {
 if (buyerRepository == null)
 {
 throw new ArgumentNullException(nameof(buyerRepository));
 }

 if (orderRepository == null)

221 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

 {
 throw new ArgumentNullException(nameof(orderRepository));
 }

 _buyerRepository = buyerRepository;
 _orderRepository = orderRepository;
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 //
 // ... Additional code
 //

 // Create the Order AggregateRoot
 // Add child entities and value-objects through the Order Aggregate-Root
 // methods and constructor so validations, invariants and business logic
 // make sure that consistency is preserved across the whole aggregate

 var order = new Order(buyer.Id, payment.Id,
 new Address(message.Street,
 message.City, message.State,
 message.Country, message.ZipCode));

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 //Persist the Order through the Aggregate’s Repository
 _orderRepository.Add(order);

 var result = await _orderRepository.UnitOfWork.SaveChangesAsync();
 return result > 0;
 }
}

This is the common sequence of steps a command handler might follow:

- Validate the command’s incoming data.

- Use the command’s data to operate with the aggregate root’s methods and behavior.

- Internally within the Domain objects, Domain events could be raised while the transaction is

executed, but that is transparent from a Command Handler point of view.

- If the aggregate’s operation result is successful, integration events can be raised either from

the infrastructure classes like Repositories or from the Command-Handler itself, after the

transaction is finished.

References – Command and Command-Handler

At the Boundaries, Applications are Not Object-Oriented (by Mark Seemann)

http://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/

The Command pattern

http://cqrs.nu/Faq/commands-and-events

The Command-Handler pattern

http://cqrs.nu/Faq/command-handlers

http://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/
http://cqrs.nu/Faq/commands-and-events
http://cqrs.nu/Faq/command-handlers

222 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The Command’s process pipeline: hw to trigger a command handler

The next question is, where do I call a Command-Handler? – You could manually call it from each

related ASP.NET Core controller, however, that approach would be too coupled and not ideal.

The other two main options, which are the recommended options, are:

• Through an in-memory Mediator pattern artifact.

• With an asynchronous queue, in between controllers and handlers.

Using the mediator pattern (in-memory) in the Command’s pipeline

As shown in figure X-XX, in a CQRS approach you use an intelligent mediator, similar to an in-memory

bus, which is smart enough to redirect to the right Command-Handler based on the type of the

Command/DTO being received. The small single black arrows between components mean the

dependencies between objects (in many cases, injected through DI) with their related interactions.

The reason that using a mediator pattern makes sense is because in enterprise applications the

processing requests can get increasingly complicated. You will want to be able to add an open

number of cross-cutting concerns like logging, validations, transactions, audit, and security. In these

cases, you can rely on a mediator pipeline (see mediator pattern) to provide a means for these extra

behaviors or cross-cutting concerns.

A mediator is an object that encapsulates the “how” and coordinates execution based on state, the

way it’s invoked, or the payload you provide to it.

Basically, with a Mediator component you can apply those mentioned cross-cutting concerns in a

centralized and transparent way by just applying decorators. See the decorator pattern.

Decorators are similar to Aspect Oriented Programming – AOP , only applied to a specific process-

pipeline managed by the mediator component. Aspects in AOP implementing cross-cutting concerns

are magically applied based on aspect weavers injected in compilation time or based on object call

interception. Both typical AOP approaches are like magic and when dealing with serious issues or

bugs can be difficult to debug. On the other hand, these decorators are explicit and applied only in

Figure X-XX. Using the Mediator pattern in CQRS microservice

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Aspect-oriented_programming

223 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

the context of the mediator, so debugging is much more predictable and easy to do for any

developer.

Using message queues (out-of-proc) in the Command’s pipeline

Another choice is to use message queues, as shown in the image X-XX. That option could also be

combined with the mediator component right before the command-handlers.

Using message queues to accept the commands can further complicate your command’s pipeline, as

you will probably need to split the pipeline in two processes connected through the external message

queue. Still it should be used if you need to have better resiliency when submitting the command

messages, plus providing better scalability and better performance because you can implement

asynchronous messaging. Consider that in this case the controller just posts the command message

into the queue and returns. Then, the command-handlers will be processing the messages at their

own pace. That is a great benefit typical of queues, as the message queue can act as a buffer in cases

when hyper scalability is needed for ingress data, for example for stocks or any other scenario with a

high volume of ingress data.

However, because of the asynchronous nature of message queues, you will need to figure out how to

communicate with the client application about the success or failure of the command’s process. As a

rule, you should never use “fire and forget” commands. Every business application needs to know if a

command was processed successfully, or at least validated and accepted.

Thus, being able to respond to the client after validating a command message that was submitted to

an asynchronous queue adds complexity to your system as compared to an in-process command

process that returns the operation’s result after running the transaction. Using queues, you might

need to return the result of the command process through other operation result messages, which will

require additional components and custom communication in your system.

Figure X-XX. Using Message Queues with CQRS Commands

224 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

Additionally, async commands are one way commands, which in many cases might not be needed as

explained by Greg Young in the following extracts:

I find lots of code where people use “async command handling” or “one way command” messaging

without any reason to do so (they are not doing some long operation, they are not executing external

async code, they do not even cross application boundary to be using message bus). Why do they

introduce this unnecessary complexity? And actually, I haven't seen a CQRS code example with

blocking command handlers so far, though it will work just fine in most cases.

An asynchronous command doesn't exist; it's actually another event. If I must accept what you send

me and raise an event if I disagree, it's no longer you telling me to do something, it's you telling me

something has been done. This seems like a slight difference at first, but it has many implications.

- Greg Young -

In the eShopOnContainers implementation it was chosen to use synchronous command processing

driven by the Mediator pattern, as that easily allows you to return the success or failure of the process.

In any case, this should be a decision based on your application’s or microservice’s business

requirements. Sometimes a command might not need any confirmation and then it would be a lot

simpler to implement it as a asynchronous command.

Implementing the Command process pipeline with a mediator pattern

(MediatR)

As a sample implementation, this guidance is proposing the in-process pipeline based on the

mediator pattern driving the commands ingestion and routing them, in memory, to the right

command-handlers, plus applying decorators to separate cross-cutting concerns.

For implementation in .NET Core, there are multiple open source libraries available implementing the

mediator pattern The chosen library used in this guidance is the MediatR open source library (created

by Jimmy Bogard), but you could use any other approach. MediatR is a small, simple in-process

messaging library that allows you to process messages like a Command, while applying decorators.

MediatR is also capable of using synchronous or asynchronous execution which is important

depending on your desired application behavior.

Basically, using the mediator pattern helps you to reduce coupling and isolate the concerns of the

requested work to be done while automatically connecting to the handler that performs that work

(the Command-Handler, in this case).

First, let’s take a look to the controller’s code where you actually would use the mediator object.

The constructor of your controller can be a lot simpler with just a few dependencies instead of many

dependencies that you would have if you had one per cross-cutting operation.

For instance, instead of a messy constructor with many cross-cutting dependencies, you can have a

clean constructor like this:

public class OrdersController : Controller

225 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

{
 public OrdersController(IMediator mediator,
 IOrderQueries orderQueries)

You can see that it provides a very clean and lean Web API controller. Within the controller’s methods,

the code is also pretty simple, basically just one line sending a Command to the mediator object:

[Route("new")]
[HttpPost]
public async Task<IActionResult> CreateOrder([FromBody]CreateOrderCommand
 createOrderCommand)
{
 var result = await _mediator.SendAsync(createOrderCommand);
 if (result)
 {
 return Ok();
 }
 return BadRequest();

}

In order for Mediator to be aware of your command-handler classes, you need first to wire it up by

registering the mediator classes and the command-handler classes in your IoC container.

By default, Mediator uses Autofac as the IoC container, but you can also use the built-in ASP.NET Core

IoC container or any other container supported by MediatR.

The following code shows how to register those types, Mediator’s types and Commands when using

Autofac modules.

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {
 builder.RegisterAssemblyTypes(typeof(IMediator).GetTypeInfo().Assembly)
 .AsImplementedInterfaces();

 builder.RegisterAssemblyTypes(typeof(CreateOrderCommand).GetTypeInfo().Assembly)
 .As(o => o.GetInterfaces()
 .Where(i => i.IsClosedTypeOf(typeof(IAsyncRequestHandler<,>)))
 .Select(i => new KeyedService("IAsyncRequestHandler", i)));

 builder.RegisterGenericDecorator(typeof(LogDecorator<,>),
 typeof(IAsyncRequestHandler<,>),
 "IAsyncRequestHandler");
 //Other types registration
 }

}

Because each Command Handler is implementing the interface with generics

IAsyncRequestHandler<T>, then by inspecting the RegisteredAssemblyTypes it is able to relate

each Command with its Command-Handler, because that relationship is stated in the

CommandHandler class, as in the following example:

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>

226 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

{

This is the code that closes the loop and correlates Commands with CommandHandlers. The handler

is just a simple class, but it inherits from RequestHandler<T> and MediatR makes sure it gets invoked

with the correct payload.

Applying cross-cutting concerns when processing commands with the

Mediator and Decorator patterns

There’s one more thing: the capability of being able to apply cross-cutting concerns to the mediator

pipeline. In the Autofac registration module code you can also see at the end of that code how it is

registering a decorator type, specifically, a custom Log Decorator.

That LogDecorator class can be implemented as the following simple code which is simply logging

info about the command handler being executed and whether it was successful or not.

public class LogDecorator<TRequest, TResponse>
 : IAsyncRequestHandler<TRequest, TResponse>
 where TRequest : IAsyncRequest<TResponse>
{
 private readonly IAsyncRequestHandler<TRequest, TResponse> _inner;
 private readonly ILogger<LogDecorator<TRequest, TResponse>> _logger;

 public LogDecorator(
 IAsyncRequestHandler<TRequest, TResponse> inner,
 ILogger<LogDecorator<TRequest, TResponse>> logger)
 {
 _inner = inner;
 _logger = logger;
 }
 public async Task<TResponse> Handle(TRequest message)
 {
 _logger.LogInformation($"Executing command {_inner.GetType().FullName}");

 var response = await _inner.Handle(message);

 _logger.LogInformation($"Succeeded executed command {_inner.GetType().FullName}");
 return response;
 }

}

Just by implementing this decorator class and by decorating my pipeline with it, all the commands

processed through MediatR will be logging information about it.

In a similar way, you could implement other decorators like a validator decorator, transaction

decorator, or any other aspect or cross-cutting concern you would like to apply to commands when

handling them.

For additional information on the Mediator pattern and the MediatR library, see the following

references.

References – Mediator

The mediator pattern

https://en.wikipedia.org/wiki/Mediator_pattern

https://en.wikipedia.org/wiki/Mediator_pattern

227 Tackling Business Complexity in a Microservice with DDD and CQRS Patterns

The decorator pattern

https://en.wikipedia.org/wiki/Decorator_pattern

MediatR

https://github.com/jbogard/MediatR

https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/

https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/

https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/

https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/

https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/

https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/

https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/

FluentValidation

https://github.com/JeremySkinner/FluentValidation

Why sagas?

A saga is a technique that can be used to handle out of order messages. It is similar (but not equal) to

a process manager or a workflow, and typically means a long-running business process that could be

implemented either with custom code or based on a service bus.

When designing processes with more than one remote call it is usually recommended to use sagas.

The length of time is not important in many cases. Sometimes “a single second means a lifetime” and

you might need a saga, as well.

Sagas and long running processes

A Saga on Sagas

https://msdn.microsoft.com/en-us/library/jj591569.aspx

Saga implementation patterns – variations

https://lostechies.com/jimmybogard/2013/03/21/saga-implementation-patterns-variations/

Saga definition and implementing a saga with NServiceBus

https://docs.particular.net/nservicebus/sagas/

https://github.com/jbogard/MediatR
https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/
https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/
https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/
https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/
https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/
https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/
https://github.com/JeremySkinner/FluentValidation
https://msdn.microsoft.com/en-us/library/jj591569.aspx

228 Implementing Resilient Applications

S E C T I O N 10

Implementing Resilient
Applications

Vision
Your microservice and cloud based applications need to embrace partial failure that will certainly

happen, eventually. You need to design your application so it will be resilient to those partial failures.

Resiliency is the ability to recover from failures and continue to function. It's not about avoiding

failures, but accepting the fact that failures will happen and responding to them in a way that avoids

downtime or data loss. The goal of resiliency is to return the application to a fully functioning state

after a failure.

It’s challenging enough to design and deploy a microservices-based application. But you also need to

keep your application running in an environment where some sort of failure is certain that will

happen. Therefore, your application should be resilient. It should be designed to cope with partial

failures, like network outages, nodes/VMs crashing in the cloud or even simply

microservices/containers being moved to a different node within a cluster that might cause

intermittent short failures within the application. The many individual components of your application

should also incorporate health monitoring features. By following the guidelines in this chapter, you

can create an application that can work smoothly in spite of transient downtime or the normal hiccups

that occur in complex and cloud-based deployments.

Handling partial failure
In distributed systems like microservices-based applications, there is the ever-present risk of partial

failure, for instance, a single microservice/container failing ar not being available to respond for a

short time or a single VM or server crashing. Since clients and services are separate processes, a

service might not be able to respond in a timely way to a client’s request. The service might be

overloaded and responding extremely slowly to requests, or might simply not be accessible for a short

time because of network issues.

For example, consider the Order details page from the eShopOnContainers sample application. If the

ordering microservice is unresponsive when the user tries to submit an order, a bad implementation

of the client process, the MVC web application (for example, if the client code uses synchronous RPCs

with no timeout), it would block threads indefinitely waiting for a response. In addition to creating a

bad user experience, every unresponsive wait consumes or blocks a thread, which are extremely

valuable in highly scalable applications. If there are many blocked threads, eventually the application’s

229 Implementing Resilient Applications

runtime can run out of threads. In that case, the application can become globally unresponsive

instead of just partially unresponsive, as show in Figure 10-1.

Figure 10-1. Partial failures because of dependencies impacting the service’s thread availability

In a large microservice-based application, any partial failure can be amplified, especially if most of the

internal microservices interaction is based on synchronous Http calls which is considered an anti-

pattern. Think about a system that receives millions of incoming calls per day. These might result in

many more millions of outgoing calls (let’s suppose a ratio of 1:4) to dozens of internal microservices

as synchronous dependencies, if your system has a wrong design based on long chains of

synchronous Http calls, as shown in figure 10-2, especially on the dependency #3.

Figure 10-2. Huge impact when having a wrong design with long chains of Http requests

230 Implementing Resilient Applications

Intermittent failure is virtually guaranteed in a distributed and cloud based system, even if every

dependency itself has excellent availability. This should be a fact you need to consider.

If you do not design and implement techniques to ensure fault tolerance, as an example, 50

dependencies each with 99.99% of availability would result in several hours of downtime each month

because of that ripple effect.

When a microservice dependency fails while handling a high volume of requests , that can saturate

pretty fast all available request threads in each service and crash the whole application.

Figure 10-3. Partial failure amplified by microservices with long chains of synchronous Http calls

To minimize this problem, this is precisely why in the section “Asynchronous microservices integration

enforcing autonomy” (introduced in the architecture chapter) we are encouraging to use asynchronous

communication across the internal microservices, as also is briefly explained in the next section.

In addition to that, it is essential that you design your microservices and client applications to handle

partial failures—that is, to build resilient microservices and client applications.

Strategies for handling partial failure
Strategies for dealing with partial failures include the following.

Use asyncrhnous communication (i.e. message based) across internal microservices. It is highly

advisable not to create long chains of synchronous Http calls across the internal microservices

because that wrong design will be the main cause for very bad outages, eventually. On the contrary,

except for the frontend communications between the client applications and the first level of

microservices or fine-grained API Gateways, it is recommended to just use asynchronous

communication (i.e. message based), out of the initial request/response cycle, across the internal

microservices. Eventual consistency and event-driven architectures will help to minimize the

231 Implementing Resilient Applications

mentioned ripple effects. These approaches will enforce a higher level of microservice autonomy and

therefore prevent against the explained problem.

Use retries with exponential backoff. This technique helps to avoid short and inermitent failures by

performing call retryes a certain number of times, just in case the service was not available for a short

time, due to intermittent network issues or when a microservice/container is moved to a different

node in a cluster. However, these retries, if not handled correctly with circuit beakers, can aggravate

the mentioned ripple effects, ultimately even causing a DoS (Denial of Service) if not designed

properly.

Work around network timeouts. In general, clients should be designed not to block indefinitely and

to always use timeouts when waiting for a response. Using timeouts ensures that resources are never

tied up indefinitely.

Use the Circuit Breaker pattern. In this approach, the client process tracks the number of failed

requests. If the error rate exceeds a configured limit, a “circuit breaker” trips so that further attempts

fail immediately. (If a large number of requests are failing, that suggests the service is unavailable and

that sending requests is pointless.) After a timeout period, the client should try again and, if the new

requests are successful, close the circuit breaker.

Provide fallbacks. In this approach, the client process performs fallback logic when a request fails,

such as returning cached data or a default value. This is an approach suitable for queries, but more

complex for updates or commands.

Limit the number of queued requests. Clients should also impose an upper bound on the number

of outstanding requests that a client microservice can send to a particular service. If the limit has been

reached, it is probably pointless to make additional requests, and those attempts should fail

immediately. In terms of implementation, Polly's BulkheadPolicy can be used to fulfil this requirement.

It's essentially a parallelization throttle with SemaphoreSlim as implementation. It also permits a

"queue" outside the Bulkhead. So, you can pro-actively shed excess load even before execution (i.e.

because capacity is deemed full), which makes its response to certain failure scenarios faster than a

circuit-breaker would be, since the circuit breaker waits for the failures. The BulkheadPolicy in Polly

exposes how full the bulkhead and queue are, and offers events on overflow, so can also be used to

drive automated horizontal scaling.

Additional resources

• Microsoft. Resiliency patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency

• Microsoft. Adding Resilience and Optimizing Performance

https://msdn.microsoft.com/en-us/library/jj591574.aspx

• Polly. Bulkhead. Implementation with Polly’s policy

https://github.com/App-vNext/Polly/wiki/Bulkhead

• Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/architecture/resiliency/

• Transient fault handling

https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://github.com/App-vNext/Polly/wiki/Bulkhead
https://docs.microsoft.com/en-us/dotnet/api/system.threading.semaphoreslim?view=netcore-1.1
https://msdn.microsoft.com/en-us/library/jj591574.aspx
https://github.com/App-vNext/Polly/wiki/Bulkhead
https://docs.microsoft.com/en-us/azure/architecture/resiliency/

232 Implementing Resilient Applications

Implementing retries with exponential backoff

Retries with exponential backoff is a technique that attempts to retry an operation, with an

exponentially increasing wait time, until a maximum retry count has been reached (the exponential

backoff). This technique embraces the fact that cloud resources might intermittently be unavailable for

more than a few seconds for any reason. For example, an orchestrator might be moving a container to

another node in a cluster for load balancing. During that time, some requests might fail. Another

example could be a database like SQL Azure, where a database can be moved to another server for

load balancing, causing the database to be unavailable for a few seconds.

There are many possible approaches to implement retries logic with exponential backoff.

Implementing resilient Entity Framework Core Sql connections

For Azure SQL DB, Entity Framework Core already provides internal database connection resiliency

and retry logic. But you need to enable the Entity Framework execution strategy for each DbContext

connection if you want to have resilient EF Core connections.

For instance, the following code at the EF Core connection level enables resilient SQL connections that

are retried if the connection fails.

// Startup.cs from any ASP.NET Core Web API
public class Startup
{
 // Other code...
 public IServiceProvider ConfigureServices(IServiceCollection services)
 {
 //...
 services.AddDbContext<OrderingContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlServerOptionsAction: sqlOptions =>
 {
 sqlOptions.EnableRetryOnFailure(
 maxRetryCount: 5,
 maxRetryDelay: TimeSpan.FromSeconds(30),
 errorNumbersToAdd: null);
 });
 });
 }
//...

Execution strategies and explicit transactions using BeginTransaction and multiple

DbContexts

When retries are enabled in EF Core connections, each operation you perform using EF Core becomes

its own retriable operation. Each query and each call to SaveChanges will be retried as a unit if a

transient failure occurs.

However, if your code initiates a transaction using BeginTransaction, you are defining your own

group of operations that need to be treated as a unit—everything inside the transaction has be rolled

back if a failure occurs. You will see an exception like the following if you attempt to execute that

transaction when using an EF execution strategy (retry policy) and you include several SaveChanges

from multiple DbContexts in it.

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff
https://docs.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency

233 Implementing Resilient Applications

System.InvalidOperationException: The configured execution strategy
'SqlServerRetryingExecutionStrategy' does not support user initiated
transactions. Use the execution strategy returned by
'DbContext.Database.CreateExecutionStrategy()' to execute all the operations in
the transaction as a retriable unit.

The solution is to manually invoke the EF execution strategy with a delegate representing everything

that needs to be executed. If a transient failure occurs, the execution strategy will invoke the delegate

again. For example, the following code show how it is implemented in eShopOnContainers when using

two multiple DbContexts, the _catalogContext and the IntegrationEventLogContext objects, when

updating a product and then saving the ProductPriceChangedIntegrationEvent object that needs

to use a different DbContext.

public async Task<IActionResult> UpdateProduct([FromBody]CatalogItem
 productToUpdate)
{
 // Other code ...

 // Update current product
 catalogItem = productToUpdate;

 // Use of an EF Core resiliency strategy when using multiple DbContexts
 // within an explicit transaction
 // See:
 // https://docs.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency
 var strategy = _catalogContext.Database.CreateExecutionStrategy();

 await strategy.ExecuteAsync(async () =>
 {
 // Achieving atomicity between original Catalog database operation and the
 // IntegrationEventLog thanks to a local transaction
 using (var transaction = _catalogContext.Database.BeginTransaction())
 {
 _catalogContext.CatalogItems.Update(catalogItem);
 await _catalogContext.SaveChangesAsync();

 // Save to EventLog only if product price changed
 if (raiseProductPriceChangedEvent)
 await _integrationEventLogService.SaveEventAsync(priceChangedEvent);

 transaction.Commit();
 }
 });

The first DbConext is the _catalogContext and the second DdContext is within the

_integrationEventLogService object. Finally, the Commit action would be performed multiple

DbContexts and using an EF Execution Strategy.

Additional resources

Microsoft. Connection Resiliency and Command Interception with the Entity Framework

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency

• Cesar de la Torre. Using Resilient Entity Framework Core Sql Connections and Transactions

https://blogs.msdn.microsoft.com/cesardelatorre/2017/03/26/using-resilient-entity-framework-core-sql-

connections-and-transactions-retries-with-exponential-backoff/

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency

234 Implementing Resilient Applications

Implementing custom HTTP call retries with exponential backoff

To create resilient microservices that can handle possible HTTP failure scenarios, you need to create

your own implementation of retries with exponential backoff. In addition to handling resource

unavailability, the exponential backoff also needs to take into account that the cloud provider might

throttle availability of resources to prevent usage overload. For example, creating too many

connection requests very quickly might be viewed as a Denial of Service (DoS) attack by the cloud

provider. As a result, you need to provide a mechanism to scale back connection requests when a

capacity threshold has been encountered.

As an initial exploration, you could implement your own code with a utility class for exponential

backoff as in RetryWithExponentialBackoff.cs plus code like the following (which is also available on a

GitHub repo.

public sealed class RetryWithExponentialBackoff
{
 private readonly int maxRetries, delayMilliseconds, maxDelayMilliseconds;

 public RetryWithExponentialBackoff(int maxRetries = 50,
 int delayMilliseconds = 200,
 int maxDelayMilliseconds = 2000)
 {
 this.maxRetries = maxRetries;
 this.delayMilliseconds = delayMilliseconds;
 this.maxDelayMilliseconds = maxDelayMilliseconds;
 }

 public async Task RunAsync(Func<Task> func)
 {
 ExponentialBackoff backoff = new ExponentialBackoff(this.maxRetries,
 this.delayMilliseconds,
 this.maxDelayMilliseconds);
 retry:
 try
 {
 await func();
 }
 catch (Exception ex) when (ex is TimeoutException ||
 ex is System.Net.Http.HttpRequestException)
 {
 Debug.WriteLine("Exception raised is: " +
 ex.GetType().ToString() +
 " –Message: " + ex.Message +
 " -- Inner Message: " +
 ex.InnerException.Message);
 await backoff.Delay();
 goto retry;
 }
 }
}
public struct ExponentialBackoff
{
 private readonly int m_maxRetries, m_delayMilliseconds, m_maxDelayMilliseconds;
 private int m_retries, m_pow;

 public ExponentialBackoff(int maxRetries, int delayMilliseconds,

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://gist.github.com/CESARDELATORRE/6d7f647b29e55fdc219ee1fd2babb260
https://gist.github.com/CESARDELATORRE/d80c6423a1aebaffaf387469f5194f5b

235 Implementing Resilient Applications

 int maxDelayMilliseconds)
 {
 m_maxRetries = maxRetries;
 m_delayMilliseconds = delayMilliseconds;
 m_maxDelayMilliseconds = maxDelayMilliseconds;
 m_retries = 0;
 m_pow = 1;
 }

 public Task Delay()
 {
 if (m_retries == m_maxRetries)
 {
 throw new TimeoutException("Max retry attempts exceeded.");
 }
 ++m_retries;
 if (m_retries < 31)
 {
 m_pow = m_pow << 1; // m_pow = Pow(2, m_retries - 1)
 }
 int delay = Math.Min(m_delayMilliseconds * (m_pow - 1) / 2,
 m_maxDelayMilliseconds);
 return Task.Delay(delay);
 }
}

Using this code in a client C# application (another Web API client microservice, an ASP.NET MVC app,

or even a C# Xamarin app) is straightforward. The following example shows how, using the

HttpClient class.

public async Task<Catalog> GetCatalogItems(int page,int take, int? brand, int? type)
{
 _apiClient = new HttpClient();
 var itemsQs = $"items?pageIndex={page}&pageSize={take}";
 var filterQs = "";

 var catalogUrl =
 $"{_remoteServiceBaseUrl}items{filterQs}?pageIndex={page}&pageSize={take}";
 var dataString = "";
 //
 // Using HttpClient with Retry and Exponential Backoff
 //
 var retry = new RetryWithExponentialBackoff();
 await retry.RunAsync(async () =>
 {
 // work with HttpClient call
 dataString = await _apiClient.GetStringAsync(catalogUrl);
 });

 return JsonConvert.DeserializeObject<Catalog>(dataString);
}

However, this code is suitable only as a proof of concept. The next section explains how to use more

sophisticated and proven libraries.

236 Implementing Resilient Applications

Implementing HTTP call retries with exponential backoff with Polly

The recommended approach for retries with exponential backoff is to take advantage of more

advanced .NET libraries like the open source library Polly.

Polly is a .NET library that provides resilience and transient-fault handling capabilities. You can

implement those capabilities easily by applying Polly's policies such as Retry, Circuit Breaker, Bulkhead

Isolation, Timeout and Fallback. Polly targets .NET 4.x and the .NET Standard Library 1.0 (which

supports .NET Core).

The Retry policy in Polly is the approach used by eShopOnContainers when implementing HTTP

retries. You can implement an interface so you can inject either standard HttpClient functionality or a

resilient version of HttpClient using Polly, depending on what retry policy configuration you want to

use.

The following example shows the interface implemented by eShopOnContainers.

public interface IHttpClient
{
 HttpClient Inst { get; }
 Task<string> GetStringAsync(string uri);
 Task<HttpResponseMessage> PostAsync<T>(string uri, T item);
 Task<HttpResponseMessage> DeleteAsync(string uri);
}

You can use the standard implementation if you do not want to use a resilient mechanism, as when

you are developing or testing simpler approaches. The following example shows this.

public class StandardHttpClient : IHttpClient

{
 private HttpClient _client;
 private ILogger _logger;
 public HttpClient Inst => _client;
 public StandardHttpClient()
 {
 _client = new HttpClient();
 _logger = new LoggerFactory().CreateLogger(nameof(StandardHttpClient));
 }

 public Task<string> GetStringAsync(string uri) =>
 _client.GetStringAsync(uri);

 public Task<HttpResponseMessage> PostAsync<T>(string uri, T item)
 {
 var contentString = new StringContent(JsonConvert.SerializeObject(item),
 System.Text.Encoding.UTF8,
 "application/json");
 return _client.PostAsync(uri, contentString);
 }
 // Other methods ...
}

The interesting implementation is to code another, similar class, but using Polly to implement the

resilient mechanisms you want to use—in the following example, retries with exponential backoff.

https://github.com/App-vNext/Polly

237 Implementing Resilient Applications

public class ResilientHttpClient : IHttpClient
{
 private HttpClient _client;
 private PolicyWrap _policyWrapper;
 private ILogger<ResilientHttpClient> _logger;
 public HttpClient Inst => _client;

 public ResilientHttpClient(Policy[] policies,
 ILogger<ResilientHttpClient> logger)
 {
 _client = new HttpClient();
 _logger = logger;

 // Add Policies to be applied
 _policyWrapper = Policy.WrapAsync(policies);
 }

 public Task<string> GetStringAsync(string uri) =>
 HttpInvoker(() =>
 _client.GetStringAsync(uri));

 public Task<HttpResponseMessage> PostAsync<T>(string uri, T item) =>
 // a new StringContent must be created for each retry
 // as it is disposed after each call
 HttpInvoker(() =>
 {
 var response = _client.PostAsync(uri, new StringContent(JsonConvert.
 SerializeObject(item),
 System.Text.Encoding.UTF8, "application/json"));
 // raise exception if HttpResponseCode 500
 // needed for circuit breaker to track fails
 if (response.Result.StatusCode == HttpStatusCode.InternalServerError)
 {
 throw new HttpRequestException();
 }

 return response;
 });

 public Task<HttpResponseMessage> DeleteAsync(string uri) =>
 HttpInvoker(() => _client.DeleteAsync(uri));

 private Task<T> HttpInvoker<T>(Func<Task<T>> action) =>
 // Executes the action applying all
 // the policies defined in the wrapper
 _policyWrapper.ExecuteAsync(() => action());

 // Other HTTP methods...
}

With Polly, you define a Retry policy with the number of retries, the exponential backoff configuration,

and the actions to take when there is an HTTP exception, such as logging the error. In this case, the

policy is configured so it will try the number of times specified once applied the policies when

registering the types in the IoC container. Then, because of the exponential backoff configuration,

whenever the code detects an HttpRequest exception, it retries the request after waiting an amount

238 Implementing Resilient Applications

of time that goes up exponentially 2 seconds the first time, 4 seconds the second time, 8 seconds the

third time, and so on.

The important method is HttpInvoker, which is what makes HTTP requests throughout this utility

class. The method internally executes the HTTP request with _policyWrapper.ExecuteAsync, which

takes into account the retry policy.

In eShopOnContainers you specify Polly’s policies when registering the types at the IoC container, as

in the following code.

//Startup.cs class
if (Configuration.GetValue<string>("UseResilientHttp") == bool.TrueString)
{
 services.AddTransient<IResilientHttpClientFactory,
 ResilientHttpClientFactory>();

 services.AddTransient<IHttpClient,
 ResilientHttpClient>(sp =>
 sp.GetService<IResilientHttpClientFactory>().
 CreateResilientHttpClient());
}
else
{
 services.AddTransient<IHttpClient, StandardHttpClient>();
}

Where, basically, it is within the ResilientHttpClientFactory in the CreateResilientHttpClient() method

where you apply Polly's WaitAndRetryAsunc policie, as shown in the following code.

public ResilientHttpClient CreateResilientHttpClient()
 => new ResilientHttpClient(CreatePolicies(), _logger);

private Policy[] CreatePolicies()
 => new Policy[]
 {
 Policy.Handle<HttpRequestException>()
 .WaitAndRetryAsync(
 // number of retries
 6,
 // exponential backofff
 retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)),
 // on retry
 (exception, timeSpan, retryCount, context) =>
 {
 var msg = $"Retry {retryCount} implemented w/ Polly's
 RetryPolicy " +
 $"of {context.PolicyKey} " +
 $"at {context.ExecutionKey}, " +
 $"due to: {exception}.";
 _logger.LogWarning(msg);
 _logger.LogDebug(msg);
 }),
 }

239 Implementing Resilient Applications

Implementing the Circuit Breaker pattern

As noted earlier, you should handle faults that might take a variable amount of time to recover from,

as might happen when you try to connect to a remote service or resource. Handling this type of fault

can improve the stability and resiliency of an application.

In a distributed environment, calls to remote resources and services can fail due to transient faults,

such as slow network connections and timeouts because of resources being slow or temporarily

unavailable. These faults typically correct themselves after a short time, and a robust cloud application

should be prepared to handle them by using a strategy like the the Retry pattern.

However, there can also be situations where faults are due to unanticipated events that might take

much longer to fix. These faults can range in severity from a partial loss of connectivity to the

complete failure of a service. In these situations, it might be pointless for an application to continually

retry an operation that is unlikely to succeed. Instead, the application should be coded to accept that

the operation has failed and handle the failure accordingly.

The Circuit Breaker pattern has a different purpose than the Retry pattern. The Retry pattern enables

an application to retry an operation in the expectation that the operation will eventually succeed. The

Circuit Breaker pattern prevents an application from performing an operation that is likely to fail. An

application can combine these two patterns by using the Retry pattern to invoke an operation

through a circuit breaker. However, the retry logic should be sensitive to any exceptions returned by

the circuit breaker, and it should abandon retry attempts if the circuit breaker indicates that a fault is

not transient.

Implementing a Circuit Breaker pattern with Polly

As when implementing retries, the recommended approach for circuit breakers is to take advantage of

proven .NET libraries like Polly.

The eShopOnContainers application uses the Polly Circuit Breaker policy when implementing HTTP

retries. In fact, the application applies both policies to the ResilientHttpClient utility class.

Whenever you use an object of type ResilientHttpClient for HTTP requests (from

eShopOnContainers), you will be applying both those policies, but you could add additional policies,

too..

The only code added compared to the code used for Http call retries is the code where you add the

Circuit Breaker policy to the list of policies to use, as shown at the end of the following code.

public ResilientHttpClient CreateResilientHttpClient()
 => new ResilientHttpClient(CreatePolicies(), _logger);

private Policy[] CreatePolicies()
 => new Policy[]
 {
 Policy.Handle<HttpRequestException>()
 .WaitAndRetryAsync(
 // number of retries
 6,
 // exponential backofff
 retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)),
 // on retry
 (exception, timeSpan, retryCount, context) =>
 {

240 Implementing Resilient Applications

 var msg = $"Retry {retryCount} implemented w/ Polly's
 RetryPolicy " +
 $"of {context.PolicyKey} " +
 $"at {context.ExecutionKey}, " +
 $"due to: {exception}.";
 _logger.LogWarning(msg);
 _logger.LogDebug(msg);
 }),
 Policy.Handle<HttpRequestException>()
 .CircuitBreakerAsync(
 // number of exceptions before breaking circuit
 5,
 // time circuit opened before retry
 TimeSpan.FromMinutes(1),
 (exception, duration) =>
 {
 // on circuit opened
 _logger.LogTrace("Circuit breaker opened");
 },
 () =>
 {
 // on circuit closed
 _logger.LogTrace("Circuit breaker reset");
 })};
 }

The code adds a policy to the HTTP wrapper. That policy defines a circuit breaker that opens when the

code detects the specified number of consecutive exceptions (exceptions in a row), as passed in the

exceptionsAllowedBeforeBreaking parameter (5 in this case). When the circuit is open, HTTP

requests do not work, but an exception is raised.

Circuit breakers should also be used to redirect requests to a fallback infrastructure if you might have

issues in a particular resource that is deployed in a different environment than the client application or

service that is performing the HTTP call. That way, if there is an outage in the datacenter that impacts

only your backend microservices but not your client applications, the client applications can redirect

to the fallback services. For instance, Polly is planning a FailoverPolicy to automate this Failover Policy

scenario.

Of course, all those features are for cases where you are managing the failover from within the .NET

code, as opposed to having it managed automatically for you by Azure, with location transparency.

Using the ResilientHttpClient utility class from eShopOnContainers

You use the ResilientHttpClient utility class in a way similar to how you use the .NET HttpClient

class. In the following example from the eShopOnContainer MVC web application (the

OrderingServiceAgent used by OrderController), the ResilientHttpClient object is injected

through the httpClient parameter of the constructor. Then the object is used to perform HTTP

requests.

public class OrderingService : IOrderingService
{
 private IHttpClient _apiClient;
 private readonly string _remoteServiceBaseUrl;
 private readonly IOptionsSnapshot<AppSettings> _settings;

https://github.com/App-vNext/Polly/wiki/Polly-Roadmap#failover-policy

241 Implementing Resilient Applications

 private readonly IHttpContextAccessor _httpContextAccesor;

 public OrderingService(IOptionsSnapshot<AppSettings> settings,
 IHttpContextAccessor httpContextAccesor,
 IHttpClient httpClient)
 {
 _remoteServiceBaseUrl = $"{settings.Value.OrderingUrl}/api/v1/orders";
 _settings = settings;
 _httpContextAccesor = httpContextAccesor;
 _apiClient = httpClient;
 }

 async public Task<List<Order>> GetMyOrders(ApplicationUser user)
 {
 var context = _httpContextAccesor.HttpContext;
 var token = await context.Authentication.GetTokenAsync("access_token");

 _apiClient.Inst.DefaultRequestHeaders.Authorization = new
 System.Net.Http.Headers.AuthenticationHeaderValue("Bearer", token);
 var ordersUrl = _remoteServiceBaseUrl;
 var dataString = await _apiClient.GetStringAsync(ordersUrl);
 var response = JsonConvert.DeserializeObject<List<Order>>(dataString);

 return response;
 }

 // Other methods ...

 async public Task CreateOrder(Order order)
 {
 var context = _httpContextAccesor.HttpContext;
 var token = await context.Authentication.GetTokenAsync("access_token");

 _apiClient.Inst.DefaultRequestHeaders.Authorization = new
 System.Net.Http.Headers.AuthenticationHeaderValue("Bearer", token);
 _apiClient.Inst.DefaultRequestHeaders.Add("x-requestid",
 order.RequestId.ToString());

 var ordersUrl = $"{_remoteServiceBaseUrl}/new";
 order.CardTypeId = 1;
 order.CardExpirationApiFormat();
 SetFakeIdToProducts(order);

 var response = await _apiClient.PostAsync(ordersUrl, order);

 response.EnsureSuccessStatusCode();
 }
}

Whenever the member object _apiClient is used, it internally uses the wrapper class with Polly

policiesؙ—the Retry policy, the Circuit Breaker policy, any other policy that you might want to apply

from the Polly policies collection.

Testing retries with eShopOnContainers

Whenever you start the eShopOnContainers solution in a Docker host, it needs to start multiple

containers. Some of the containers are slower to start and initialize, like the SQL Server container. This

242 Implementing Resilient Applications

is especially true the first time you deploy the eShopOnContainers into Docker it needs to set up the

images and the database. This delay in some containers starting slower than other can cause the rest

of the services to initially throw HTTP exceptions even if you set dependencies between containers at

the docker-compose level, as explained in previous sections. Those docker-compose dependencies

between containers are just at the process level. The container’s entry point process might be started,

but SQL Server might not be ready for queries. The result can be a cascade of errors, and the app can

get an exception when trying to consume that particular container.

You might also see this type of error on startup when the app is deploying to the cloud. In that case,

orchestrators might be moving containers from one node or VM to another (that is, starting new

instances) when balancing the number of containers across the cluster’s nodes.

The way eShopOnContainers solves this issue is by using the Retry pattern we illustrated earlier. It’s

also why, when starting the solution, you might get log traces or warnings like the following:

"Retry 1 implemented with Polly's RetryPolicy, due to:
System.Net.Http.HttpRequestException: An error occurred while sending the
request. ---> System.Net.Http.CurlException: Couldn't connect to server\n at
System.Net.Http.CurlHandler.ThrowIfCURLEError(CURLcode error)\n at [...].

Testing the circuit breaker with eShopOnContainers

There are a few ways you can open the circuit and test it with eShopOnContainers.

One option is to lower the allowed number of retries to 1 in the circuit breaker policy and redeploy

the whole solution into Docker. With a single retry, there is a good chance that an HTTP request will

fail during deployment, the circuit breaker will open, and you get an error.

Another option is to use some custom middleware that is implemented in the ordering microservice.

When this middleware is enabled, it catches all HTTP requests and returns status code 500. You can

enable the middleware by making a GET request to the failing URI, like the following:

• GET /failing

This request returns the current state of the middleware. If the middleware is enabled, the

request return status code 500. If the middleware is disabled, there is no response.

• GET /failing?enable

This request enables the middleware.

GET /failing?disable

This request disables the middleware.

For instance, once the application is running, you can enable the middleware by making a request

using the following URI in any browser. Note that the ordering microservice uses port 5102.

http://localhost:5102/failing?enable

You can then check the status using the URI http://localhost:5102/failing, as shown in Figure

10-4.

http://localhost:5100/failing

243 Implementing Resilient Applications

Figure 10-4 Simulating a failure with an ASP.NET middleware.

At this point, the ordering microservice responds status code 500 whenever you call invoke it.

Once the middleware is running, you can try making an order from the MVC web application. Because

the requests fails, the circuit will open.

In the following example, you can see that the MVC web application has a catch block in the logic for

placing an order. If the code catches an open-circuit exception, it shows the user a friendly message

telling them to wait.

[HttpPost]
public async Task<IActionResult> Create(Order model, string action)
{
 try
 {
 if (ModelState.IsValid)
 {
 var user = _appUserParser.Parse(HttpContext.User);
 await _orderSvc.CreateOrder(model);

 //Redirect to historic list.
 return RedirectToAction("Index");
 }
 }
 catch(BrokenCircuitException ex)
 {
 ModelState.AddModelError("Error",
 "It was not possible to create a new order, please try later on");
 }
 return View(model);
}

Here’s a summary. The Retry policy tries several times to make the HTTP request and gets HTTP errors.

When the number of tries reaches the maximum number set for the Circuit Breaker policy (in this case

5), the application throws a BrokenCircuitException. The result is a friendly message, as shown in

Figure 10-5.

244 Implementing Resilient Applications

Figure 10-5. Circuir breaker returning an error to the UI

You can implement different logic for when to open the circuit. Or you can try an HTTP request

against a different backend microservice if there is a fallback datacenter or redundant backend

system.

Finally, and as another possibility for the CircuitBreakerPolicy is to use the methods .Isolate() (which

forces open and holds the circuit open); and .Reset() (which closes it again). These could be used to

build an utility HTTP endpoint which invokes .Isolate() and .Reset() directly on the policy. Such an

HTTP endpoint could also be used (suitably secured) in production for temporarily isolating a

downstream system, for example when you want to upgrade it, or trip the circuit manually to protect a

downstream system you suspect to be faulting.

Additional resources

Retry pattern

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry

Connection Resiliency (Entity Framework Core)

https://docs.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency

Polly (.NET resilience and transient-fault-handling library)

https://github.com/App-vNext/Polly

Circuit Breaker pattern

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency
https://github.com/App-vNext/Polly
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

245 Implementing Resilient Applications

Health monitoring
Health monitoring can allow near-real-time information about the state of your containers and

microservices. Health monitoring is critical to multiple aspects of operating microservices and is

especially important when orchestrators perform partial application upgrades in phases, as explained

later.

Microservices-based applications often use heartbeats or health checks to enable their performance

monitors, schedulers, and orchestrators to keep track of the multitude of services. If services cannot

send some sort of “I’m alive” signal, either on demand or on a schedule, your application might face

risks when you deploy updates, or it might simply detect failures too late and not be able to stop

cascading failures that can end up in major outages.

In the typical model, services send reports about their status, and that information is aggregated to

provide an overall view of the state of health of your application. If you are using an orchestrator, you

can provide health information to your orchestrator’s cluster, so that the cluster can act accordingly. If

you invest in high-quality health reporting that is customized for your application, you can detect and

fix issues for your running application much more easily.

Implementing health checks in ASP.NET Core services

When developing an ASP.NET Core microservice or web application, you can use a library named

HealthChecks from the ASP.NET team. (As of April 2017, an early release is available on GitHub).

This library is easy to use and provides features that let you validate that any specific external resource

(like a SQL Server database or remote API) is working properly. When you use this library, you can also

decide what it means that the resource is healthy, as we explain later.

In order to use this library, you need to first use the library in your microservices. Second, you need a

front-end application that queries for the health reports.

Using the HealthChecks library in your back-end ASP.NET microservices

You can see how the HealthCheck library is used in the eShopOnContainers sample application. To

begin, you need to define what constitutes a healthy status for each microservice. In the sample

application, the microservices are healthy if the microservice API is accessible via HTTP and if its

related SQL Server database is also available.

In the future, you will be able to install the HealthChecks library as a NuGet package. But as of this

writing, you need to download and compile the code as part of your solution. Clone the code

available at https://github.com/aspnet/HealthChecks and copy the following folders to your solution.

src/common
src/Microsoft.AspNet.HealthChecks
src/Microsoft.Extensions.HealthChecks
src/Microsoft.Extensions.HealthChecks.Data

Figure 10-6 shows the HealthLibrary library in Visual Studio, ready to be used as a building block by

any microservices.

https://github.com/aspnet/HealthChecks

246 Implementing Resilient Applications

Figure 10-6. ASP.NET Core HealthChecks library source code in a Visual Studio solution

The first thing to do in each microservice project is to add a reference to the three HealthCheck

libraries. After that, you add the HealthCheck actions that you want to perform in that microservice.

These actions are basically dependencies on other microservices (HttpCheck) or databases (currently

SqlCheck). You add the action within the Startup class of each ASP.NET microservice or ASP.NET web

application.

Each service or web app should be configured by adding all its HTTP or database dependencies as

one AddHealthCheck method. E.i. the MVC depends on many services, therefore has a several

“AddCheck” added to the health checks to take into account.

For instance, in the following code you can see how the catalog microservice adds a dependency on

its SQL Server database.

// Startup.cs from Catalog.api microservice
//
public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services
 services.AddHealthChecks(checks =>
 {
 checks.AddSqlCheck("Catalog_Db", Configuration["ConnectionString"]);
 });
 // Other services
 }
}

However, the MVC web application has multiple dependencies on the rest of the microservices.

Therefore, it calls one AddUrlCheck method for each microservice, as shown in the following example.

// Startup.cs from the MVC web app

247 Implementing Resilient Applications

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.Configure<AppSettings>(Configuration);

 services.AddHealthChecks(checks =>
 {
 checks.AddUrlCheck(Configuration["CatalogUrl"]);
 checks.AddUrlCheck(Configuration["OrderingUrl"]);
 checks.AddUrlCheck(Configuration["BasketUrl"]);
 checks.AddUrlCheck(Configuration["IdentityUrl"]);
 checks.AddUrlCheck(Configuration["CallBackUrl"]);
 });
 }
}

Thus, a microservice won’t provide a “healthy” status until all of its checks are healthy as well.

If the microservice does not have an dependency on a service or on SQL Server, you should just add

an AlwaysOK check. The following code is from the eShopOnContainers basket.api microservice. (The

basket microservice uses the Redis cache, but the library does not yet include a Redis health check

provider.)

services.AddHealthChecks(checks =>
{
 checks.AddValueTaskCheck("Always OK", () => new
 ValueTask<IHealthCheckResult>(HealthCheckResult.Healthy("Ok")));
});

For each service or web app to be able to expose the HealthCheck endpoint, it has to enable the

UserHealthChecks([url_for_health_checks]) extension method. This method goes at the

WebHostBuilder level in the main method of the Program class of your ASP.NET Core service or web

app, right after UseKestrel as shown in the code below.

namespace Microsoft.eShopOnContainers.WebMVC
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseHealthChecks("/hc")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();
 host.Run();
 }
 }
}

248 Implementing Resilient Applications

The process works like this: each microservice exposes the endpoint /hc. That endpoint is created by

the HealthCheck library ASP.NET Core middleware. When that endpoint is invoked, it runs all the

health checks that are configured in the AddHealthChecks method in the Startup class.

The UseHealthChecks method expects a port or a path. That port or path is the endpoint to be used

to check the health state of the service. For instance, the catalog microservice uses the path /hc.

Querying your microservices to report about their health status

When you have configured health checks as described here, once the microservice is running in

Docker, you can directly check from a browser if it is healthy. (This does require that you are

publishing the container port out of the Docker host, so you can access the container through

localhost or through the external docker host IP.) Figure 10-7 shows a request in a browser and the

corresponding response.

Figure 10-7. Checking health status of a single service from a browser

In that test you can see that the catalog.api microservice (running on port 5101) is healthy,

returning HTTP status 200 and status information in JSON. It also means that internally the service

also checked the health of its SQL Server database dependency and that health check was reported

itself as healthy.

Watchdogs

A watchdog is a separate service that can watch health and load across services, and report health

about the microservices by querying the previously explained Health Checks. This can help prevent

errors that would not be detected based on the view of a single service. Watchdogs also are a good

place to host code that can perform remediation actions for known conditions without user

interaction.

The eShopOnContainers sample contains a web page that displays sample health check reports, as

shown in Figure 10-8. This is the simplest watchdog you could have, since all it does is shows the state

of the microservices and web applications in eShopOnContainers. Usually a watchdog also takes

actions when it detecs unhealthy states.

249 Implementing Resilient Applications

Figure 10-8. Sample HealthCheck report in eShopOnContainers

In summary, the ASP.NET middleware of the ASP.NET Core HealthChecks library provides a single

health check endpoint for each microservice. This will execute all the health checks defined within it

and return an overall health state depending on all of those checks.

The HealthChecks library is extensible through new health checks to future external resources. For

example, we expect that in the future the the library will have health checks for Redis cache and for

other databases. The library allows health reporting by multiple service or application dependencies,

and you can then take actions based on those health checks.

Health checks when using orchestrators

To monitor the availability of your microservices, orchestrators like Docker Swarm, Kubernetes, and

Service Fabric periodically perform health checks by sending pings, attempting connections, and

sending requests to test the microservices. When an orchestrator determines that a container is

unhealthy, it stops routing requests to that instance. It also usually creates a new instance of that

container.

For instance, most orchestrators can use health checks to manage zero-downtime deployments. Only

when the status of a service/container changes to healthy will the orchestrator start routing traffic to

service/container instances.

Health monitoring is especially important when an orchestrator performs an application upgrade.

Some orchestrators (like Azure Service Fabric) update the services in phases—for example, they might

update one-fifth of the cluster surface per application upgrade. The set of nodes that is upgraded at

the same time is referred to as an upgrade domain. After each upgrade domain has been upgraded

and is available to users, that upgrade domain must pass health checks before the deployment moves

to the next upgrade domain.

Another aspect of service health is reporting metrics from the service. This is an advanced capability of

the health model of some orchestrators, like Service Fabric. Metrics are important when using an

250 Implementing Resilient Applications

orchestrator because they are used to balance resource usage. Metrics also can be an indicator of

system health. For example, you might have an application that has many microservices, and each

instance reports a requests-per-second (RPS) metric. If one service is using more resources (memory,

processor, etc.) than another service, the orchestrator could move service instances around in the

cluster to try to maintain even resource utilization.

Note that if you are using Azure Service Fabric, it provides its own Health Monitoring model, which is

more advanced than simple Healthchecks.

Advanced monitoring: visualization, analysis, and alerts

The final part of monitoring is visualizing the event stream, reporting on service performance, and

alerting when an issue is detected. You can use different solutions for this aspect of monitoring.

You can use simple custom applications showing the state of your services, like the custom page we

showed when we explained ASP.NET Core Healthchecks. Or you could use more advanced tools like

Azure Application Insights and Operations Management Suite to raise alerts based on the stream of

events.

Finally, if you were storing all the event streams, you can use Microsoft Power BI or a third-party

solution like Kibana or Splunk to visualize the data.

Additional resources

• ASP.NET Core Healthchecks (early release)

https://github.com/aspnet/HealthChecks/

• Introduction to Service Fabric health monitoring

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction

• Azure Application Insights

https://azure.microsoft.com/en-us/services/application-insights/

• Microsoft Operations Management Suite

https://www.microsoft.com/en-us/cloud-platform/operations-management-suite

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://github.com/aspnet/HealthChecks
https://github.com/aspnet/HealthChecks/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://azure.microsoft.com/en-us/services/application-insights/
https://www.microsoft.com/en-us/cloud-platform/operations-management-suite

251 Securing .NET Microservices and Web Applications

S E C T I O N 11

Securing .NET
Microservices and Web
Applications

Implementing authentication in .NET microservices

and web applications
It’s often necessary for resources and APIs exposed by a service to be limited to certain trusted users

or clients. The first step to making these sorts of API-level trust decisions is authentication.

Authentication is the process of reliably ascertaining a user’s identity or granted permissions.

In microservice scenarios, authentication is typically handled centrally. If you are using an API gateway,

the API gateway is a good place to authenticate, as shown in Figure 11-1. If you use this approach,

make sure that the individual microservices cannot be reached directly (without the API Gateway)

unless additional security is in place to authenticate messages whether they come from the gateway

or not.

Figure 11-1. Centralized authentication with an API Gateway

If services can be accessed directly, an authentication service like Azure Active Directory or a

dedicated authentication microservice acting as a security token service (STS) can be used to

authenticate users. Trust decisions are shared between services with security tokens or cookies. (These

can be shared between applications, if needed, in ASP.NET Core with data protection services.) This

pattern is illustrated in Figure 11-2.

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing#sharing-authentication-cookies-between-applications

252 Securing .NET Microservices and Web Applications

Figure 11-2. Authentication by identity microservice; trust shared using an authorization token

Authenticating using ASP.NET Core Identity

The primary mechanism in ASP.NET Core for identifying an app’s users is the ASP.NET Core Identity

membership system. ASP.NET Core Identity stores user information (including sign-in information,

roles, and claims) in a data store configured by the developer. Typically, the ASP.NET Core Identity

data store is an EntityFramework store provided in the

Microsoft.AspNetCore.Identity.EntityFrameworkCore package. However, custom stores or other

third-party packages can be used to store identity information in Azure dtable storage, DocumentDB,

or other locations.

The following code is taken from the ASP.NET Core Web Application project template with individual

user account authentication selected. It shows how to configure ASP.NET Core Identity using

EntityFramework.Core in the Startup.ConfigureServices method.

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

Once ASP.NET Core Identity is configured, you enable it by calling app.UseIdentity in the service’s

Startup.Configure method.

Using ASP.NET Code Identity enables several scenarios:

• Local user information can be created and stored using the UserManager type

(userManager.CreateAsync).

• Users can be authenticated using the SignInManager type. You can use

signInManager.SignInAsync to sign in directly, or signInManager.PasswordSignInAsync to

verify the user’s password first.

• User information and claims for signed-in users are stored in a cookie for use in subsequent

requests.

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

253 Securing .NET Microservices and Web Applications

• Middleware is registered in the ASP.NET Core application’s pipeline to read user information

from cookies so that subsequent requests from a browser will include a signed-in user’s

identity and claims.

ASP.NET Core Identity also supports two-factor authentication.

For authentication scenarios that make use of a local user data store and that persist identity between

requests using cookies (as is typical for MVC web applications), ASP.NET Core Identity is a

recommended solution.

Authenticating using external providers

ASP.NET Core also supports using external authentication providers to let users log in via OAuth 2.0

flows. This means that users can log in using existing authentication processes from providers like

Microsoft, Google, Facebook, or Twitter and associate those identities with an ASP.NET Core identity

in your application.

To use external authentication, you include the appropriate authentication middleware in your app’s

HTTP request processing pipeline. This middleware is responsible for handling requests to return URI

routes from the authentication provider, capturing identity information, and making it available via the

SignInManager.GetExternalLoginInfo method.

Popular external authentication providers and their associated NuGet pacakges are shown in the

following table.

Provider Package

Microsoft Microsoft.AspNetCore.Authentication.MicrosoftAccount

Google Microsoft.AspNetCore.Authentication.Google

Facebook Microsoft.AspNetCore.Authentication.Facebook

Twitter Microsoft.AspNetCore.Authentication.Twitter

In all cases, the middleware is registered with a call to a registration method similar to

app.Use{ExternalProvider}Authentication in startup.Configure. These registration methods

take an options object that contains an application ID and secret information, as needed by the

provider. External authentication providers require the application to be registered (as explained in

ASP.NET Core documentation) so that they can inform the user what application is requesting access

to their identity.

Once the middleware is registered in Startup.Configure, you can prompt users to log in from any

controller action. To do this, you create an AuthenticationProperties object that includes the

authentication provider’s name and a redirect URL. You then return a Challenge response that passes

the AuthenticationProperties object .

var properties = _signInManager.ConfigureExternalAuthenticationProperties(provider,
 redirectUrl);
return Challenge(properties, provider);

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/

254 Securing .NET Microservices and Web Applications

The redirectUrl parameter includes the URL that the external provider should redirect to once the

user has authenticated. The URL should represent an action that will sign in the user based on external

identity information, as in the following simplified sample code sample.

// Sign in the user with this external login provider if the user
// already has a login.
var result = await _signInManager.ExternalLoginSignInAsync(info.LoginProvider,
info.ProviderKey, isPersistent: false);
if (result.Succeeded)
{
 return RedirectToLocal(returnUrl);
}
else
{
 ApplicationUser newUser = new ApplicationUser
 {
 // The user object can be constructed with whatever specific claims are
 // returned by the external authentication provider used, or can
 // be created by gathering input from the user.
 UserName = info.Principal.FindFirstValue(ClaimTypes.Name),
 Email = info.Principal.FindFirstValue(ClaimTypes.Email)
 };

 var identityResult = await _userManager.CreateAsync(newUser);
 if (identityResult.Succeeded)
 {
 identityResult = await _userManager.AddLoginAsync(newUser, info);
 if (identityResult.Succeeded)
 {
 await _signInManager.SignInAsync(newUser, isPersistent: false);
 }

 return RedirectToLocal(returnUrl);
 }
}

If you choose the Individual User Account authentication option when you create the ASP.NET Code

web application project in Visual Studio, all the code necessary to sign in with an external provider is

already in the project, as shown in Figure 11-3.

255 Securing .NET Microservices and Web Applications

Figure 11-3. Selecting an option for using external authentication when creating a web application project

Other external authentication providers

In addition to the external authentication providers listed previously, third-party packages are

available that provide middleware for using many more external authentication providers. For a list,

see the AspNet.Security.OAuth.Providers repo on GitHub.

It is also possible, of course, to create your own external authentication middleware.

Authenticating with bearer tokens

Authenticating with ASP.NET Core Identity (or Identity plus external authentication providers) works

well for many web application scenarios in which storing user information in a cookie is appropriate.

In other scenarios, though, cookies are not a natural means of persisting and transmitting data.

For example, in an ASP.NET Core Web API that exposes RESTful endpoints that might be accessed by

Single Page Applications (SPAs), by native clients, or even by other Web APIs, you typically want to

use bearer token authentication instead. These types of applications do not work with cookies, but

can easily retrieve a bearer token and include it in the authorization header of subsequent requests.

To enable token authentication, ASP.NET Core supports several options for using OAuth 2.0 and

OpenID Connect.

Authenticating with an OpenID Connect or OAuth 2.0 Identity provider

If user information is stored in Azure Active Directory or another identity solution that supports

OpenID Connect or OAuth 2.0, you can use the

Microsoft.AspNetCore.Authentication.OpenIdConnect package to authenticate using the OpenID

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src
https://oauth.net/2/
http://openid.net/connect/

256 Securing .NET Microservices and Web Applications

Connect workflow. For example, to authenticate against Azure Active Directory, an ASP.NET Core web

application can use middleware from that package as shown in the following example:

// Configure the OWIN pipeline to use OpenID Connect auth
app.UseOpenIdConnectAuthentication(new OpenIdConnectOptions
{
 ClientId = Configuration["AzureAD:ClientId"],
 Authority = String.Format(Configuration["AzureAd:AadInstance"],
 Configuration["AzureAd:Tenant"]),
 ResponseType = OpenIdConnectResponseType.IdToken,
 PostLogoutRedirectUri = Configuration["AzureAd:PostLogoutRedirectUri"]
});

The configuration values are Azure Active Directory values that are created when your application is

registered as an Azure AD client. A single client ID can be shared among multiple microservices in an

application if they all need to authenticate users authenticated via Azure Active Directory.

Note that when you use this workflow, the ASP.NET Core Identity middleware is not needed, because

all user information storage and authentication is handled by Azure Active Directory.

Issuing security tokens from an ASP.NET Core service

If you prefer to issue security tokens for local ASP.NET Core Identity users rather than using an

external identity provider, you can take advantage of some good third-party libraries.

IdentityServer4 is an OpenID Connect provider that integrates easily with ASP.NET Core Identity to let

you issue security tokens from an ASP.NET Core service. The IdentityServer4 documentation has in-

depth instructions for using the library. However, the basic steps to using IdentityServer4 to issue

tokens are as follows.

1. You call app.UseIdentityServer in the Startup.Configure method to add IdentityServer4

to the application’s HTTP request processing pipeline. This lets the library serve requests to

OpenID Connect and OAuth2 endpoints like /connect/token.

2. You configure IdentityServer4 in Startup.ConfigureServices by making a call to

services.AddIdentityServer.

Further configuration is needed with subsequent calls for the following IdentityServer4 settings:

• The credentials to use for signing.

• Identity and API resources that users might request access to.

• API resources represent some protected data or functionality that a user can access with

an access token. An example of an API resource would be a web API (or set of APIs) that

requires authorization.

• Identity resources represent information (claims) that are given to a client to identify a

user. The claims muight include the user name, email address, and so on.

• The clients that will be connecting in order to request tokens.

• The storage mechanism for user information, such as ASP.NET Core Identity or an alternative.

When you specify clients and resources for IdentityServer4 to use, you can pass an IEnumerable<T>

collection of the appropriate type to methods that take in-memory client or resource stores. Or for

more complex scenarios, you can provide client or resource provider types via Dependency Injection.

https://azure.microsoft.com/en-us/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios#basics-of-registering-an-application-in-azure-ad
https://github.com/IdentityServer/IdentityServer4
https://identityserver4.readthedocs.io/en/release/
https://identityserver4.readthedocs.io/en/release/topics/crypto.html
https://identityserver4.readthedocs.io/en/release/configuration/resources.html
https://identityserver4.readthedocs.io/en/release/configuration/clients.html
https://identityserver4.readthedocs.io/en/release/quickstarts/6_aspnet_identity.html

257 Securing .NET Microservices and Web Applications

A sample configuration for IdentityServer4 to use in-memory resources and clients provided by a

custom IClientStore might look like the following example:

// Add IdentityServer services
services.AddSingleton<IClientStore, CustomClientStore>();

services.AddIdentityServer()
 .AddSigningCredential("CN=sts")
 .AddInMemoryApiResources(MyApiResourceProvider.GetAllResources())
 .AddAspNetIdentity<ApplicationUser>();

Consuming security tokens

Authenticating against an OpenID Connect endpoint or issuing your own security tokens covers some

scenarios. But what about a service that simply needs to limit access to those users who have valid

security tokens that were provided by a different service?

For that scenario, authentication middleware that handles JWT tokens is available in the

Microsoft.AspNetCore.Authentication.JwtBearer package. A simple example of how to use

middleware might look like the following example. This code must precede calls to ASP.NET Core’s

MVC middleware (app.UseMvc).

app.UseJwtBearerAuthentication(new JwtBearerOptions()
{
 Audience = "http://localhost:5001/",
 Authority = "http://localhost:5000/",
 AutomaticAuthenticate = true
});

The parameters in this usage are:

• Audience represents the recipient of the incoming token or the resource that the token grants

access to. If the value specified in this parameter doesn't match the aud parameter in the

token, the token will be rejected.

• Authority is the address of the token-issuing authentication server. The JWT bearer

authentication middleware uses this URI to get the public key that can be used to validate the

token's signature. The middleware also confirms that the iss parameter in the token matches

this URI.

• AutomaticAuthenticate is a Boolean value that indicates whether the user defined by the

token should be automatically logged in.

Another parameter, RequireHttpsMetadata, is not used in this example. It is useful for testing

purposes; you set this parameter to false so that you can test in environments where you don’t have

certificates. In real-world deployments, JWT bearer tokens should always be passed only over HTTPS.

With this middleware in place, JWT tokens are automatically extracted from authorization headers.

They are then deserialized, validated (using the values in the Audience and Authority parameters),

and stored as user information to be referenced later by MVC actions or authorization filters.

258 Securing .NET Microservices and Web Applications

The JWT bearer authentication middleware can also support more advanced scenarios, such as using a

local certificate to validate a token if the authority is not available. For this scenario, you can specify a

TokenValidationParameters object in the JwtBearerOptions object.

Additional resources

• Sharing cookies between applications

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-

sharing#sharing-authentication-cookies-between-applications

• Introduction to Identity

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

• Rick Anderson. Two-factor authentication with SMS

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa

• Enabling authentication using Facebook, Google and other external providers

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/

• Michell Anicas. An Introduction to OAuth 2

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

• AspNet.Security.OAuth.Providers (GitHub repo for ASP.NET OAuth providers.

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src

• Danny Strockis. Integrating Azure AD into an ASP.NET Core web app

https://azure.microsoft.com/en-us/resources/samples/active-directory-dotnet-webapp-openidconnect-

aspnetcore/

• IdentityServer4. Official documentation

https://identityserver4.readthedocs.io/en/release/

About authorization in .NET microservices and web

applications
After authentication, ASP.NET Core Web APIs often need to authorize access. This process allows a

service to make APIs available to some authenticated users, but not to all. Authorization can be done

based on users’ roles or based on custom policy, which might include inspecting claims or other

heuristics.

Restricting access to an ASP.NET Core MVC route is as easy as applying an Authorize attribute to the

action method (or to the controller’s class if all the controller’s actions require authorization), as

shown in following example:

public class AccountController : Controller
{
 public ActionResult Login()
 {
 }

 [Authorize]
 public ActionResult Logout()
 {
 }

By default, adding an Authorize attribute without parameters will limit access to authenticated users

for that controller or action. To further restrict an API to be available for only specific users, the

attribute can be expanded to specify required roles or policies that users must satisfy.

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing#sharing-authentication-cookies-between-applications
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing#sharing-authentication-cookies-between-applications
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src
https://azure.microsoft.com/en-us/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/en-us/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://identityserver4.readthedocs.io/en/release/
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction

259 Securing .NET Microservices and Web Applications

Implementing role-based authorization

ASP.NET Core Identity has a built-in concept of roles. In addition to users, ASP.NET Core Identity

stores information about different roles used by the application and keeps track of which users are

assigned to which roles. These assignments can be changed programmatically with the RoleManager

type (which adjusts roles in persisted storage) and UserManager type (which can assign or unassign

users from roles).

If you are authenticating with JWT bearer tokens, the ASP.NET Core JWT bearer authentication

middleware will populate a user’s roles based on role claims found in the token. To limit access to an

MVC action or controller to users in specific roles, you can include a Roles parameter in the

Authorize header, as shown in the following example:

[Authorize(Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller
{
 public ActionResult SetTime()
 {
 }

 [Authorize(Roles = "Administrator")]
 public ActionResult ShutDown()
 {
 }
}

In this example, only users in the Administrator or PowerUser roles can access APIs in the

ControlPanel controller (such as executing the SetTime action). The ShutDown API is further restricted

to allow access only to users in the Administrator role.

To require a user be in multiple roles, you use multiple Authorize attributes, as shown in the

following example:

[Authorize(Roles = "Administrator, PowerUser")]
[Authorize(Roles = "RemoteEmployee ")]
[Authorize(Policy = "CustomPolicy")]
public ActionResult API1 ()
{
}

In this example, to call API1, a user must:

• Be in the Adminstrator or PowerUser role, and

• Be in the RemoteEmployee role, and

• Satisfy a custom handler for CustomPolicy authorization.

Implementing policy-based authorization

Custom authorization rules can also be written using authorization policies. In this section we provide

an overview. More detail is available in the online ASP.NET Authorization Workshop.

https://docs.asp.net/en/latest/security/authorization/policies.html
https://github.com/blowdart/AspNetAuthorizationWorkshop

260 Securing .NET Microservices and Web Applications

Custom authorization policies are registered in the Startup.ConfigureServices method using the

service.AddAuthorization method. This method takes an action method that configures an

AuthorizationOptions argument.

services.AddAuthorization(options =>
{
 options.AddPolicy("AdministratorsOnly", policy =>
 policy.RequireRole("Administrator"));
 options.AddPolicy("EmployeesOnly", policy =>
 policy.RequireClaim("EmployeeNumber"));
 options.AddPolicy("Over21", policy =>
 policy.Requirements.Add(new MinimumAgeRequirement(21)));
});

As shown in the example, policies can be associated with different types of requirements. After the

policies are registered, they can be applied to an action or controller by passing the policy’s name as

the Policy argument of the Authorize attribute (for example,

[Authorize(Policy=EmployeesOnly)]) Policies can have multiple requirements, not just one (as

shown in these examples).

In the previous example, the first AddPolicy call is just an alternative way of authorizing by role. If

[Authorize(Policy=AdministratorsOnly)] is applied to an API, only users in the Administrator

role will be able to access it.

The second AddPolicy call demonstrates an easy way to require that a particular claim should be

present for the user. The RequireClaim method also optionally takes expected values for the claim. If

values are specified, the requirement is met only if the user has both a claim of the correct type and

one of the specified values. If you are using the JWT bearer authentication middleware, all JWT

properties will be available as user claims.

The most interesting policy shown here is in the third AddPolicy, because it uses a custom

authorization requirement. By using custom authorization requirements, you can have a great deal of

control over how authorization is performed. For this to work, you must implement these types:

• A Requirements type that derives from IAuthorizationRequirement and that contains fields

specifying the details of the requirement. In the example, this is an age field for the sample

MinimumAgeRequirement type.

• A handler that implements AuthorizationHandler<T>, where T is the type of

IAuthorizationRequirement that the handler can satisfy. The handler must implement the
HandleRequirementAsync(AuthorizationHandlerContext context, T requirement)

method, which checks whether a specified context that contains information about the user

satisfies the requirement.

If the user meets the requirement, a call to context.Succeed(requirement) will indicate that

the user is authorized. If there are multiple ways that a user might satisfy an authorization

requirement, multiple handlers can be created.

In addition to registering custom policy requirements with AddPolicy calls, you also need to register

custom requirement handlers via Dependency Injection

(services.AddTransient<IAuthorizationHandler, MinimumAgeHandler>()).

261 Securing .NET Microservices and Web Applications

An example of a custom authorization requirement and handler for checking a user’s age (based on a

DateOfBirth claim) is available in the ASP.NET Core authorization documentation.

Additional resources

• ASP.NET Core Authentication

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

• ASP.NET Core Authorization

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction

• Role based Authorization

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/roles

• Custom Policy-Based Authorization

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies

Storing app secrets safely during development
To connect with protected resources and other services, ASP.NET Core applications typically need to

use connection strings, passwords, or other credentials that contain sensitive information. These

sensitive pieces of information are called secrets. It is a best practice to not include secrets in source

code and certainly not to store secrets in source control. Instead, you should use the ASP.NET Core

configuration model to read the secrets from more secure locations.

You should separate the secrets for accessing development and staging resources from those used for

accessing production resources, because different individuals will need access to those different sets

of secrets. To store secrets used during development, common approaches are to either store secrets

as environment variables or by using the ASP.NET Core Secret Manager tool. For more secure storage

in production environments, microservices can store secrets in an Azure Key Vault.

Storing secrets as environment variables

One way to keep secrets out of source code is for developers to set string-based secrets as

environment variables on their development machines. When you use environment variables to store

secrets with hierarchical names (those nested in configuration sections), create a name for the

environment variables that includes the full hierarchy of the secret’s name, delimited with colons (:).

For example, setting an environment variable Logging:LogLevel:Default to Debug would be

equivalent to a configuration value from the following JSON file:

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

To access these values from environment variables, the application just needs to call

AddEnvironmentVariables on its ConfigurationBuilder when constructing an IConfigurationRoot

object.

https://docs.asp.net/en/latest/security/authorization/policies.html
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets#environment-variables

262 Securing .NET Microservices and Web Applications

Note that environment variables are generally stored as plain text, so if the machine or process with

the environment variables is compromised, the environment variable values will be visible.

Storing secrets using the ASP.NET Core Secret Manager

The ASP.NET Core Secret Manager tool provides another method of keeping secrets out of source

code. To use the Secret Manager tool, include a tools reference (DotNetCliToolReference) to the

Microsoft.Extensions.SecretManager.Tools package in your project file. Once that reference is

present and has been restored, the dotnet user-secrets command can be used to set the value of

secrets from the command line. These secrets will be stored in a JSON file in the user’s profile

directory (details vary by OS), away from source code.

Secrets set by the Secret Manager tool are organized by the UserSecretsId property of the project

that is using the secrets. Therefore, you must be sure to set the UserSecretsId property in your

project file. The actual string used as the ID is not important as long as it is unique in the project.

<PropertyGroup>
 <UserSecretsId>UniqueIdentifyingString</UserSecretsId>
</PropertyGroup>

Using secrets stored with Secret Manager in an application is similar to using secrets stored as

environment variables. You just need to call AddUserSecrets<T> on the ConfigurationBuilder

instance to include secrets for the application in its configuration. The generic parameter T should be

a type from the assembly that the UserSecretId was applied to. Usually using

AddUserSecrets<Startup> is fine.

Using Azure Key Vault to protect secrets at

production time
Secrets stored as environment variables or stored by the Secret Manager tool are still stored locally

and unencrypted on the machine. A more secure option for storing secrets is Azure Key Vault, which

provides a secure, central location for storing keys and secrets.

The Microsoft.Extensions.Configuration.AzureKeyVault package allows an ASP.NET Core

application to read configuration information from Azure Key Vault. To start using secrets from an

Azure Key Vault, you follow these steps:

1. Register your application as an Azure AD application. (Access to key vaults is managed by

Azure AD.) This can be done through the Azure management portal.

Alternatively, if you want your application to authenticate using a certificate instead of a

password or client secret, you can use the New-AzureRmADApplication PowerShell cmdlet. If

you do this, you pass the raw certificate data as a base-64 string as the CertValue parameter.

The certificate that you register with Azure Key Vault needs only your public key. (Your

application will use the private key.)

2. Give the registered application access to the key vault by creating a new service principal. You

can do this using the following PowerShell commands:

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets#secret-manager
https://azure.microsoft.com/en-us/services/key-vault/
https://docs.microsoft.com/en-us/powershell/resourcemanager/azurerm.resources/v3.3.0/new-azurermadapplication

263 Securing .NET Microservices and Web Applications

$sp = New-AzureRmADServicePrincipal -ApplicationId "<Application ID guid>"

Set-AzureRmKeyVaultAccessPolicy -VaultName "<VaultName>" -ServicePrincipalName
$sp.ServicePrincipalNames[0] -PermissionsToSecrets all -ResourceGroupName
"<KeyVault Resource Group>"

3. Include the key vault as a configuration source in your application by calling the

IConfigurationBuilder.AddAzureKeyVault extension method when you create an

IConfigurationRoot instance. Note that calling AddAzureKeyVault will require the

application ID that was registered and given access to the key vault in the previous steps.

Currently, the .NET Standard Library and.NET Core support getting configuration information from an

Azure Key Vault using a client ID and client secret. .NET Framework applications can use an overload

of IConfigurationBuilder.AddAzureKeyVault that takes a certificate in place of the client secret. As

of this writing, work is in progress to make that overload available in .NET Standard and .NET Core.

Until the AddAzureKeyVault overload that accepts a certificate is available, ASP.NET Core applications

can access an Azure Key Vault with certificate-based authentication by explicitly creating a

KeyVaultClient object, as shown in the following example:

// Configure Key Vault client
var kvClient = new KeyVaultClient(new KeyVaultClient.AuthenticationCallback(async
 (authority, resource, scope) =>
{
 var cert = // Get certificate from local store/file/key vault etc. as needed
 // From the Microsoft.IdentityModel.Clients.ActiveDirectory pacakge
 var authContext = new AuthenticationContext(authority,
 TokenCache.DefaultShared);
 var result = await authContext.AcquireTokenAsync(resource,
 // From the Microsoft.Rest.ClientRuntime.Azure.Authentication pacakge
 new ClientAssertionCertificate("<Application ID>", cert));
 return result.AccessToken;
}));

// Get configuration values from Key Vault
var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 // Other configuration providers go here.
 .AddAzureKeyVault("<KeyValueUri>", kvClient,
 new DefaultKeyVaultSecretManager());

In this example, the call to AddAzureKeyVault comes at the end of configuration provider registration.

It is a best practice to register Azure Key Vault as the last configuration provider so that it has an

opportunity to override configuration values from previous providers, and so that no configuration

values from other sources override those from the key vault.

Additional resources

• Using Azure Key Vault to protect application secrets

https://docs.microsoft.com/en-us/azure/guidance/guidance-multitenant-identity-keyvault

• Safe storage of app secrets during development

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

• Configuring data protection

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/overview

https://github.com/aspnet/Configuration/issues/605
https://docs.microsoft.com/en-us/azure/guidance/guidance-multitenant-identity-keyvault
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/overview

264 Securing .NET Microservices and Web Applications

• Key management and lifetime

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-

settings#data-protection-default-settings

• Microsoft.Extensions.Configuration.DockerSecrets GitHub repo

https://github.com/aspnet/Configuration/tree/dev/src/Microsoft.Extensions.Configuration.DockerSecrets

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-settings#data-protection-default-settings
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-settings#data-protection-default-settings
https://github.com/aspnet/Configuration/tree/dev/src/Microsoft.Extensions.Configuration.DockerSecrets

265 Key Takeaways

S E C T I O N 12

Key Takeaways

As a summary and key takeaways, the following are the most important conclusions from this guide.

Benefits of using containers. Container-based solutions provide the important benefit of cost

savings because containers are a solution to deployment problems caused by the lack of

dependencies in production environments. Containers significantly improve DevOps and production

operations.

Containers will be ubiquitous. Docker is becoming the de facto standard in the container industry,

supported by the most significant vendors in the Windows and Linux ecosystems. This includes

Microsoft, Amazon AWS, Google, and IBM. In the near future, Docker will probably be ubiquitous in

both cloud and on-premises datacenters.

Containers as unit of deployment. A Docker container is becoming the standard unit of deployment

for any server-based application or service.

Microservices. The microservices architecture is becoming the preferred approach for distributed and

large or complex mission-critical applications based on multiple independent subsystems in the form

of autonomous services. In a microservice-based architecture, the application is built as a collection of

services that can be developed, tested, versioned, deployed, and scaled independently; this can

include any related autonomous database.

Domain-Driven Design and SOA. The microservices architecture patterns derive from SOA (Service

Oriented Architecture) and Domain-Driven Design. When designing and developing microservices for

environments with evolving business rules shaping a particular domain, it is important to take into

account Domain-Driven Design approaches and patterns.

Microservices challenges. Microservices offer many powerful capabilities, like independent

deployment, strong subsystem boundaries, and technology diversity. However, they also raise many

new challenges related to distributed application development, such as fragmented and independent

data models, resilient communication between microservices, eventual consistency, and operational

complexity that results from aggregating logging and monitoring information from multiple

microservices. These aspects introduce a higher level of complexity than a traditional monolithic

application. As a result, only specific scenarios are suitable for microservice-based applications.. These

include large and complex applications with multiple evolving subsystems; in these cases, it is worth

inveting in a more complex software architecture, because it will provide better long-term agility and

application maintenance.

Containers for any app. Containers are convenient for microservices, but are not exclusive for them.

Containers can also be used with monolithic applications, including legacy applications based on the

traditional .NET Framework and modernized through Windows Containers. The benefits of using

Docker, such as solving many deployment-to-production issues and providing state of the art Dev

and Test environments, apply to many different types of applications.

266 Key Takeaways

CLI versus IDE. With Microsoft tools, you can develop containerized .NET applications using your

preferred appraoach. You can develop with a CLI and an editor-based environment by using the

Docker CLI and Visual Studio Code. Or you can use an IDE-focused approach with Visual Studio and

its unique features for Docker, such as like being able to debug multi-container applications.

Resilient cloud applications. In cloud-based systems and distributed systems in general, there is

always the risk of partial failure. Since clients and services are separate processes (containers), a

service might not be able to respond in a timely way to a client’s request. For example, a service might

be down because of a partial failure or for maintenance; the service might be overloaded and

responding extremely slowly to requests; or it might simply not be accessible for a short time because

of network issues. Therefore, a cloud-based application must embrace those failures and have a

strategy in place to respond to those failures. These strategies can include retry policies (resending

messages or retrying requests) and implementing circuit-breaker patterns to avoid exponential load

of repeated requests. Basically, cloud-based applications must have resilient mechanisms—either

custom ones, or ones based on cloud infrastructure, such as high-level frameworks from orchestrators

or service buses.

Security. Our modern world of containers and microservices can expose new vulnerabilities. Basic

application security is based on authentication and authorization; multiple ways exist to implement

these. However, container security includes additional key components that result in inherently safer

applications. A critical element of building safer apps is having a secure way of communicating with

other apps and systems, something that often requires credentials, tokens, passwords, and other

types of confidential information—usually referred to as application secrets. Any secure solution will

must follow security best practices, such as encrypting secrets while in transit; encrypting secrets at

rest; and preventing secrets from unintentionally leaking when consumed by the final application.

Those secrets need to be stored and kept safe somewhere. To help with security, you can take

advantage of your chosen orchestrator’s infrastructure, or of cloud infrastructure like Azure Key Vault

and the ways it provides for application code to use it.

Orchestrators. Docker orchestrators like the ones provided in Azure Container Service (Kubernetes,

Mesos DC/OS, and Docker Swarm) and Azure Service Fabric are indispensable for any production-

ready microservice-based and for any multi-container application with significant complexity,

scalability needs, and constant evolution. This guide has introduced orchstrators and their role in

microservice-based and container-based solutions. If your application needs are moving you toward

complex containerized apps, you will find it useful to seek out additional resources for learning more

about orchestrators

