

Book title
Book subtitle

Author Name

PUBLISHED BY

DevDiv, .NET and Visual Studio produc teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any

form or by any means without the written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective

owners.

Author: David Britch

Developer: Javier Suarez Ruiz (Plain Concepts)

Participants and reviewers: Craig Dunn

Editor:

 i

Contents
Preface ... iv

Purpose .. iv
What's left out of this guide's scope .. iv
Who should use this guide ... iv
How to use this guide .. v

Introduction .. 1
Enterprise apps .. 2
Sample application ... 3

Sample application architecture.. 4
Mobile app ... 5
eShopOnContainers.Core project... 7
Platform projects .. 7

Summary ... 7

MVVM ... 8
The MVVM pattern .. 8

View ... 9
ViewModel ... 9
Model ...10

Connecting view models to views ... 10
Creating a view model declaratively ...11
Creating a view model programmatically ...11
Creating a view defined as a data template ..11
Automatically creating a view model with a view model locator ...12

Updating views in response to changes in the underlying view model or model 13
UI interaction using commands and behaviors .. 14

Implementing commands ..15
Implementing behaviors ..16

Summary ... 18

Dependency injection .. 19
Introduction to dependency injection ... 19
Registration ... 22
Resolution .. 24
Managing the lifetime of resolved objects ... 24
Summary ... 25

 ii

Communicating between loosely coupled components .. 26
Introduction to MessagingCenter .. 26
Defining a message... 28
Publishing a message .. 28
Subscribing to a message .. 29
Unsubscribing from a message.. 29
Summary ... 29

Navigation ... 30
Navigating between pages .. 31

Creating the NavigationService instance ...31
Handling navigation requests ..32
Navigating when the app is launched ...34
Passing parameters during navigation ..35
Invoking navigation using behaviors ...36
Confirming or cancelling navigation ..36

Summary ... 36

Validation .. 37
Specifying validation rules .. 38
Adding validation rules to a property .. 39
Triggering validation ... 40

Triggering validation manually ..40
Triggering validation when properties change..41

Displaying validation errors .. 41
Highlighting a control that contains invalid data ..42
Displaying error messages ...45

Summary ... 46

Configuration management ... 47
Creating a settings class .. 47
Adding a setting ... 48
Data binding to user settings .. 49
Summary ... 51

Containerized microservices ... 52
Microservices ... 53
Containerization ... 54
Communication between client and microservices .. 56
Communication between microservices .. 57
Summary ... 59

Authentication and authorization .. 60
Authentication ... 60

Issuing bearer tokens using IdentityServer 4 ..61
Adding IdentityServer to a web application ..61
Configuring IdentityServer ..62

 iii

Performing authentication ..65
Authorization ... 68

Configuring IdentityServer to perform authorization ...69
Making access requests to APIs ...70

Summary ... 71

Accessing remote data ... 72
Introduction to Representational State Transfer.. 72
Consuming RESTful APIs ... 73

Making web requests ..73
Caching data .. 80

Managing data expiration ...81
Caching images ..81

Increasing resilience ... 82
Retry pattern ...82
Circuit breaker pattern ..83

Summary ... 84

Unit testing .. 85
Dependency injection and unit testing .. 85
Testing MVVM applications .. 86

Testing synchronous functionality ..87
Testing asynchronous functionality...87
Testing INotifyPropertyChanged implementations...88
Testing message-based communication ...89
Testing exception handling ..89
Testing validation ..89

Summary ... 90

iv Preface

 Preface

Purpose
This guide provides guidance on building cross-platform enterprise apps using Xamarin.Forms.

Xamarin.Forms is a cross-platform UI toolkit that allows developers to easily create native user

interface layouts that can be shared across a number of platforms, including iOS, Android, and the

Universal Windows Platform (UWP). It provides a comprehensive solution for Business-to-Consumer

(B2C) and Business-to-Business (B2B) apps, providing the ability to share code across all target

platforms and helping to lower the total cost of ownership (TCO).

The guide focuses on the core patterns and architectural guidance for developing Xamarin.Forms

enterprise apps that are easier to test, maintain, and evolve. Guidance is provided on how to

implement MVVM, dependency injection, navigation, validation, configuration management, while

maintaining loose coupling. In addition, there's also guidance on performing authentication and

authorization with IdentityServer, accessing data from containerized microservices, and unit testing.

The guide comes with source code for the eShopOnContainers mobile app, and source code for the

eShopOnContainers reference app. The eShopOnContainers mobile app is cross-platform enterprise

app developed using Xamarin.Forms, which connects to a series of containerized microservices known

as the eShopOnContainers reference app. However, the eShopOnContainers mobile app can be

configured to consume data from mock services, for those who wish to avoid deploying the

containerized microservices.

What's left out of this guide's scope

The guide is complementary to Architecting and Developing Containerized and Microservice based

.NET Applications, which focuses on developing containerized microservices, and their deployment.

Other guides worth reading include Architecting and Developing Modern Web Applications with

ASP.NET Core and Azure, Containerized Docker Application Lifecycle with Microsoft Platform and

Tools, and Microsoft Platform and Tools for Mobile App Development.

For a detailed introduction to Xamarin.Forms, read Creating Mobile Apps with Xamarin.Forms.

Who should use this guide

The audience for this guide is mainly developers and architects who would like to learn how to

architect, design and implement cross-platform enterprise apps using Xamarin.Forms.

A secondary audience is technical decision makers who would like to receive an architectural and

technology overview before deciding on what approach to select for cross-platform enterprise app

development using Xamarin.Forms.

https://github.com/dotnet/eShopOnContainers/tree/master/src/Mobile
https://github.com/dotnet/eShopOnContainers
http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook
http://aka.ms/WebAppEbook
http://aka.ms/WebAppEbook
http://aka.ms/dockerlifecycleebook
http://aka.ms/dockerlifecycleebook
http://aka.ms/MobAppDev/StndPDF
https://aka.ms/xamebook

v Preface

How to use this guide

This guide focuses on building cross-platform enterprise apps using Xamarin.Forms. As such, it should

be read in its entirety to provide a foundation of understanding such apps and their technical

considerations. The guide, along with its sample app, can also serve as a starting point or reference for

creating a new enterprise app. Use the associated sample app as a template for the new app, or to see

how to organize an app's component parts. Then, refer back to this guide for architectural guidance.

Feel free to forward this guide to team members to help ensure a common understanding of cross-

platform enterprise app development using Xamarin.Forms. Having everybody working from a

common set of terminology and underlying principles will help ensure a consistent application of

architectural patterns and practices.

1 CHAPTER 1 | Introduction

C H A P T E R

1

Introduction
Building a mobile app to drive new business opportunities, or to increase employee productivity,

entails making many decisions. As well as selecting a programming language, it means making

decisions about whether to invest and builds apps for iOS, Android, or Windows with single platform

languages, or to adopt a cross-platform approach. It also means building a strategy that delivers

mobile backend services that can scale.

An organization might see its mobile client strategy fulfilled by investments in websites, simple client

apps made up of web content, or in feature-rich client mobile apps that make use of many of the

capabilities of the device. Indeed, many organizations take a multichannel approach to their business

needs by investing in multiple approaches in a complementary manner.

A mobile web presence provides a broad approach that has a simple update process across all form

factors. However, it's limited when thinking about device capabilities, and therefore is less capable of

engaging these capabilities or of promoting employee productivity scenarios. Mobile client apps, on

the other hand, that are distributed via stores, have full device capabilities and engaged experiences,

but require compilation and packaging for each target platform.

Although it's possible to develop a native app for each platform individually (such as with Objective-

C/Swift for iOS and Java for Android), the cost of such an approach can be prohibitive when targeting

multiple platforms, both in terms of time to market, and total cost of ownership across the app's

lifetime.

Xamarin's cross-platform mobile app development tools and platforms provide a comprehensive

solution for Business to Employee (B2E), Business to Business (B2B), and Business to Consumer (B2C)

mobile client apps, providing the ability to share code across all target platforms (iOS, Android, and

Windows) and helping to lower the total cost of ownership. Apps can share their user interface and

app logic code, while retaining the native platform look and feel. Figure 1-1 illustrates this

development approach.

Figure 1-1: Cross-platform development with Xamarin and .NET

2 CHAPTER 1 | Introduction

Xamarin.Forms is the cross-platform user interface toolkit that allows developers to create native user

interface layouts that can be shared across iOS, Android, and Windows. By developing cross-platform

mobile apps with Xamarin.Forms and .NET, developers can:

• Take advantage of existing C# skills.

• Enjoy the benefits of maximized code sharing with PCLs and Shared Projects.

• Write cross-platform user interface code that has the native look and feel of each platform.

• Connect to the cloud to consume the services it offers.

• Benefit from operability and flexibility. Xamarin apps can use the platform's APIs that are

exposed through Xamarin/C#, which means that anything that can be accomplished in

Objective-C/Swift, or Java, can also be accomplished in C# on the Xamarin platform.

Enterprise apps
Regardless of platform, developers of enterprise apps face several challenges:

• App requirements can change over time.

• New business opportunities and challenges may present themselves.

• Ongoing feedback during development may significantly affect the scope and requirements

of the app.

Therefore, it's important to build an app so that it's flexible and can be easily modified or extended

over time. Designing for such flexibility can be difficult as it requires an architecture that allows

individual parts of the app to be independently developed and tested, in isolation, without affecting

the rest of the app.

Many enterprise apps are sufficiently complex that they require more than one developer. It can be a

significant challenge to decide how to design an app so that multiple developers can work effectively

on different pieces of the app independently, while ensuring that the pieces come together seamlessly

when integrated into the app.

The traditional approach to designing and building an app results in what is referred to as a

monolithic app, where components are tightly coupled with no clear separation between them.

Typically, this monolithic approach leads to apps that are difficult and inefficient to maintain, because

it can be difficult to resolve bugs without breaking other components in the app, and it can be

difficult to add new features or replace existing features.

An effective remedy for these challenges is to partition an app into discrete, loosely coupled

components that can be easily integrated together into an app. Such an approach offers several

benefits:

• It allows individual functionality to be developed, tested, extended, and maintained by

different individuals or teams.

• It promotes reuse and a clean separation of concerns between the app's horizontal

capabilities, such as authentication and data access, and the vertical capabilities, such as app

specific business functionality. This allows the dependencies and interactions between app

components to be more easily managed.

• It helps maintain a separation of roles by allowing different individuals, or teams, to focus on

a specific task or piece of functionality according to their expertise. In particular, it provides a

cleaner separation between the user interface and the app's business logic.

3 CHAPTER 1 | Introduction

However, there are many issues that must be resolved when partitioning an app into discrete, loosely

coupled components. These include:

• Deciding how to provide a clean separation of concerns between the user interface controls

and their logic. One of the most important decisions when creating a Xamarin.Forms

enterprise app is whether to place business logic in code-behind files, or whether to create a

clean separation of concerns between the user interface controls and their logic, in order to

make the app more maintainable and testable. For more information, see MVVM.

• Deciding whether to use a dependency injection container. Dependency injection containers

reduce the dependency coupling between objects by providing a facility to construct

instances of classes with their dependencies injected, and manage their lifetime based on the

configuration of the container. For more information, see Dependency injection.

• Choosing between platform provided eventing and loosely coupled message-based

communication between components that are inconvenient to link by object and type

references. For more information, see Introduction to Communicating between loosely

coupled components.

• Deciding how to navigate between pages, including how to invoke navigation, and where

navigation logic should reside. For more information, see Navigation.

• Deciding how to validate user input for correctness. The decision must include how to validate

user input, and how to notify the user about validation errors. For more information, see

Validation.

• Deciding how to perform authentication, and how to protect resources with authorization. For

more information, see Authentication and authorization.

• Deciding how to access remote data from web services, including how to reliably retrieve

data, and how to cache data. For more information, see Accessing remote data.

• Deciding how to test the app. For more information, see Unit testing.

This guide provides guidance on these issues, and focuses on the core patterns and architecture for

building a cross-platform enterprise app using Xamarin.Forms. The guidance aims to help to produce

flexible, maintainable, and testable code, by addressing common Xamarin.Forms enterprise app

development scenarios, and by separating the concerns of presentation, presentation logic, and

entities through support for the Model-View-ViewModel (MVVM) pattern.

Sample application
This guide includes a sample application, eShopOnContainers, that's an online store that includes the

following functionality:

• Authenticating and authorizing against a backend service.

• Browsing a catalog of shirts, coffee mugs, and other marketing items.

• Filtering the catalog.

• Ordering items from the catalog.

• Viewing the user's order history.

• Configuration of settings.

4 CHAPTER 1 | Introduction

Sample application architecture

Figure 1-2 provides a high-level overview of the architecture of the sample application.

Figure 1-2: eShopOnContainers high-level architecture

The sample application ships with three client apps:

• An MVC application developed with ASP.NET Core.

• A Single Page Application (SPA) developed with Angular 2 and Typescript. This approach for

web applications avoids performing a round-trip to the server with each operation.

• A mobile app developed with Xamarin.Forms, which supports iOS, Android, and the Universal

Windows Platform (UWP).

For information about the web applications, see Architecting and Developing Modern Web

Applications with ASP.NET Core and Azure.

The sample application includes the following backend services:

• An identity microservice, which uses ASP.NET Core Identity and IdentityServer.

• A catalog microservice, which is a data-driven, create, read, update, delete (CRUD) service that

consumes an SQL Server database using EntityFramework Core.

• An ordering microservice, which is a domain-driven service that uses domain driven design

patterns.

• A basket microservice, which is a data-driven CRUD service that uses Redis Cache.

These backend services are implemented as microservices using ASP.NET Web API, and are deployed

as unique containers within a single Docker host. Collectively, these backend services are referred to

as the eShopOnContainers reference application. Client apps then communicate with the backend

services through a Representational State Transfer (REST) web interface. For more information about

microservices and Docker, see Containerized microservices.

http://aka.ms/WebAppEbook
http://aka.ms/WebAppEbook

5 CHAPTER 1 | Introduction

For information about the implementation of the backend services, see Architecting and Developing

Containerized and Microservice based .NET Applications.

Mobile app

This guide focuses on building cross-platform enterprise apps using Xamarin.Forms, and uses the

eShopOnContainers mobile app as an example. Figure 1-3 shows the pages from the

eShopOnContainers mobile app that provide the functionality outlined earlier.

Figure 1-3: The eShopOnContainers mobile app

The mobile app consumes the backend services provided by the eShopOnContainers reference

application. However, it can be configured to consume data from mock services, for those who wish to

avoid deploying the backend services.

The eShopOnContainers mobile app exercises the following Xamarin.Forms functionality:

• XAML

• Controls

• Bindings

http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

6 CHAPTER 1 | Introduction

• Converters

• Styles

• Animations

• Commands

• Behaviors

• Triggers

• Effects

• Custom Renderers

• MessagingCenter

• Custom Controls

For more information about this functionality, see the Xamarin.Forms documentation on the Xamarin

Developer Center, and Creating Mobile Apps with Xamarin.Forms.

In addition, unit tests are provided for some of the classes in the eShopOnContainers mobile app.

Mobile app solution

The eShopOnContainers mobile app solution organizes the source code and other resources into

projects. All of the projects use folders to organize the source code and other resources into

categories. The following table outlines the projects that make up the eShopOnContainers mobile

app:

Project Description

eShopOnContainers.Core This project is the portable class library (PCL) project

that contains the shared code and shared UI.

eShopOnContainers.Droid This project holds Android specific code and is the

entry point for the Android app.

eShopOnContainers.iOS This project holds iOS specific code and is the entry

point for the iOS app.

eShopOnContainers.UWP This project holds Universal Windows Platform (UWP)

specific code and is the entry point for the Windows

app.

eShopOnContainers.TestRunner.Droid This project is the Android test runner for the

eShopOnContainers.UnitTests project.

eShopOnContainers.TestRunner.iOS This project is the iOS test runner for the

eShopOnContainers.UnitTests project.

eShopOnContainers.TestRunner.Windows This project is the Universal Windows Platform test

runner for the eShopOnContainers.UnitTests project.

eShopOnContainers.UnitTests This project contains unit tests for the

eShopOnContainers.Core project.

The classes from the eShopOnContainers mobile app can be re-used in any Xamarin.Forms app with

little or no modification.

https://developer.xamarin.com/guides/xamarin-forms/
https://aka.ms/xamebook

7 CHAPTER 1 | Introduction

eShopOnContainers.Core project

The eShopOnContainers.Core PCL project contains the following folders:

Folder Description

Animations Contains classes that enable animations to be consumed in XAML.

Behaviors Contains behaviors that are exposed to view classes.

Controls Contains custom controls used by the app.

Converters Contains value converters that apply custom logic to a binding.

Effects Contains the EntryLineColorEffect class, which is used to change the border

color of specific Entry controls.

Exceptions Contains the custom ServiceAuthenticationException.

Extensions Contains extension methods for the VisualElement and IEnumerable<T> classes.

Helpers Contains helper classes for the app.

Models Contains the model classes for the app.

Properties Contains AssemblyInfo.cs, a .NET assembly metadata file.

Services Contains interfaces and classes that implement services that are provided to the

app.

Triggers Contains the BeginAnimation trigger, which is used to invoke an animation in

XAML.

Validations Contains classes involved in validating data input.

ViewModels Contains the application logic that's exposed to pages.

Views Contains the pages for the app.

Platform projects

The platform projects contain effect implementations, custom renderer implementations, and other

platform-specific resources.

Summary
Xamarin's cross-platform mobile app development tools and platforms provide a comprehensive

solution for B2E, B2B, and B2C mobile client apps, providing the ability to share code across all target

platforms (iOS, Android, and Windows) and helping to lower the total cost of ownership. Apps can

share their user interface and app logic code, while retaining the native platform look and feel.

Developers of enterprise apps face several challenges that can alter the architecture of the app during

development. Therefore, it's important to build an app so that it's flexible and can be easily modified

or extended over time. Designing for such flexibility can be difficult, but typically involves partitioning

an app into discrete, loosely coupled components that can be easily integrated together into an app.

8 CHAPTER 2 | MVVM

C H A P T E R

2

 MVVM
The Xamarin.Forms developer experience typically involves creating a user interface in XAML, and then

adding code-behind that operates on the user interface. As apps are modified, and grow in size and

scope, complex maintenance issues can arise. These issues include the tight coupling between the UI

controls and the business logic, which increases the cost of making UI modifications, and the difficulty

of unit testing such code.

The Model-View-ViewModel (MVVM) pattern helps to cleanly separate the business and presentation

logic of an application from its user interface (UI). Maintaining a clean separation between application

logic and the UI helps to address numerous development issues and can make an application easier

to test, maintain, and evolve. It can also greatly improve code re-use opportunities and allows

developers and UI designers to more easily collaborate when developing their respective parts of an

app.

The MVVM pattern
There are three core components in the MVVM pattern: the model, the view, and the view model.

Each serves a distinct purpose. Figure 2-1 shows the relationships between the three components.

Figure 2-1: The MVVM pattern.

In addition to understanding the responsibilities of each components, it's also important to

understand how they interact with each other. At a high level, the view "knows about" the view model,

and the view model "knows about" the model, but the model is unaware of the view model, and the

view model is unaware of the view. Therefore, the view model isolates the view from the model, and

allows the model to evolve independently of the view.

The benefits of using the MVVM pattern are as follows:

• Developers can create unit tests for the view model and the model, without using the view.

The unit tests for the view model can exercise exactly the same functionality as used by the

view.

9 CHAPTER 2 | MVVM

• The app UI can be redesigned without touching the code, provided that the view is

implemented entirely in XAML. Therefore, a new version of the view should work the existing

view model.

• Designers and developers can work independently and concurrently on their components

during the development process. Designers can focus on the view, while developers can work

on the view model and model components.

• If there's an existing model implementation that encapsulates existing business logic, it can

be difficult or risky to change it. In this scenario, the view model acts as an adapter for the

model classes and enables you to avoid making any major changes to the model code.

The key to using MVVM effectively lies in understanding how to factor app code into the correct

classes, and in understanding how the classes interact. The following sections discuss the

responsibilities of each of the classes in the MVVM pattern.

View

The view is responsible for defining the structure, layout, and appearance of what the user sees on

screen. Ideally, each view is defined in XAML, with a limited code-behind that does not contain

business logic. However, in some cases, the code-behind may contain UI logic that implements visual

behavior that is difficult to express in XAML, such as animations.

In a Xamarin.Forms application, a view is typically a Page-derived or ContentView-derived class.

However, views can also be represented by a data template, which specifies the UI elements to be

used to visually represent an object when it's displayed. A data templates as a view does not have any

code-behind, and is designed to bind to a specific view model type.

Tip: Avoid enabling and disabling UI elements in the code-behind

Ensure that view models are responsible for defining logical state changes that affect some aspect
of the view's display, such as whether a command is available, or an indication that an operation is
pending. Therefore, enable and disable UI elements by binding to view model properties, rather
than enabling and disabling them in code-behind.

There are several options for executing code on the view model in response to interactions on the

view, such as a button click or item selection. If a control supports commands, the control's Command

property can be data-bound to an ICommand property on the view model. When the control's

command is invoked, the code in the view model will be executed. In addition to commands,

behaviors can be attached to an object in the view and can listen for either a command to be invoked

or event to be raised. In response, the behavior can then invoke an ICommand on the view model or a

method on the view model.

ViewModel

The view model implements properties and commands to which the view can data bind to, and

notifies the view of any state changes through change notification events. The properties and

commands that the view model provides define the functionality to be offered by the UI, but the view

determines how that functionality is to be displayed.

Tip: Keep the UI responsive with asynchronous operations

Mobile apps should keep the UI thread unblocked to improve the user's perception of
performance. Therefore, in the view model, use asynchronous methods for I/O operations and raise
events to asynchronously notify views of property changes.

10 CHAPTER 2 | MVVM

The view model is also responsible for coordinating the view's interactions with any model classes that

are required. There's typically a one-to-many relationship between the view model and the model

classes. The view model may choose to expose model classes directly to the view so that controls in

the view can data bind directly to them. In this case, the model classes will need to be designed to

support data binding and change notification events.

Each view model provides data from a model in a form that the view can easily consume. To

accomplish this, the view model sometimes performs data conversion. Placing this data conversion in

the view model is a good idea because it provides properties that the view can bind to. For example,

the view model may combine the value of two properties to make it easier for display by the view.

Tip: Centralize data conversions in a conversion layer

It's also possible to use converters as a separate data conversion layer that sits between the view
model and the view. This can be necessary, for example, when data requires special formatting that
the view model doesn't provide.

In order for the view model to participate in two-way data binding with the view, its properties must

raise the PropertyChanged event. View models satisfy this requirement by implementing the

INotifyPropertyChanged interface, and raising the PropertyChanged event when a property is

changed.

For collections, the view-friendly ObservableCollection<T> is provided. This collection implements

collection changed notification, relieving the developer from having to implement the

INotifyCollectionChanged interface on collections.

Model

Model classes are non-visual classes that encapsulate the app's data. Therefore, the model can be

thought of as representing the app's domain model, which usually includes a data model along with

business and validation logic. Examples of model objects include data transfer objects (DTOs), Plain

Old CLR Objects (POCOs), and generated entity and proxy objects.

Model classes are typically used in conjunction with a service or repository that encapsulates data

access and caching.

Connecting view models to views
MVVM uses the data-binding capabilities of Xamarin.Forms to connect view models to views. There

are many approaches that can be used to construct views and view models and associate them at

runtime. However, all share the same aim, which is for the view to have a view model assigned to its

BindingContext property.

There are two categories of approaches for constructing views and view models, and associating them

at runtime. They are known as view first composition, and view model first composition, and deciding

whether an app will construct views or view models first is an issue of preference and complexity.

With view first composition the app is conceptually composed of views which connect to the view

models they depend on. The primary benefit of this approach is that it makes it easy to construct

loosely coupled, unit testable apps because the view models have no dependence on the views

themselves. It's also easy to understand the structure of the app by following its visual structure,

rather than having to track code execution to understand how classes are created and associated. In

addition, view first construction aligns with the Xamarin.Forms navigation system that's responsible

for constructing pages when navigation occurs, which makes a view model first composition complex

and misaligned with the platform.

11 CHAPTER 2 | MVVM

View model first composition feels more natural to some developers, since the view creation can be

abstracted away, allowing them to focus on the logical non-UI structure of the app. However, this

approach is often complex and it can become difficult to understand how the various parts of the app

are created and associated.

Tip: Keep view models and views independent

The binding of views to a property in a data source should be the view's principal dependency on
its corresponding view model. Specifically, don't reference view types from view models. If you
follow the principles outlined here, you'll have the ability to test view models in isolation, therefore
reducing the likelihood of software defects by limiting scope.

The following sections discuss the main approaches to connecting view models to views.

Creating a view model declaratively

The simplest approach is for the view to declaratively instantiate its corresponding view model in

XAML. When the view is constructed, the corresponding view model object will also be constructed.

This approach is demonstrated in the following code example:

<ContentPage ... xmlns:local="clr-namespace:eShop">

 <ContentPage.BindingContext>

 <local:LoginViewModel />

 </ContentPage.BindingContext>

 ...

</ContentPage>

When the ContentPage is created, an instance of the LoginViewModel is automatically constructed

and set as the view's BindingContext.

This declarative construction and assignment of the view model by the view has the advantage that

it's simple, but has the disadvantage that it requires a default (parameter-less) constructor in the view

model.

Creating a view model programmatically

A view can have code in the code-behind file that results in the view model being assigned to its

BindingContext property. This is often accomplished in the view's constructor, as shown in the

following code example:

public LoginView()

{

 InitializeComponent();

 BindingContext = new LoginViewModel(navigationService);

}

The programmatic construction and assignment of the view model within the view's code-behind has

the advantage that it's simple. However, the main disadvantage of this approach is that the view

needs to provide the view model with any required dependencies. Using a dependency injection

container can help to main loose coupling between the view and view model. For more information,

see Dependency injection.

Creating a view defined as a data template

A view can be defined as a data template and associated with a view model type. Data templates can

be defined as resources, or they can be defined inline within the control that will display the view

12 CHAPTER 2 | MVVM

model. The content of the control is the view model instance, and the data template is used to visually

represent it. This technique is an example of a situation in which the view model is instantiated first,

followed by the creation of the view.

Automatically creating a view model with a view model locator

A view model locator is a class that manages the instantiation of view models and their association to

views. In the eShopOnContainers mobile app, the ViewModelLocator class, has an attached property,

AutoWireViewModel, that's used to associate view models with views. In the view's XAML this

attached property is set to true to indicate that the view model should be automatically connected to

the view, as shown in the following code example:

viewModelBase:ViewModelLocator.AutoWireViewModel="true"

The AutoWireViewModel property is a bindable property that's initialized to false, and when its

value changes the OnAutoWireViewModelChanged event handler is called. This method resolves the

view model for the view. The following code example shows how this is achieved:

private static void OnAutoWireViewModelChanged(BindableObject bindable, object oldValue, object n

ewValue)

{

 var view = bindable as Element;

 if (view == null)

 {

 return;

 }

 var viewType = view.GetType();

 var viewName = viewType.FullName.Replace(".Views.", ".ViewModels.");

 var viewAssemblyName = viewType.GetTypeInfo().Assembly.FullName;

 var viewModelName = string.Format(CultureInfo.InvariantCulture, "{0}Model, {1}", viewName, vi

ewAssemblyName);

 var viewModelType = Type.GetType(viewModelName);

 if (viewModelType == null)

 {

 return;

 }

 var viewModel = _container.Resolve(viewModelType);

 view.BindingContext = viewModel;

}

The OnAutoWireViewModelChanged method attempts to resolve the view model using a convention-

based approach. This convention assumes that:

• View models are in the same assembly as view types.

• Views are in a .Views child namespace.

• View models are in a .ViewModels child namespace.

• View model names correspond with view names and end with "ViewModel".

Finally, the OnAutoWireViewModelChanged method sets the BindingContext of the view type to the

resolved view model type. For more information about resolving the view model type, see Resolution.

This approach has the advantage that an app has a single class that is responsible for the instantiation

of view models and their connection to views.

13 CHAPTER 2 | MVVM

Tip: Use a view model locator for ease of substitution

A view model locator can also be used as a point of substitution for alternate implementations of
dependencies, such as for unit testing or design time data.

Updating views in response to changes in the
underlying view model or model
All view model and model classes that are accessible to a view should implement the

INotifyPropertyChanged interface. Implementing this interface in a view model or model class

allows the class to provide change notifications to any data-bound controls in the view when the

underlying property value changes. The eShopOnContainers mobile app uses the

ExtendedBindableObject class to provide change notifications , which is shown in the following

code example:

public abstract class ExtendedBindableObject : BindableObject

{

 public void RaisePropertyChanged<T>(Expression<Func<T>> property)

 {

 var name = GetMemberInfo(property).Name;

 OnPropertyChanged(name);

 }

 private MemberInfo GetMemberInfo(Expression expression)

 {

 ...

 }

}

Xamarin.Form's BindableObject class implements the INotifyPropertyChanged interface, and

provides an OnPropertyChanged method. The ExtendedBindableObject class provides the

RaisePropertyChanged method to invoke property change notification, and in doing so uses the

functionality provided by the BindableObject class.

Each view model class in the eShopOnContainers mobile app derives from the ViewModelBase class,

which in turn derives from the ExtendedBindableObject class. Therefore, each view model class uses

the RaisePropertyChanged method in the ExtendedBindableObject class to provide property change

notification. The following code example shows how the eShopOnContainers mobile app invokes

property change notification by using a lambda expression:

public bool IsLogin

{

 get

 {

 return _isLogin;

 }

 set

 {

 _isLogin = value;

 RaisePropertyChanged(() => IsLogin);

 }

}

Note that using a lambda expression in this way involves a small performance cost because the

lambda expression has to be evaluated for each call. Although the performance cost is small and

14 CHAPTER 2 | MVVM

would not normally impact an app, the costs can accrue when there are many change notifications.

However, the benefit of this approach is that it provides compile-time type safety and refactoring

support when renaming properties.

Tip: Architect apps for the correct use of property change notification.

Always implement the INotifyPropertyChanged interface on any view model or model classes
that are accessible to the view.

Always raise a PropertyChanged event if a public property's value changes. Do not assume that
raising the PropertyChanged event can be ignored because of knowledge of how XAML binding
occurs.

Always raise a PropertyChanged event for any calculated properties whose values are used by
other properties in the view model or model.

Always raise the PropertyChanged event at the end of the method that makes a property change,
or when the object is known to be in a safe state. Raising the event interrupts the operation by
invoking the event's handlers synchronously. If this happens in the middle of an operation, it may
expose the object to callback functions when it is in an unsafe, partially update state. In addition, it's
possible for cascading changes to be triggered by PropertyChanged events. Cascading changes
generally require updates to be complete before the cascading change is safe to execute.

Never raise a PropertyChanged event if the property does not change. This means that you must
compare the old and new values before raising the PropertyChanged event.

Never raise the PropertyChanged event during a view model's constructor if you are initializing a
property. Data-bound controls in the view will not have subscribed to receive change notifications
at this point.

Never raise more than one PropertyChanged event with the same property name argument within
a single synchronous invocation of a public method of a class. For example, given a NumberOfItems
property whose backing store is the _numberOfItems field, if a method increments
_numberOfItems fifty times during the execution of a loop, it should only raise property change
notification on the NumberOfItems property once, after all the work is complete. For asynchronous
methods, raise the PropertyChanged event for a given property name in each synchronous
segment of an asynchronous continuation chain.

UI interaction using commands and behaviors
In mobile apps, actions are typically invoked in response to a user action, such as a button click, that

can be implemented by creating an event handler in the code-behind file. However, in the MVVM

pattern, the responsibility for implementing the action lies with the view model, and placing code in

the code-behind should be avoided.

Commands provide a convenient way to represent actions that can be bound to controls in the UI.

They encapsulate the code that implements the action, and help to keep it decoupled from its visual

representation in the view. Xamarin.Forms includes controls that can be declaratively connected to a

command, and these controls will invoke the command when the user interacts with the control.

Behaviors also allow controls to be declaratively connected to a command. However, behaviors can be

used to invoke an action that's associated with a range of events raised by a control. Therefore,

behaviors address many of the same scenarios as command-enabled controls, while providing a

greater degree of flexibility and control. In addition, behaviors can also be used to associate command

objects or methods with controls that were not specifically designed to interact with commands.

15 CHAPTER 2 | MVVM

Implementing commands

View models typically expose command properties, for binding from the view, that are object

instances that implement the ICommand interface. A number of Xamarin.Forms controls provide a

Command property, which can be data bound to an ICommand object provided by the view model. The

ICommand interface defines an Execute method, which encapsulates the operation itself, a

CanExecute method, which indicates whether the command can be invoked, and a

CanExecuteChanged event that occurs when changes occur that effect whether the command should

execute. The Command and Command<T> classes, provided by Xamarin.Forms, implement the ICommand

interface, where T is the type of the arguments to Execute and CanExecute.

Within a view model, there should be an object of type Command or Command<T> for each public

property in the view model of type ICommand. The Command or Command<T> constructor requires an

Action callback object, that's called when the ICommand.Execute method is invoked. The

CanExecute method is an optional constructor parameter, and is a Func that returns a bool.

The following code shows how a Command instance, which represents a register command, is

constructed by specifying a delegate to the Register view model method:

public ICommand RegisterCommand => new Command(Register);

The command is exposed to the view through a property that returns a reference to an ICommand.

When the Execute method is called on the Command object, it simply forwards the call to the method

in the view model via the delegate that was specified in the Command constructor.

An asynchronous method can be invoked by a command by using the async and await keywords

when specifying the command's Execute delegate. This indicates that the callback is a Task and

should be awaited. For example, the following code shows how a Command instance, which represents

a sign-in command, is constructed by specifying a delegate to the SignInAsync view model method:

public ICommand SignInCommand => new Command(async () => await SignInAsync());

Parameters can be passed to the Execute and CanExecute actions by using the Command<T> class to

instantiate the command. For example, the following code shows how a Command<T> instance is used

to indicate that the NavigateAsync method will require an argument of type string:

public ICommand NavigateCommand => new Command<string>(NavigateAsync);

In both the Command and Command<T> classes, the delegate to the CanExecute method in each

constructor is optional. If a delegate isn't specified, the Command will return true for CanExecute.

However, the view model can indicate a change in the command's CanExecute status by calling the

ChangeCanExecute method on the Command object. This causes the CanExecuteChanged event to be

raised. Any controls in the UI that are bound to the command will then update their enabled status to

reflect the availability of the data-bound command.

Invoking commands from a view

The following code example shows how a Grid in the LoginView binds to the RegisterCommand in

the LoginViewModel class by using a TapGestureRecognizer instance:

<Grid Grid.Column="1" HorizontalOptions="Center">

 <Label Text="REGISTER" TextColor="Gray"/>

 <Grid.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding RegisterCommand}" NumberOfTapsRequired="1" />

16 CHAPTER 2 | MVVM

 </Grid.GestureRecognizers>

</Grid>

A command parameter can also be optionally defined using the CommandParameter property. The

type of the expected argument is specified in the Execute and CanExecute target methods. The

TapGestureRecognizer will automatically invoke the target command when the user interacts with

the attached control. The command parameter, if provided, will be passed as the argument to the

command's Execute delegate.

Implementing behaviors

Behaviors allow functionality to be added to UI controls without having to subclass them. Instead, the

functionality is implemented in a behavior class and attached to the control as if it was part of the

control itself. Behaviors enable you to implement code that you would normally have to write as

code-behind, because it directly interacts with the API of the control, in such a way that it can be

concisely attached to the control, and packaged for reuse across more than one view or app. In the

context of MVVM, behaviors are a useful approach for connecting controls to commands.

A behavior that's attached to a control through attached properties is known as an attached behavior.

The behavior can then use the exposed API of the element to which it is attached to add functionality

to that control or other controls in the visual tree of the view. The eShopOnContainers mobile app

contains the LineColorBehavior class, which is an attached behavior. For more information about

this behavior, see Displaying validation errors.

A Xamarin.Forms behavior is a class that derives from the Behavior or Behavior<T> class, where T is

the type of the control to which the behavior should apply. These classes provide OnAttachedTo and

OnDetachingFrom methods, which should be overridden to provide logic that will be executed when

the behavior is attached to and detached from controls.

In the eShopOnContainers mobile app, the BindableBehavior<T> class derives from the

Behavior<T> class. The purpose of the BindableBehavior<T> class is to provide a base class for

Xamarin.Forms behaviors that require the BindingContext of the behavior to be set to the attached

control.

The BindableBehavior<T> class provides an overridable OnAttachedTo method that sets the

BindingContext of the behavior, and an overridable OnDetachingFrom method that cleans up the

BindingContext. In addition, the class stores a reference to the attached control in the

AssociatedObject property.

The eShopOnContainers mobile app includes an EventToCommandBehavior class, which executes a

command in response to an event occurring. This class derives from the BindableBehavior<View>

class so that the behavior can bind to and execute an ICommand specified by a Command property

when the behavior is consumed. The following code example shows the EventToCommandBehavior

class:

public class EventToCommandBehavior : BindableBehavior<View>

{

 ...

 protected override void OnAttachedTo(View visualElement)

 {

 base.OnAttachedTo(visualElement);

 var events = AssociatedObject.GetType().GetRuntimeEvents().ToArray();

 if (events.Any())

 {

 _eventInfo = events.FirstOrDefault(e => e.Name == EventName);

 if (_eventInfo == null)

17 CHAPTER 2 | MVVM

 throw new ArgumentException(String.Format("EventToCommand: Can't find any event n

amed '{0}' on attached type", EventName));

 AddEventHandler(_eventInfo, AssociatedObject, OnFired);

 }

 }

 protected override void OnDetachingFrom(View view)

 {

 if (_handler != null)

 _eventInfo.RemoveEventHandler(AssociatedObject, _handler);

 base.OnDetachingFrom(view);

 }

 private void AddEventHandler(EventInfo eventInfo, object item, Action<object, EventArgs> acti

on)

 {

 ...

 }

 private void OnFired(object sender, EventArgs eventArgs)

 {

 ...

 }

}

The OnAttachedTo and OnDetachingFrom methods are used to register and deregister an event

handler for the event defined in the EventName property. Then, when the event fires, the OnFired

method is invoked, which executes the command.

The advantage of using the EventToCommandBehavior to execute a command when an event fires, is

that commands can be associated with controls that weren't designed to interact with commands. In

addition, this moves event-handling code to view models, where it can be unit tested.

Invoking behaviors from a view

The EventToCommandBehavior is particularly useful for attaching a command to a control that

doesn't support commands. For example, the ProfileView uses the EventToCommandBehavior to

execute the OrderDetailCommand when the ItemTapped event fires on the ListView that lists the

user's orders, as shown in the following code:

<ListView>

 <ListView.Behaviors>

 <behaviors:EventToCommandBehavior

 EventName="ItemTapped"

 Command="{Binding OrderDetailCommand}"

 EventArgsConverter="{StaticResource ItemTappedEventArgsConverter}" />

 </ListView.Behaviors>

 ...

</ListView>

At runtime, the EventToCommandBehavior will respond to interaction with the ListView. When an

item is selected in the ListView, the ItemTapped event will fire, which will execute the

OrderDetailCommand in the ProfileViewModel. By default, the event arguments for the event are

passed to the command. This data is converted as it's passed between source and target by the

converter specified in the EventArgsConverter property, which returns the Item of the ListView

from the ItemTappedEventArgs. Therefore, when the OrderDetailCommand is executed, the selected

Order is passed as a parameter to the registered Action.

18 CHAPTER 2 | MVVM

For more information about behaviors, see Behaviors on the Xamarin Developer Center.

Summary
The Model-View-ViewModel (MVVM) pattern helps to cleanly separate the business and presentation

logic of an application from its user interface (UI). Maintaining a clean separation between application

logic and the UI helps to address numerous development issues and can make an application easier

to test, maintain, and evolve. It can also greatly improve code re-use opportunities and allows

developers and UI designers to more easily collaborate when developing their respective parts of an

app.

Using the MVVM pattern, the UI of the app and the underlying presentation and business logic is

separated into three separate classes: the view, which encapsulates the UI and UI logic; the view

model, which encapsulates presentation logic and state; and the model, which encapsulates the app's

business logic and data.

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/behaviors/

19 CHAPTER 3 | Dependency injection

C H A P T E R

3

 Dependency
injection
Typically, a class constructor is invoked when instantiating an object, and any values that the object

needs are passed as arguments to the constructor. This is an example of dependency injection, and

specifically is known as constructor injection. The dependencies the object needs are injected into the

constructor.

By specifying dependencies as interface types, dependency injection enables decoupling of the

concrete types from the code that depends on these types. It generally uses a container that holds a

list of registrations and mappings between interfaces and abstract types, and the concrete types that

implement or extend these types.

There are also other types of dependency injection, such as property setter injection, and method call

injection, but they are less commonly seen. Therefore, this chapter will focus solely on performing

constructor injection with a dependency injection container.

Introduction to dependency injection
If a class doesn't directly instantiate the objects that it needs, another class must take on this

responsibility. Factories, service locators, and dependency injection are all approaches for moving the

responsibility for instantiating and managing objects to another class.

A common feature of factories and service locators is that it's an object's responsibility to resolve its

own dependencies by requesting instances of the types that it needs. For example, Figure 3-1 shows

the dependencies in the factory pattern, where the factory instantiates an OrderService object on

behalf of the ProfileViewModel class.

20 CHAPTER 3 | Dependency injection

Figure 3-1: Dependencies in the factory pattern

In this example, the ProfileViewModel class relies on the OrderServiceFactory class to create the

instance of the OrderService instance on its behalf. Therefore, the ProfileViewModel class has a

dependency on the class that's responsible for creating the object it wants to use, as well as the

IOrderService interface type. In addition, if each view model class in an app uses a factory class to

create its dependencies, the dependencies will be hidden over multiple classes, making them harder

to test.

Dependency injection is a specialized version of the Inversion of Control (IoC) pattern, where the

concern being inverted is the process of obtaining the required dependency. With dependency

injection, just like with the factory pattern, another class is responsible for injecting dependencies into

an object at runtime. The following code example shows how the ProfileViewModel class is

structured when using dependency injection:

public class ProfileViewModel : ViewModelBase

{

 private IOrderService _orderService;

 public ProfileViewModel(IOrderService orderService)

 {

 _orderService = orderService;

 }

 ...

}

The ProfileViewModel constructor receives an IOrderService instance as an argument, injected by

another class. The only dependency in the ProfileViewModel class is on the interface type.

Therefore, the ProfileViewModel class doesn't have any knowledge of the class that's responsible for

instantiating the IOrderService object. The class that's responsible for instantiating the

IOrderService object, and inserting it into the ProfileViewModel class, is known as the dependency

injection container.

Dependency injection containers reduce the coupling between objects by providing a facility to

instantiate class instances and manage their lifetime based on the configuration of the container.

During the objects creation, the container injects any dependencies that the object requires into it. If

21 CHAPTER 3 | Dependency injection

those dependencies have not yet been created, the container creates and resolves their dependencies

first.

Note: Dependency injection can also be implemented manually using factories. However, using a
container provides additional capabilities such as lifetime management, and registration through
assembly scanning.

There are several advantages to using a dependency injection container:

• A container removes the need for a class to locate its dependencies and manage their

lifetimes.

• A container allows mapping of implemented dependencies without affecting the class.

• A container facilitates testability by allowing dependencies to be mocked.

• A container increases maintainability by allowing new classes to be easily added to the app.

In the context of a Xamarin.Forms app that uses MVVM, a dependency injection container will

typically be used for registering and resolving view models, and for registering services and injecting

them into view models.

There are many dependency injection containers available, with the eShopOnContainers mobile app

using Autofac to manage the instantiation of view model and service classes in the app. Autofac

facilitates building loosely coupled apps, and provides all of the features commonly found in

dependency injection containers, including methods to register type mappings and object instances,

resolve objects, manage object lifetimes, and inject dependent objects into constructors of objects it

resolves. For more information about Autofac, see Autofac on readthedocs.io.

In Autofac, the IContainer interface provides the dependency injection container. Figure 3-2 shows

the dependencies when using this container, which instantiates an IOrderService object and injects

it into the ProfileViewModel class.

Figure 3-2: Dependencies when using dependency injection

At runtime, the container must know which implementation of the IOrderService interface it should

instantiate, before it can instantiate a ProfileViewModel object. This involves:

http://autofac.readthedocs.io/en/latest/index.html

22 CHAPTER 3 | Dependency injection

• The container deciding how to instantiate an object that implements the IOrderService

interface. This is known as registration.

• The container instantiating the object that implements the IOrderService interface, and the

ProfileViewModel object. This is known as resolution.

Eventually, the app will finish using the ProfileViewModel object and it will become available for

garbage collection. At this point, the garbage collector should dispose of the IOrderService instance

if other classes do not share the same instance.

Tip: Write container-agnostic code

Always try to write container-agnostic code to decouple the app from the specific dependency
container being used.

Registration
Before dependencies can be injected into an object, the types of the dependencies must first be

registered with the container. Registering a type typically involves passing the container an interface

and a concrete type that implements the interface.

There are two ways of registering types and objects in the container through code:

• Register a type or mapping with the container. When required, the container will build an

instance of the specified type.

• Register an existing object in the container as a singleton. When required, the container will

return a reference to the existing object.

Tip: Dependency injection containers are not always suitable

Dependency injection introduces additional complexity and requirements that may not be
appropriate or useful to small apps.

If a class does not have any dependencies, or is not a dependency for other types, it may not make
sense to put it in the container.

If a class has a single set of dependencies that are integral to the type and will never change, it may
not make sense to put it in the container.

The registration of types that require dependency injection should be performed in a single method in

an app, and this method should be invoked early in the app's lifecycle to ensure that the app is aware

of the dependencies between its classes. In the eShopOnContainers mobile app this is performed by

the ViewModelLocator class, which builds the IContainer object and is the only class in the app that

holds a reference to that object. The following code example shows how the eShopOnContainers

mobile app declares the IContainer object in the ViewModelLocator class:

private static IContainer _container;

Types and instances are registered in the RegisterDependencies method in the ViewModelLocator

class. This is achieved by first creating a ContainerBuilder instance, which is demonstrated in the

following code example:

var builder = new ContainerBuilder();

23 CHAPTER 3 | Dependency injection

Types and instances are then registered with the ContainerBuilder object, and the following code

example demonstrates the most common form of type registration:

builder.RegisterType<RequestProvider>().As<IRequestProvider>();

The RegisterType method shown here maps an interface type to a concrete type. It tells the

container to instantiate a RequestProvider object when it instantiates an object that requires an

injection of an IRequestProvider through a constructor.

Concrete types can also be registered directly without a mapping from an interface type, as shown in

the following code example:

builder.RegisterType<ProfileViewModel>();

When the ProfileViewModel type is resolved, the container will inject its required dependencies.

Autofac also allows instance registration, where the container is responsible for maintaining a

reference to a singleton instance of a type. For example, the following code example shows how the

eShopOnContainers mobile app registers the concrete type to use when a ProfileViewModel

instance requires an IOrderService instance:

builder.RegisterType<OrderService>().As<IOrderService>().SingleInstance();

The RegisterType method shown here maps an interface type to a concrete type. The

SingleInstance method configures the registration so that every dependent object receives the

same, shared instance. Therefore, only a single OrderService instance will exist in the container,

which is shared by objects that require an injection of an IOrderService through a constructor.

Instance registration can also be performed with the RegisterInstance method, which is

demonstrated in the following code example:

builder.RegisterInstance(new OrderMockService()).As<IOrderService>();

The RegisterInstance method shown here creates a new OrderMockService instance and registers

it with the container. Therefore, only a single OrderMockService instance exists in the container,

which is shared by objects that require an injection of an IOrderService through a constructor.

Following type and instance registration, the IContainer object must be built, which is demonstrated

in the following code example:

_container = builder.Build();

Invoking the Build method on the ContainerBuilder instance builds a new dependency injection

container that contains the registrations that have been made.

Tip: Consider an IContainer as being immutable

While Autofac provides an Update method to update registrations in an existing container, calling
this method should be avoided where possible. There are risks to modifying a container after it's
been built, particularly if the container has been used. For more information, see Consider a
Container as Immutable on readthedocs.io.

http://docs.autofac.org/en/latest/best-practices/#consider-a-container-as-immutable
http://docs.autofac.org/en/latest/best-practices/#consider-a-container-as-immutable

24 CHAPTER 3 | Dependency injection

Resolution
After a type is registered, it can be resolved or injected as a dependency. When a type is being

resolved and the container needs to create a new instance, it injects any dependencies into the

instance.

Generally, when a type is resolved, one of three things happens:

1. If the type hasn't been registered, the container throws an exception.

2. If the type has been registered as a singleton, the container returns the singleton instance. If

this is the first time the type was called for, the container creates it if required, and maintains a

reference to it.

3. If the type hasn't been registered as a singleton, the container returns a new instance, and

doesn't maintain a reference to it.

The following code example shows how the RequestProvider type that was previously registered

with Autofac can be resolved:

var requestProvider = _container.Resolve<IRequestProvider>();

In this example, Autofac is asked to resolve the concrete type for the IRequestProvider type, along

with any dependencies. Typically, the Resolve method is called when an instance of a specific type is

required. For information about controlling the lifetime of resolved objects, see Managing the lifetime

of resolved objects.

The following code example shows how the eShopOnContainers mobile app instantiates view model

types and their dependencies:

var viewModel = _container.Resolve(viewModelType);

In this example, Autofac is asked to resolve the view model type for a requested view model, and the

container will also resolve any dependencies. When resolving the ProfileViewModel type, the

dependency to resolve is an IOrderService object. Therefore, Autofac first constructs an

OrderService object and then passes it to the constructor of the ProfileViewModel class. For more

information about how the eShopOnContainers mobile app constructs view models and associates

them to views, see Automatically creating a view model with a view model locator.

Note: Registering and resolving types with a container has a performance cost because of the
container's use of reflection for creating each type, especially if dependencies are being
reconstructed for each page navigation in the app. If there are many or deep dependencies, the
cost of creation can increase significantly.

Managing the lifetime of resolved objects
After registering a type, the default behavior for Autofac is to create a new instance of the registered

type each time the type is resolved, or when the dependency mechanism injects instances into other

classes. In this scenario, the container doesn't hold a reference to the resolved object. However, when

registering an instance, the default behavior for Autofac is to manage the lifetime of the object as a

singleton. Therefore, the instance remains in scope while the container is in scope, and is disposed

when the container goes out of scope and is garbage collected, or when code explicitly disposes the

container.

25 CHAPTER 3 | Dependency injection

An Autofac instance scope can be used to specify the singleton behavior for an object that Autofac

creates from a registered type. Autofac instance scopes manage the object lifetimes instantiated by

the container. The default instance scope for the RegisterType method is the

InstancePerDependency scope. However, the SingleInstance scope can be used with the

RegisterType method, so that the container creates or returns a singleton instance of a type when

calling the Resolve method. The following code example shows how Autofac is instructed to create a

singleton instance of the NavigationService class:

builder.RegisterType<NavigationService>().As<INavigationService>().SingleInstance();

The first time that the INavigationService interface is resolved, the container creates a new

NavigationService object and maintains a reference to it. On any subsequent resolutions of the

INavigationService interface, the container returns a reference to the NavigationService object

that was previously created.

Note: The SingleInstance scope disposes created objects when the container is disposed.

Autofac includes additional instance scopes. For more information, see Instance Scope on

readthedocs.io.

Summary
Dependency injection enables decoupling of concrete types from the code that depends on these

types. It typically uses a container that holds a list of registrations and mappings between interfaces

and abstract types, and the concrete types that implement or extend these types.

Autofac facilitates building loosely coupled apps, and provides all of the features commonly found in

dependency injection containers, including methods to register type mappings and object instances,

resolve objects, manage object lifetimes, and inject dependent objects into constructors of objects it

resolves.

http://autofac.readthedocs.io/en/latest/lifetime/instance-scope.html

26 CHAPTER 4 | Communicating between loosely coupled components

C H A P T E R

4

 Communicating
between loosely
coupled
components
The publish-subscribe pattern is a messaging pattern where publishers send messages without having

knowledge of any receivers, known as subscribers. Similarly, subscribers listen for specific messages,

without having knowledge of any publishers.

Events in .NET implement the publish-subscribe pattern, and are the most simple and straightforward

approach for a communication layer between components if loose coupling is not required, such as a

control and the page that contains it. However, the publisher and subscriber lifetimes are coupled by

object references to each other, and the subscriber type must have a reference to the publisher type.

This can create memory management issues, especially when there are short lived objects that

subscribe to an event of a static or long lived object. If the event handler isn't removed, the subscriber

will be kept alive by the reference to it in the publisher, and this will prevent or delay the garbage

collection of the subscriber.

Introduction to MessagingCenter
The Xamarin.Forms MessagingCenter class implements the publish-subscribe pattern, allowing

message-based communication between components that are inconvenient to link by object and type

references. This mechanism allows publishers and subscribers to communicate without having a

reference to each other, helping to reduce dependencies between components, while also allowing

components to be independently developed and tested.

The MessagingCenter class provides multicast publish-subscribe functionality. This means that there

can be multiple publishers that publish a single message, and there can be multiple subscribers

listening for the same message. Figure 4-1 illustrates this relationship:

27 CHAPTER 4 | Communicating between loosey coupled components

Figure 4-1: Multicast publish-subscribe functionality

Publishers send messages using the MessagingCenter.Send method, while subscribers listen for

messages using the MessagingCenter.Subscribe method. In addition, subscribers can also

unsubscribe from message subscriptions, if required, with the MessagingCenter.Unsubscribe

method.

Internally, the MessagingCenter class uses weak references. This means that it will not keep objects

alive, and will allow them to be garbage collected. Therefore, it should only be necessary to

unsubscribe from a message when a class no longer wishes to receive it.

The eShopOnContainers mobile app uses the MessagingCenter class to communicate between

loosely coupled components. The app defines three messages:

• The AddProduct message is published by the CatalogViewModel class when an item is

added to the shopping basket. In return, the BasketViewModel class subscribes to the

message and increments the number of items in the shopping basket in response. In addition,

the BasketViewModel class also unsubscribes from this message.

• The Filter message is published by the CatalogViewModel class when the user applies a

brand or type filter to the items displayed from the catalogue. In return, the CatalogView

class subscribes to the message and updates the UI so that only items that match the filter

criteria are displayed.

• The ChangeTab message is published by the MainViewModel class when the

CheckoutViewModel navigates to the MainViewModel following the successful creation and

submission of a new order. In return, the MainView class subscribes to the message and

updates the UI so that the My profile tab is active, to show the user's orders.

Note: While the MessagingCenter class permits communication between loosely-coupled classes,
it does not offer the only architectural solution to this issue. For example, communication between
a view model and a view can also be achieved by the binding engine and through property change
notifications. In addition, communication between two view models can also be achieved by
passing data during navigation.

In the eShopOnContainers mobile app, MessagingCenter is used to update in the UI in response to

an action occurring in another class. Therefore, messages are published on the UI thread, with

subscribers receiving the message on the same thread.

Tip: Marshal to the UI thread when required

28 CHAPTER 4 | Communicating between loosey coupled components

If a message that's sent from a background thread is required to update the UI, process the
message on the UI thread in the subscriber by invoking the Device.BeginInvokeOnMainThread
method.

For more information about MessagingCenter, see MessagingCenter on the Xamarin Developer

Center.

Defining a message
MessagingCenter messages are strings that are used to identify messages. The following code

example shows the messages defined within the eShopOnContainers mobile app:

public class MessengerKeys

{

 // Add product to basket

 public const string AddProduct = "AddProduct";

 // Filter

 public const string Filter = "Filter";

 // Change selected Tab programmatically

 public const string ChangeTab = "ChangeTab";

}

In this example, messages are defined using constants. The advantage of this approach is that it

provides compile-time type safety and refactoring support.

Publishing a message
Publishers notify subscribers of a message with one the MessagingCenter.Send overloads. The

following code example demonstrates publishing the AddProduct message:

MessagingCenter.Send(this, MessengerKeys.AddProduct, catalogItem);

In this example, the Send method specifies three arguments:

• The first argument specifies the sender class. The sender class must be specified by any

subscribers who wish to receive the message.

• The second argument specifies the message.

• The third argument specifies the payload data to be sent to the subscriber. In this case the

payload data is a CatalogItem instance.

The Send method will publish the message, and its payload data, using a fire-and-forget approach.

Therefore, the message is sent even if there are no subscribers registered to receive the message. In

this situation, the sent message is ignored.

Note: The MessagingCenter.Send method can use generic parameters to control how messages
are delivered. Therefore, multiple messages that share a message identity but send different
payload data types can be received by different subscribers.

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/messaging-center/

29 CHAPTER 4 | Communicating between loosey coupled components

Subscribing to a message
Subscribers can register to receive a message using one of the MessagingCenter.Subscribe

overloads. The following code example demonstrates how the eShopOnContainers mobile app

subscribes to and processes the AddProduct message:

MessagingCenter.Subscribe<CatalogViewModel, CatalogItem>(this, MessengerKeys.AddProduct, (sender,

 arg) =>

{

 BadgeCount++;

 AddCatalogItem(arg);

});

In this example, the Subscribe method subscribes to the AddProduct message, and executes a

callback delegate in response to receiving the message. This callback delegate, specified as a lambda

expression, executes code that updates the UI.

Tip: Consider using immutable payload data

Don't attempt to modify the payload data from within a callback delegate because several threads
could be accessing the received data simultaneously. In this scenario, the payload data should be
immutable to avoid concurrency errors.

A subscriber may not need to handle every instance of a published message, and this can be

controlled by the generic type arguments that are specified on the Subscribe method. In this

example, the subscriber will only receive AddProduct messages that are sent from the

CatalogViewModel class, whose payload data is a CatalogItem instance.

Unsubscribing from a message
Subscribers can unsubscribe from messages they no longer want to receive. This is achieved with one

of the MessagingCenter.Unsubscribe overloads, as demonstrated in the following code example:

MessagingCenter.Unsubscribe<CatalogViewModel, CatalogItem>(this, MessengerKeys.AddProduct);

In this example, the Unsubscribe method syntax reflects the type arguments specified when

subscribing to receive the AddProduct message.

Summary
The Xamarin.Forms MessagingCenter class implements the publish-subscribe pattern, allowing

message-based communication between components that are inconvenient to link by object and type

references. This mechanism allows publishers and subscribers to communicate without having a

reference to each other, helping to reduce dependencies between components, while also allowing

components to be independently developed and tested.

30 CHAPTER 5 | Navigation

C H A P T E R

5

 Navigation
Xamarin.Forms includes support for page navigation, which typically results from the user's interaction

with the UI or from the app itself as a result of internal logic-driven state changes. However,

navigation can be complex to implement in apps that use the Model-View-ViewModel (MVVM)

pattern, as the following challenges need addressing:

• How to identify the view to be navigated to, using an approach that does not introduce tight

coupling and dependencies between views.

• How to coordinate the process by which the view to be navigated to is instantiated and

initialized. When using MVVM, the view and view model need to be instantiated and

associated with each other via the view's binding context. When an app is using a

dependency injection container, the instantiation of views and view models may require a

specific construction mechanism.

• Whether to perform view-first navigation, or view model-first navigation. With view-first

navigation, the page to navigate to refers to the name of the view type. During navigation,

the specified view is instantiated, along with its corresponding view model and other

dependent services. An alternative approach is to use view model-first navigation, where the

page to navigate to refers to the name of the view model type.

• How to cleanly separate the navigational behavior of the app across the views and view

models. The MVVM pattern provides a separation between the app's UI and its presentation

and business logic. However, the navigation behavior of an app will often span the UI and

presentations parts of the app. The user will often initiate navigation from a view, and the

view will be replaced as a result of the navigation. However, navigation may often also need

to be initiated or coordinated from within the view model.

• How to pass parameters during navigation, for initialization purposes. For example, if the user

navigates to a view to update order details, the order data will have to be passed to the view

so that it can display the correct data.

• How to co-ordinate navigation, to ensure that certain business rules are obeyed. For example,

users may be prompted before navigating away from a view so that they can correct any

invalid data or be prompted to submit or discard any data changes that were made within the

view.

This chapter addresses these challenges by presenting a NavigationService class that's used to

perform view model-first page navigation.

Note: The NavigationService used by the app is designed only to perform hierarchical
navigation between ContentPage instances. Using the service to navigate between other page
types may result in unexpected behavior.

31 CHAPTER 5 | Navigation

Navigating between pages
Navigation logic can reside in a view's code-behind, or in a data bound view model. While placing

navigation logic in a view may be the simplest approach, it is not easily testable through automated

tests. Placing navigation logic in view model classes means that the logic can be exercised through

automated tests. In addition, the view model can then implement logic to control navigation to ensure

that certain business rules are enforced. For example, an app may not allow the user to navigate away

from a page without first ensuring that the entered data is valid.

A NavigationService class is typically invoked from view models, in order to promote testability.

However, navigating to views from view models would require the view models to reference views,

and particularly views that the active view model isn't associated with, which is not recommended.

Therefore, the NavigationService presented here specifies the view model type as the target to

navigate to.

The eShopOnContainers mobile app uses the NavigationService class to provide view model-first

navigation. This class implements the INavigationService interface, which is shown in the following

code example:

public interface INavigationService

{

 Task InitializeAsync();

 Task NavigateToAsync<TViewModel>() where TViewModel : ViewModelBase;

 Task NavigateToAsync<TViewModel>(object parameter) where TViewModel : ViewModelBase;

 Task RemoveLastFromBackStackAsync();

 Task RemoveBackStackAsync();

}

This interface specifies that an implementing class must provide the following methods:

Method Purpose

InitializeAsync Performs navigation to one of two pages when the app is

launched.

NavigateToAsync<T> Performs hierarchical navigation to a specified page.

NavigateToAsync<T>(parameter) Performs hierarchical navigation to a specified page, passing

a parameter.

RemoveLastFromBackStackAsync Removes the previous page from the navigation stack.

RemoveBackStackAsync Removes all the previous pages from the navigation stack.

Note: An INavigationService interface would usually also specify a GoBackAsync method, which
is used to programmatically return to the previous page in the navigation stack. However, this
method is missing from the eShopOnContainers mobile app as it's not required.

Creating the NavigationService instance

The NavigationService class, which implements the INavigationService interface, is registered as

a singleton with the Autofac dependency injection container, as demonstrated in the following code

example:

builder.RegisterType<NavigationService>().As<INavigationService>().SingleInstance();

32 CHAPTER 5 | Navigation

The INavigationService interface is resolved in the ViewModelBase class constructor, as

demonstrated in the following code example:

NavigationService = ViewModelLocator.Resolve<INavigationService>();

This returns a reference to the NavigationService object that's stored in the Autofac dependency

injection container, which is created by the InitNavigation method in the App class. For more

information, see Navigating when the app is launched.

The ViewModelBase class stores the NavigationService instance in a NavigationService property,

of type INavigationService. Therefore, all view model classes, which derive from the

ViewModelBase class, can use the NavigationService property to access the methods specified by

the INavigationService interface. This avoids the overhead of injecting the NavigationService

object from the Autofac dependency injection container into each view model class.

Handling navigation requests

Xamarin.Forms provides the NavigationPage class, which implements a hierarchical navigation

experience where the user is able to navigate through pages, forwards and backwards, as desired. For

more information about hierarchical navigation, see Hierarchical Navigation on the Xamarin

Developer Center.

Rather than use the NavigationPage class directly, the eShopOnContainers app wraps the

NavigationPage class in the CustomNavigationView class, as shown in the following code example:

public partial class CustomNavigationView : NavigationPage

{

 public CustomNavigationView() : base()

 {

 InitializeComponent();

 }

 public CustomNavigationView(Page root) : base(root)

 {

 InitializeComponent();

 }

}

The purpose of this wrapping is for ease of styling the NavigationPage instance, inside the XAML file

for the class.

Navigation is performed inside view model classes by invoking one of the NavigateToAsync

methods, specifying the view model type for the page being navigated to, as demonstrated in the

following code example:

await NavigationService.NavigateToAsync<MainViewModel>();

The following code example shows the NavigateToAsync methods provided by the

NavigationService class:

public Task NavigateToAsync<TViewModel>() where TViewModel : ViewModelBase

{

 return InternalNavigateToAsync(typeof(TViewModel), null);

}

public Task NavigateToAsync<TViewModel>(object parameter) where TViewModel : ViewModelBase

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/navigation/hierarchical/

33 CHAPTER 5 | Navigation

{

 return InternalNavigateToAsync(typeof(TViewModel), parameter);

}

Each method allows any view model class that derives from the ViewModelBase class to perform

hierarchical navigation, by invoking the InternalNavigateToAsync method. In addition, the second

NavigateToAsync method enables navigation data to be specified as an argument that's passed to

the view model being navigated to, where it's typically used to perform initialization. For more

information, see Passing parameters during navigation.

The InternalNavigateToAsync method executes the navigation request, and is shown in the

following code example:

private async Task InternalNavigateToAsync(Type viewModelType, object parameter)

{

 Page page = CreatePage(viewModelType, parameter);

 if (page is LoginView)

 {

 Application.Current.MainPage = new CustomNavigationView(page);

 }

 else

 {

 var navigationPage = Application.Current.MainPage as CustomNavigationView;

 if (navigationPage != null)

 {

 await navigationPage.PushAsync(page);

 }

 else

 {

 Application.Current.MainPage = new CustomNavigationView(page);

 }

 }

 await (page.BindingContext as ViewModelBase).InitializeAsync(parameter);

}

private Type GetPageTypeForViewModel(Type viewModelType)

{

 var viewName = viewModelType.FullName.Replace("Model", string.Empty);

 var viewModelAssemblyName = viewModelType.GetTypeInfo().Assembly.FullName;

 var viewAssemblyName = string.Format(CultureInfo.InvariantCulture, "{0}, {1}", viewName, view

ModelAssemblyName);

 var viewType = Type.GetType(viewAssemblyName);

 return viewType;

}

private Page CreatePage(Type viewModelType, object parameter)

{

 Type pageType = GetPageTypeForViewModel(viewModelType);

 if (pageType == null)

 {

 throw new Exception($"Cannot locate page type for {viewModelType}");

 }

 Page page = Activator.CreateInstance(pageType) as Page;

 return page;

}

The InternalNavigateToAsync method performs navigation to a view model by first calling the

CreatePage method. This method locates the view that corresponds to the specified view model type,

34 CHAPTER 5 | Navigation

and creates and returns an instance of this view type. Locating the view that corresponds to the view

model type uses a convention-based approach, which assumes that:

• Views are in the same assembly as view model types.

• Views are in a .Views child namespace.

• View models are in a .ViewModels child namespace.

• View names correspond to view model names, with "Model" removed.

When a view is instantiated, it's associated with its corresponding view model. For more information

about how this occurs, see Automatically creating a view model with a view model locator.

If the view being created is a LoginView, it's wrapped inside a new instance of the

CustomNavigationView class and assigned to the Application.Current.MainPage property.

Otherwise, the CustomNavigationView instance is retrieved, and provided that it isn't null, the

PushAsync method is invoked to push the view being created onto the navigation stack. However, If

the retrieved CustomNavigationView instance is null, the view being created is wrapped inside a

new instance of the CustomNavigationView class and assigned to the

Application.Current.MainPage property. This mechanism ensures that during navigation, pages

are added correctly to the navigation stack both when it's empty, and when it contains data.

Tip: Consider caching pages

Page caching results in memory consumption for views that are not currently displayed. However,
without page caching it does mean that XAML parsing and construction of the page and its view
model will occur every time a new page is navigated to, which can have a performance impact for a
complex page. For a well-designed page that does not use an excessive number of controls, the
performance should be sufficient. However, page caching may help if slow page loading times are
encountered.

After the view is created and navigated to, the InitializeAsync method of the view's associated

view model is executed. For more information, see Passing parameters during navigation.

Navigating when the app is launched

When the app is launched, the InitNavigation method in the App class is invoked. The following

code example shows this method:

private Task InitNavigation()

{

 var navigationService = ViewModelLocator.Resolve<INavigationService>();

 return navigationService.InitializeAsync();

}

The method creates a new NavigationService object in the Autofac dependency injection container,

and returns a reference to it, before invoking its InitializeAsync method.

Note: When the INavigationService interface is resolved by the ViewModelBase class, the
container returns a reference to the NavigationService object that was created when the
InitNavigation method is invoked.

The following code example shows the NavigationService InitializeAsync method:

public Task InitializeAsync()

{

35 CHAPTER 5 | Navigation

 if(string.IsNullOrEmpty(Settings.AuthAccessToken))

 return NavigateToAsync<LoginViewModel>();

 else

 return NavigateToAsync<MainViewModel>();

}

The MainView is navigated to if the app has a cached access token, which is used for authentication.

Otherwise, the LoginView is navigated to.

For more information about the Autofac dependency injection container, see Introduction to

dependency injection.

Passing parameters during navigation

One of the NavigateToAsync methods, specified by the INavigationService interface, enables

navigation data to be specified as an argument that's passed to the view model being navigated to,

where it's typically used to perform initialization.

For example, the ProfileViewModel class contains an OrderDetailCommand that's executed when

the user selects an order on the ProfileView page. In turn, this executes the OrderDetailAsync

method, which is shown in the following code example:

private async Task OrderDetailAsync(Order order)

{

 await NavigationService.NavigateToAsync<OrderDetailViewModel>(order);

}

This method invokes navigation to the OrderDetailViewModel, passing an Order instance that

represents the order the user selected on the ProfileView page. When the NavigationService

class creates the OrderDetailView, the OrderDetailViewModel class is instantiated and assigned to

the view's BindingContext. After navigating to the OrderDetailView, the

InternalNavigateToAsync method executes the InitializeAsync method of the view's associated

view model.

The InitializeAsync method is defined in the ViewModelBase class as an overridable method. This

method specifies an object argument that represents the data to be passed to a view model during a

navigation operation. Therefore, view model classes that want to receive data from a navigation

operation provide their own implementation of the InitializeAsync method, to perform the

required initialization. The following code example shows the InitializeAsync method from the

OrderDetailViewModel class:

public override async Task InitializeAsync(object navigationData)

{

 if (navigationData is Order)

 {

 ...

 Order = await _ordersService.GetOrderAsync(Convert.ToInt32(order.OrderNumber), authToken)

;

 ...

 }

}

This method retrieves the Order instance that was passed into the view model during the navigation

operation, and uses it to retrieve the full order details from the OrderService instance.

36 CHAPTER 5 | Navigation

Invoking navigation using behaviors

Navigation is usually triggered from a view by a user interaction. For example, the LoginView

performs navigation following successful authentication. The following code example shows how the

navigation is invoked by a behavior:

<WebView ...>

 <WebView.Behaviors>

 <behaviors:EventToCommandBehavior

 EventName="Navigating"

 EventArgsConverter="{StaticResource WebNavigatingEventArgsConverter}"

 Command="{Binding NavigateCommand}" />

 </WebView.Behaviors>

</WebView>

At runtime, the EventToCommandBehavior will respond to interaction with the WebView. When the

WebView navigates to a web page, the Navigating event will fire, which will execute the

NavigateCommand in the LoginViewModel. By default, the event arguments for the event are passed

to the command. This data is converted as it's passed between source and target by the converter

specified in the EventArgsConverter property, which returns the Url from the

WebNavigatingEventArgs. Therefore, when the NavigationCommand is executed, the Url of the web

page is passed as a parameter to the registered Action.

In turn, the NavigationCommand executes the NavigateAsync method, which is shown in the

following code example:

private async Task NavigateAsync(string url)

{

 ...

 await NavigationService.NavigateToAsync<MainViewModel>();

 await NavigationService.RemoveLastFromBackStackAsync();

 ...

}

This method invokes navigation to the MainViewModel, and following navigation, removes the

LoginView page from the navigation stack.

Confirming or cancelling navigation

An app may need to interact with the user during a navigation operation, so that the user can confirm

or cancel navigation. This may be necessary, for example, when the user attempts to navigate before

having fully completed a data entry page. In this situation, an app should provide a notification that

allows the user to navigate away from the page, or cancel the navigation operation before it occurs.

This can be achieved in a view model class by using the response from a notification to control

whether navigation is invoked or not.

Summary
Xamarin.Forms includes support for page navigation, which typically results from the user's interaction

with the UI or from the app itself as a result of internal logic-driven state changes. However,

navigation can be complex to implement in apps that use the MVVM pattern.

This chapter presented a NavigationService class, which is used to perform view model-first

navigation from view models. Placing navigation logic in view model classes means that the logic can

be exercised through automated tests. In addition, the view model can then implement logic to

control navigation to ensure that certain business rules are enforced.

37 CHAPTER 6 | Validation

C H A P T E R

6

 Validation
Any app that accepts input from users should ensure that the input is valid. An app could, for

example, check that the input contains only characters in a particular range, is of a certain length, or

matches a particular format. Without validation, a user can supply data that causes the app to fail.

Validation enforces business rules, and prevents an attacker from injecting malicious data.

In the context of the Model-ViewModel-Model (MVVM) pattern, a view model or model will often be

required to perform data validation and signal any validation errors to the view so that the user can

correct them. The eShopOnContainers mobile app performs synchronous client-side validation of view

model properties and notifies the user of any validation errors by highlighting the control that

contains the invalid data, and by displaying error messages that inform the user why the data is

invalid. Figure 6-1 shows the classes involved in performing validation in the eShopOnContainers

mobile app.

Figure 6-1: Validation classes in the eShopOnContainers mobile app

View model properties that require validation are of type ValidatableObject<T>, and each

ValidatableObject<T> instance has validation rules added to its Validations property. Validation

is invoked from the view model by calling the Validate method of the ValidatableObject<T>

instance, which retrieves the validation rules and executes them against the ValidatableObject<T>

Value property. Any validation errors are placed into the Errors property of the

ValidatableObject<T> instance, and the IsValid property of the ValidatableObject<T> instance

is updated to indicate whether validation succeeded or failed.

38 CHAPTER 6 | Validation

Property change notification is provided by the ExtendedBindableObject class, and so an Entry

control can bind to the IsValid property of ValidatableObject<T> instance in the view model class

to be notified of whether the entered data is valid or not.

Specifying validation rules
Validation rules are specified by creating a class that derives from the IValidationRule<T> interface,

which is shown in the following code example:

public interface IValidationRule<T>

{

 string ValidationMessage { get; set; }

 bool Check(T value);

}

This interface specifies that a validation rule class must provide a boolean Check method, that is used

to perform the required validation, and a ValidationMessage property, whose value is the validation

error message that will be displayed if validation fails.

The following code example shows the IsNotNullOrEmptyRule<T> validation rule, which is used to

perform validation of the username and password entered by the user on the LoginView, when using

mock services in the eShopOnContainers mobile app:

public class IsNotNullOrEmptyRule<T> : IValidationRule<T>

{

 public string ValidationMessage { get; set; }

 public bool Check(T value)

 {

 if (value == null)

 {

 return false;

 }

 var str = value as string;

 return !string.IsNullOrWhiteSpace(str);

 }

}

The Check method returns a boolean indicating whether the value argument is null, empty, or

consists only of whitespace characters.

Although not used by the eShopOnContainers mobile app, the following code example shows a

validation rule for validating email addresses:

public class EmailRule<T> : IValidationRule<T>

{

 public string ValidationMessage { get; set; }

 public bool Check(T value)

 {

 if (value == null)

 {

 return false;

 }

 var str = value as string;

 Regex regex = new Regex(@"^([\w\.\-]+)@([\w\-]+)((\.(\w){2,3})+)$");

39 CHAPTER 6 | Validation

 Match match = regex.Match(str);

 return match.Success;

 }

}

The Check method returns a boolean indicating whether the value argument is a valid email address

or not. This is achieved by searching the value argument for the first occurrence of the regular

expression pattern specified in the Regex constructor. Whether the regular expression pattern has

been found in the input string can be determined by checking the value of the Match object's

Success property.

Note: Property validation can sometimes involve dependent properties. An example of dependent
properties occurs when the set of valid values for property A depends on the particular value that
has been set in property B. To check that the value of property A is one of the allowed values would
involve retrieving the value of property B. In addition, when the value of property B changes,
property A would need to be revalidated.

Adding validation rules to a property
In the eShopOnContainers mobile app, view model properties that require validation are declared to

be of type ValidatableObject<T>, where T is the type of the data to be validated. The following

code example shows an example of two such properties:

public ValidatableObject<string> UserName

{

 get

 {

 return _userName;

 }

 set

 {

 _userName = value;

 RaisePropertyChanged(() => UserName);

 }

}

public ValidatableObject<string> Password

{

 get

 {

 return _password;

 }

 set

 {

 _password = value;

 RaisePropertyChanged(() => Password);

 }

}

For validation to occur, validation rules must be added to the Validations collection of each

ValidatableObject<T> instance, as demonstrated in the following code example:

private void AddValidations()

{

 _userName.Validations.Add(new IsNotNullOrEmptyRule<string>

 {

40 CHAPTER 6 | Validation

 ValidationMessage = "A username is required."

 });

 _password.Validations.Add(new IsNotNullOrEmptyRule<string>

 {

 ValidationMessage = "A password is required."

 });

}

This method adds the IsNotNullOrEmptyRule<T> validation rule to the Validations collection of

each ValidatableObject<T> instance, specifying values for the validation rule's ValidationMessage

property, which specifies the validation error message that will be displayed if validation fails.

Triggering validation
The validation approach used in the eShopOnContainers mobile app can manually trigger validation

of a property, and automatically trigger validation when a property changes.

Triggering validation manually

Validation can be triggered manually for a view model property. For example, this occurs in the

eShopOnContainers mobile app when the user taps the Login button on the LoginView, when using

mock services. The command delegate calls the MockSignInAsync method in the LoginViewModel,

which invokes validation by executing the Validate method, which is shown in the following code

example:

private bool Validate()

{

 bool isValidUser = ValidateUserName();

 bool isValidPassword = ValidatePassword();

 return isValidUser && isValidPassword;

}

private bool ValidateUserName()

{

 return _userName.Validate();

}

private bool ValidatePassword()

{

 return _password.Validate();

}

The Validate method performs validation of the username and password entered by the user on the

LoginView, by invoking the Validate method on each ValidatableObject<T> instance. The

following code example shows the Validate method from the ValidatableObject<T> class:

public bool Validate()

{

 Errors.Clear();

 IEnumerable<string> errors = _validations

 .Where(v => !v.Check(Value))

 .Select(v => v.ValidationMessage);

 Errors = errors.ToList();

 IsValid = !Errors.Any();

41 CHAPTER 6 | Validation

 return this.IsValid;

}

This method clears the Errors collection, and then retrieves any validation rules that were added to

the object's Validations collection. The Check method for each retrieved validation rule is executed,

and the ValidationMessage property value for any validation rule that fails to validate the data is

added to the Errors collection of the ValidatableObject<T> instance. Finally, the IsValid property

is set, and its value is returned to the calling method, indicating whether validation succeeded or

failed.

Triggering validation when properties change

Validation is also automatically triggered whenever a bound property changes. For example, when a

two-way binding in the LoginView sets the UserName or Password property, validation is triggered.

The following code example demonstrates how this occurs:

<Entry Text="{Binding UserName.Value, Mode=TwoWay}">

 <Entry.Behaviors>

 <behaviors:EventToCommandBehavior

 EventName="TextChanged"

 Command="{Binding ValidateUserNameCommand}" />

 </Entry.Behaviors>

 ...

</Entry>

The Entry control binds to the UserName.Value property of the ValidatableObject<T> instance,

and the control's Behaviors collection has an EventToCommandBehavior instance added to it. This

behavior executes the ValidateUserNameCommand in response to the TextChanged event firing on

the Entry, which is raised when the text in the Entry changes. In turn, the

ValidateUserNameCommand delegate executes the ValidateUserName method, which executes the

Validate method on the ValidatableObject<T> instance. Therefore, every time the user enters a

character in the Entry control for the username, validation of the entered data is performed.

For more information about behaviors, see Implementing behaviors.

Displaying validation errors
The eShopOnContainers mobile app notifies the user of any validation errors by highlighting the

control that contains the invalid data with a red line, and by displaying an error message that informs

the user why the data is invalid below the control containing the invalid data. When the invalid data is

corrected, the line changes to black and the error message is removed. Figure 6-2 shows the

LoginView in the eShopOnContainers mobile app when validation errors are present.

42 CHAPTER 6 | Validation

Figure 6-2: Displaying validation errors during login

Highlighting a control that contains invalid data

The LineColorBehavior attached behavior is used to highlight Entry controls where validation

errors have occurred. The following code example shows how the LineColorBehavior attached

behavior is attached to an Entry control:

<Entry Text="{Binding UserName.Value, Mode=TwoWay}">

 <Entry.Style>

 <OnPlatform x:TypeArguments="Style"

 iOS="{StaticResource EntryStyle}"

 Android="{StaticResource EntryStyle}"

 WinPhone="{StaticResource UwpEntryStyle}"/>

 </Entry.Style>

 ...

</Entry>

The Entry control consumes an explicit style, which is shown in the following code example:

<Style x:Key="EntryStyle"

 TargetType="{x:Type Entry}">

 ...

 <Setter Property="behaviors:LineColorBehavior.ApplyLineColor"

 Value="True" />

 <Setter Property="behaviors:LineColorBehavior.LineColor"

 Value="{StaticResource BlackColor}" />

 ...

</Style>

This style sets the ApplyLineColor and LineColor attached properties of the LineColorBehavior

attached behavior on the Entry control. For more information about styles, see Styles on the Xamarin

Developer Center.

When the value of the ApplyLineColor attached property is set, or changes, the LineColorBehavior

attached behavior executes the OnApplyLineColorChanged method, which is shown in the following

code example:

public static class LineColorBehavior

{

 ...

 private static void OnApplyLineColorChanged(

https://developer.xamarin.com/guides/xamarin-forms/user-interface/styles/

43 CHAPTER 6 | Validation

 BindableObject bindable, object oldValue, object newValue)

 {

 var view = bindable as View;

 if (view == null)

 {

 return;

 }

 bool hasLine = (bool)newValue;

 if (hasLine)

 {

 view.Effects.Add(new EntryLineColorEffect());

 }

 else

 {

 var entryLineColorEffectToRemove =

 view.Effects.FirstOrDefault(e => e is EntryLineColorEffect);

 if (entryLineColorEffectToRemove != null)

 {

 view.Effects.Remove(entryLineColorEffectToRemove);

 }

 }

 }

}

The parameters for this method provide the instance of the control that the behavior is attached to,

and the old and new values of the ApplyLineColor attached property. The EntryLineColorEffect

class is added to the control's Effects collection if the ApplyLineColor attached property is true,

otherwise it's removed from the control's Effects collection. For more information about behaviors,

see Implementing behaviors.

The EntryLineColorEffect subclasses the RoutingEffect class, and is shown in the following code

example:

public class EntryLineColorEffect : RoutingEffect

{

 public EntryLineColorEffect() : base("eShopOnContainers.EntryLineColorEffect")

 {

 }

}

The RoutingEffect class represents a platform-independent effect that wraps an inner effect that's

platform-specific. This simplifies the effect removal process, since there is no compile-time access to

the type information for a platform-specific effect. The EntryLineColorEffect calls the base class

constructor, passing in a parameter consisting of a concatenation of the resolution group name, and

the unique ID that's specified on each platform-specific effect class.

The following code example shows the eShopOnContainers.EntryLineColorEffect implementation for

iOS:

[assembly: ResolutionGroupName("eShopOnContainers")]

[assembly: ExportEffect(typeof(EntryLineColorEffect), "EntryLineColorEffect")]

namespace eShopOnContainers.iOS.Effects

{

 public class EntryLineColorEffect : PlatformEffect

 {

 UITextField control;

 protected override void OnAttached()

44 CHAPTER 6 | Validation

 {

 try

 {

 control = Control as UITextField;

 UpdateLineColor();

 }

 catch (Exception ex)

 {

 Console.WriteLine("Can't set property on attached control. Error: ", ex.Message);

 }

 }

 protected override void OnDetached()

 {

 control = null;

 }

 protected override void OnElementPropertyChanged(PropertyChangedEventArgs args)

 {

 base.OnElementPropertyChanged(args);

 if (args.PropertyName == LineColorBehavior.LineColorProperty.PropertyName ||

 args.PropertyName == "Height")

 {

 Initialize();

 UpdateLineColor();

 }

 }

 private void Initialize()

 {

 var entry = Element as Entry;

 if (entry != null)

 {

 Control.Bounds = new CGRect(0, 0, entry.Width, entry.Height);

 }

 }

 private void UpdateLineColor()

 {

 BorderLineLayer lineLayer = control.Layer.Sublayers.OfType<BorderLineLayer>()

 .FirstOrDefault();

 if (lineLayer == null)

 {

 lineLayer = new BorderLineLayer();

 lineLayer.MasksToBounds = true;

 lineLayer.BorderWidth = 1.0f;

 control.Layer.AddSublayer(lineLayer);

 control.BorderStyle = UITextBorderStyle.None;

 }

 lineLayer.Frame = new CGRect(0f, Control.Frame.Height-1f, Control.Bounds.Width, 1f);

 lineLayer.BorderColor = LineColorBehavior.GetLineColor(Element).ToCGColor();

 control.TintColor = control.TextColor;

 }

 private class BorderLineLayer : CALayer

 {

 }

 }

}

45 CHAPTER 6 | Validation

The OnAttached method retrieves the native control for the Xamarin.Forms Entry control, and

updates the line color by calling the UpdateLineColor method. The OnElementPropertyChanged

override responds to bindable property changes on the Entry control by updating the line color if the

attached LineColor property changes, or the Height property of the Entry changes. For more

information about effects, see Effects on the Xamarin Developer Center.

When valid data is entered in the Entry control, it will apply a black line to the bottom of the control,

to indicate that there is no validation error. Figure 6-3 shows an example of this.

Figure 6-3: Black line indicating no validation error

The Entry control also has a DataTrigger added to its Triggers collection. The following code

example shows the DataTrigger:

<Entry Text="{Binding UserName.Value, Mode=TwoWay}">

 ...

 <Entry.Triggers>

 <DataTrigger

 TargetType="Entry"

 Binding="{Binding UserName.IsValid}"

 Value="False">

 <Setter Property="behaviors:LineColorBehavior.LineColor"

 Value="{StaticResource ErrorColor}" />

 </DataTrigger>

 </Entry.Triggers>

</Entry>

This DataTrigger monitors the UserName.IsValid property, and if it's value becomes false, it

executes the Setter, which changes the LineColor attached property of the LineColorBehavior

attached behavoir to red. Figure 6-4 shows an example of this.

Figure 6-4: Red line indicating validation error

The line in the Entry control will remain red while the entered data is invalid, otherwise it will change

to black to indicate that the entered data is valid.

For more information about Triggers, see Triggers on the Xamarin Developer Center.

Displaying error messages

The UI displays validation error messages in Label controls below each control whose data failed

validation. The following code example shows the Label that displays a validation error message if

the user has not entered a valid username:

<Label Text="{Binding UserName.Errors, Converter={StaticResource FirstValidationErrorConverter}"

 Style="{StaticResource ValidationErrorLabelStyle}" />

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/effects/
https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/triggers/

46 CHAPTER 6 | Validation

Each Label binds to the Errors property of the view model object that's being validated. The Errors

property is provided by the ValidatableObject<T> class, and is of type List<string>. Because the

Errors property can contain multiple validation errors, the FirstValidationErrorConverter

instance is used to retrieve the first error from the collection, for display.

Summary
The eShopOnContainers mobile app performs synchronous client-side validation of view model

properties and notifies the user of any validation errors by highlighting the control that contains the

invalid data, and by displaying error messages that inform the user why the data is invalid.

View model properties that require validation are of type ValidatableObject<T>, and each

ValidatableObject<T> instance has validation rules added to its Validations property. Validation

is invoked from the view model by calling the Validate method of the ValidatableObject<T>

instance, which retrieves the validation rules and executes them against the ValidatableObject<T>

Value property. Any validation errors are placed into the Errors property of the

ValidatableObject<T> instance, and the IsValid property of the ValidatableObject<T> instance

is updated to indicate whether validation succeeded or failed.

47 CHAPTER 7 | Configuration management

C H A P T E R

7

 Configuration
management
Settings allow the separation of data that configures the behavior of an app from the code, allowing

the behavior to be changed without rebuilding the app. There are two types of settings: app settings,

and user settings.

App settings are data that an app creates and manages. It can include data such as fixed web service

endpoints, API keys, and runtime state. App settings are tied to the existence of the app and are only

meaningful to that app.

User settings are the customizable settings of an app that affect the behavior of the app and don't

require frequent re-adjustment. For example, an app might let the user specify where to retrieve data

from, and how to display it on the screen.

Xamarin.Forms includes a persistent dictionary that can be used to store settings data. This dictionary

can be accessed using the Application.Current.Properties property, and any data that's placed

into it is saved when the app goes into a sleep state, and is restored when the app resumes or starts

up again. In addition, the Application class also has a SavePropertiesAsync method that allows an

app to have its settings saved when required. For more information about this dictionary, see

Properties Dictionary on the Xamarin Developer Center.

A downside to storing data using the Xamarin.Forms persistent dictionary is that it's not easily data

bound to. Therefore, the eShopOnContainers mobile app uses the Xam.Plugins.Settings library,

available from NuGet. This library provides a consistent, type-safe, cross-platform approach for

persisting and retrieving app and user settings, while using the native settings management provided

by each platform. In addition, it's straightforward to use data binding to access settings data exposed

by the library.

Note: While the Xam.Plugin.Settings library can store both app and user settings, it makes no
distinction between the two.

Creating a settings class
When using the Xam.Plugins.Settings library, a single static class should be created that will contain

the app and user settings required by the app. The following code example shows the Settings class

in the eShopOnContainers mobile app:

public static class Settings

{

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/application-class/#Properties_Dictionary
https://www.nuget.org/packages/Xam.Plugins.Settings/

48 CHAPTER 7 | Configuration management

 private static ISettings AppSettings

 {

 get

 {

 return CrossSettings.Current;

 }

 }

 ...

}

Settings can be read and written through the ISettings API, which is provided by the

Xam.Plugins.Settings library. This library provides a singleton that can be used to access the API,

CrossSettings.Current, and an app's settings class should expose this singleton via an ISettings

property.

Note: Using directives for the Plugin.Settings and Plugin.Settings.Abstractions
namespaces should be added to a class that requires access to the Xam.Plugins.Settings library
types.

Adding a setting
Each setting consists of a key, a default value, and a property. The following code example shows all

three items for a user setting that represents the base URL for the online services that the

eShopOnContainers mobile app connects to:

public static class Settings

{

 ...

 private const string IdUrlBase = "url_base";

 private static readonly string UrlBaseDefault = GlobalSetting.Instance.BaseEndpoint;

 ...

 public static string UrlBase

 {

 get

 {

 return AppSettings.GetValueOrDefault<string>(IdUrlBase, UrlBaseDefault);

 }

 set

 {

 AppSettings.AddOrUpdateValue<string>(IdUrlBase, value);

 }

 }

}

The key is always a const string that defines the key name, with the default value for the setting

being a static readonly value of the required type. Providing a default value ensures that a valid

value is available if an unset setting is retrieved.

The UrlBase static property uses two methods from the ISettings API to read or write the setting

value. The ISettings.GetValueOrDefault method is used to retrieve a setting's value from

platform-specific storage. If no value is defined for the setting, its default value is retrieved instead.

Similarly, the ISettings.AddOrUpdateValue method is used to persist a setting's value to platform-

specific storage.

49 CHAPTER 7 | Configuration management

Rather that define a default value inside the Settings class, the UrlBaseDefault string obtains its

value from the GlobalSetting class. The following code example shows the BaseEndpoint property

and UpdateEndpoint method in this class:

public class GlobalSetting

{

 ...

 public string BaseEndpoint

 {

 get { return _baseEndpoint; }

 set

 {

 _baseEndpoint = value;

 UpdateEndpoint(_baseEndpoint);

 }

 }

 ...

 private void UpdateEndpoint(string baseEndpoint)

 {

 RegisterWebsite = string.Format("{0}:5105/Account/Register", baseEndpoint);

 CatalogEndpoint = string.Format("{0}:5101", baseEndpoint);

 OrdersEndpoint = string.Format("{0}:5102", baseEndpoint);

 BasketEndpoint = string.Format("{0}:5103", baseEndpoint);

 IdentityEndpoint = string.Format("{0}:5105/connect/authorize", baseEndpoint);

 UserInfoEndpoint = string.Format("{0}:5105/connect/userinfo", baseEndpoint);

 LogoutEndpoint = string.Format("{0}:5105/connect/endsession", baseEndpoint);

 IdentityCallback = "http://eshopxamarin/callback.html";

 LogoutCallback = string.Format("{0}:5105/Account/Redirecting", baseEndpoint);

 }

}

Each time the BaseEndpoint property is set, the UpdateEndpoint method is called. This method

updates a series of properties, all of which are based on the UrlBase user setting that's provided by

the Settings class, that represent different endpoints that the eShopOnContainers mobile app

connects to.

Data binding to user settings
In the eShopOnContainers mobile app, the SettingsView exposes two user settings. These settings

allow configuration of whether the app should retrieve data from microservices that are deployed as

Docker containers, or whether the app should retrieve data from mock services that don't require an

internet connection. When choosing to retrieve data from containerized microservices, a base

endpoint URL for the microservices must be specified. Figure 7-1 shows the SettingsView when the

user has chosen to retrieve data from containerized microservices.

50 CHAPTER 7 | Configuration management

Figure 7-1: User settings exposed by the eShopOnContainers mobile app

Data binding can be used to retrieve and set settings exposed by the Settings class. This is achieved

by controls on the view binding to view model properties that in turn access properties in the

Settings class, and raising a property changed notification if the settings value has changed. For

information about how the eShopOnContainers mobile app constructs view models and associates

them to views, see Automatically creating a view model with a view model locator.

The following code example shows the Entry control from the SettingsView that allows the user to

enter a base endpoint URL for the containerized microservices:

<Entry Text="{Binding Endpoint, Mode=TwoWay}" />

This Entry control binds to the Endpoint property of the SettingsViewModel class, using a two-way

binding. The following code example shows the Endpoint property:

public string Endpoint

{

 get { return _endpoint; }

 set

 {

 _endpoint = value;

 if(!string.IsNullOrEmpty(_endpoint))

 {

 UpdateEndpoint(_endpoint);

 }

 RaisePropertyChanged(() => Endpoint);

 }

}

When the Endpoint property is set the UpdateEndpoint method is called, provided that the supplied

value is valid, and property changed notification is raised. The following code example shows the

UpdateEndpoint method:

private void UpdateEndpoint(string endpoint)

{

 Settings.UrlBase = endpoint;

}

51 CHAPTER 7 | Configuration management

This method updates the UrlBase property in the Settings class with the base endpoint URL value

entered by the user, which causes it to be persisted to platform-specific storage.

When the SettingsView is navigated to, the InitializeAsync method in the SettingsViewModel

class is executed. The following code example shows this method:

public override Task InitializeAsync(object navigationData)

{

 ...

 Endpoint = Settings.UrlBase;

 ...

}

The method sets the Endpoint property to the value of the UrlBase property in the Settings class.

Accessing the UrlBase property causes the Xam.Plugins.Settings library to retrieve the settings value

from platform-specific storage. For information about how the InitializeAsync method is invoked,

see Passing parameters during navigation.

This mechanism ensures that whenever a user navigates to the SettingsView, user settings are

retrieved from platform-specific storage and presented through data binding. Then, if the user

changes the settings values, data binding ensures that they are immediately persisted back to

platform-specific storage.

Summary
Settings allow the separation of data that configures the behavior of an app from the code, allowing

the behavior to be changed without rebuilding the app. App settings are data that an app creates and

manages, and user settings are the customizable settings of an app that affect the behavior of the app

and don't require frequent re-adjustment.

The Xam.Plugins.Settings library provides a consistent, type-safe, cross-platform approach for

persisting and retrieving app and user settings, and data binding can be used to access settings

created with the library.

52 CHAPTER 8 | Containerized microservices

C H A P T E R

8

 Containerized
microservices
Developing client-server applications has resulted in a focus on building tiered applications that use

specific technologies in each tier. Such applications are often referred to as monolithic applications,

and are packaged onto hardware pre-scaled for peak loads. The main drawbacks of this development

approach are the tight coupling between components within each tier, that individual components

can't be easily scaled, and the cost of testing. A simple update can have unforeseen effects on the rest

of the tier, and so a change to an application component requires its entire tier to be retested and

redeployed.

Particularly concerning in the age of the cloud, is that individual components can't be easily scaled. A

monolithic application contains domain-specific functionality, and is typically divided by functional

layers such as front end, business logic, and data storage. A monolithic application is scaled by

cloning the entire application onto multiple machines, as illustrated in Figure 8-1.

Figure 8-1: Monolithic application scaling approach

53 CHAPTER 8 | Containerized microservices

Microservices
Microservices offer a different approach to application development and deployment, that's suited to

the agility, scale, and reliability requirements of modern cloud applications. A microservices

application is decomposed into independent components that work together to deliver the

application's overall functionality. The term microservice emphasizes that applications should be

composed of services small enough to reflect independent concerns, so that each microservice

implements a single function. In addition, each microservice has well-defined contracts so that other

microservices can communicate and share data with it. Typical examples of microservices include

shopping carts, inventory processing, purchase subsystems, and payment processing.

Microservices can scale-out independently, as compared to giant monolithic applications that scale

together. This means that a specific functional area, that requires more processing power or network

bandwidth to support demand, can be scaled rather than unnecessarily scaling-out other areas of the

application. Figure 8-2 illustrates this approach, where microservices are deployed and scaled

independently, creating instances of services across machines.

Figure 8-2: Microservices application scaling approach

Microservice scale-out can be nearly instantaneous, allowing an application to adapt to changing

loads. For example, a single microservice in the web-facing functionality of an application might be

the only microservice in the application that needs to scale out to handle additional incoming traffic.

The classic model for application scalability is to have a load-balanced, stateless tier with a shared

external datastore to store persistent data. Stateful microservices manage their own persistent data,

usually storing it locally on the servers on which they are placed, to avoid the overhead of network

access and complexity of cross-service operations. This enables the fastest possible processing of data

and can eliminate the need for caching systems. In addition, scalable stateful microservices usually

partition data among their instances, in order to manage data size and transfer throughput beyond

which a single server can support.

Microservices also support independent updates. This loose coupling between microservices provides

a rapid and reliable application evolution. Their independent, distributed nature supports rolling

updates, where only a subset of instances of a single microservice will update at any given time.

Therefore, if a problem is detected, a buggy update can be rolled back, before all instances update

with the faulty code or configuration. Similarly, microservices typically use schema versioning, so that

54 CHAPTER 8 | Containerized microservices

clients see a consistent version when updates are being applied, regardless of which microservice

instance is being communicated with.

Therefore, microservice applications have many benefits over monolithic applications:

• Each microservice is relatively small, easy to manage and evolve.

• Each microservice can be developed and deployed independently of other services.

• Each microservice can be scaled-out independently. For example, a catalog service or

shopping basket service may need to be scaled-out more than an ordering service. Therefore,

the resulting infrastructure will be more efficient in regards to the resources it consumes when

scaling out.

• Each microservice isolates any issues. For example, if there is an issue in a service it only

impacts that service. The other services can continue to handle requests.

• Each microservice can use the latest technologies. Because microservices are autonomous and

run side-by-side, the latest technologies and frameworks can be used, rather than being

forced to use an older framework that may be used by a monolithic application.

However, a microservice based solution also has potential drawbacks:

• Choosing how to partition an application into microservices can be challenging, as each

microservice has to be completely autonomous, end-to-end, including responsibility for its

data sources.

• Developers must implement inter-service communication, which adds complexity and latency

to the application.

• Atomic transactions between multiple microservices usually aren't possible. Therefore,

business requirements must embrace eventual consistency between microservices.

• In production, there is an operational complexity in deploying and managing a system

compromised of many independent services.

• Direct client-to-microservice communication can make it difficult to refactor the contracts of

microservices. For example, over time how the system is partitioned into services may need to

change. A single service may split into two or more services, and two services may merge.

When clients communicate directly with microservices, this refactoring work can break

compatibility with client apps.

Containerization
Containerization is an approach to software development in which an application and its versioned set

of dependencies, plus its environment configuration abstracted as deployment manifest files, are

packaged together as a container image, tested as a unit, and deployed to a host operating system.

A container is an isolated, resource controlled, and portable operating environment, where an

application can run without touching the resources of other containers, or the host. Therefore, a

container looks and acts like a newly installed physical computer or a virtual machine.

There are many similarities between containers and virtual machines, as illustrated in Figure 8-3.

55 CHAPTER 8 | Containerized microservices

Figure 8-3: Comparison of virtual machines and containers

A container runs an operating system, has a file system, and can be accessed over a network as if it

was a physical or virtual machine. However, the technology and concepts used by containers are very

different from virtual machines. Virtual machines include the applications, the required dependencies,

and a full guest operating system. Containers include the application and its dependencies, but share

the operating system with other containers, running as isolated processes on the host operating

system (aside from Hyper-V containers which run inside of a special virtual machine per container).

Therefore, containers require fewer resources than full virtualization.

The advantage of a container-oriented development and deployment approach is that it eliminates

most of the issues that arise from inconsistent environment setups and the problems that come with

them. In addition, containers permit fast application scale-up functionality by instancing new

containers as required.

The key concepts when creating and working with containers are:

• Container Host: The physical or virtual machine configured to host containers. The container

host will run one or more containers.

• Container Image: An image consists of a union of layered filesystems stacked on top of each

other, and is the basis of a container. An image does not have state and it never changes as

it's deployed to different environments.

• Container: A container is a runtime instance of an image.

• Container OS Image: Containers are deployed from images. The container operating system

image is the first layer in potentially many image layers that make up a container. A container

operating system is immutable, and can't be modified.

• Container Repository: Each time a container image is created, the image and its dependencies

are stored in a local repository. These images can be reused many times on the container

host. The container images can also be stored in a public or private registry, such as Docker

Hub, so that they can be used across different container hosts.

https://hub.docker.com/
https://hub.docker.com/

56 CHAPTER 8 | Containerized microservices

Enterprises are increasingly adopting containers when implementing microservice based applications,

and Docker has become the standard container implementation that has been adopted by most

software platforms and cloud vendors.

The eShopOnContainers reference application uses Docker to host four containerized back-end

microservices, as illustrated in Figure 8-4.

Figure 8-4: eShopOnContainers reference application back-end microservices

The architecture of the back-end services in the reference application is decomposed into multiple

autonomous sub-systems in the form of collaborating microservices and containers. Each microservice

provides a single area of functionality: an identity service, a catalog service, an ordering service, and a

basket service.

Each microservice has its own database, allowing it to be fully decoupled from the other

microservices. Where necessary, consistency between databases from different microservices is

achieved using application-level events. For more information, see Communication between

microservices.

For more information about the reference application, see Architecting and Developing Containerized

and Microservice based .NET Applications.

Communication between client and microservices
The eShopOnContainers mobile app communicates with the containerized back-end microservices

using direct client-to-microservice communication, which is shown in Figure 8-5.

http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

57 CHAPTER 8 | Containerized microservices

Figure 8-5: Direct client-to-microservice communication

With direct client-to-microservice communication, the mobile app makes requests to each

microservice directly via its public endpoint, with a different TCP port per microservice. In production,

the endpoint would typically map to the microservice's load balancer, which distributes requests

across the available instances.

Tip: Consider using API gateway communication

Direct client-to-microservice communication can have drawbacks when building a large and
complex microservice based application, but it's more than adequate for a small application. When
designing a large microservice based application with tens of microservices, consider using API
gateway communication. For more information, see Architecting and Developing Containerized and
Microservice based .NET Applications.

Communication between microservices
A microservices based application is a distributed system, potentially running on multiple machines.

Each service instance is typically a process. Therefore, services must interact using an inter-process

communication protocol, such as HTTP, TCP, Advanced Message Queuing Protocol (AMQP), or binary

protocols, depending on the nature of each service.

The two common approaches for microservice-to-microservice communication are HTTP based REST

communication when querying for data, and lightweight asynchronous messaging when

communicating updates across multiple microservices.

Asynchronous messaging based event-driven communication is critical when propagating changes

across multiple microservices. With this approach, a microservice publishes an event when something

notable happens, for example when it updates a business entity. Other microservices subscribe to

these events. Then, when a microservice receives an event, it updates its own business entities, which

may in turn lead to more events being published. This publish-subscribe functionality is usually

achieved with an event bus.

An event bus allows publish-subscribe communication between microservices, without requiring the

components to be explicitly aware of each other, as shown in Figure 8-6.

http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

58 CHAPTER 8 | Containerized microservices

Figure 8-6: Publish-subscribe with an event bus

From an application perspective, the event bus is simply a publish-subscribe channel exposed via an

interface. However, the way the event bus is implemented can vary. For example, an event bus

implementation could use RabbitMQ, Azure Service Bus, or other service buses such as NServiceBus

and MassTransit. Figure 8-7 shows how an event bus is used in the eShopOnContainers reference

application.

Figure 8-7: Asynchronous event-driven communication in the reference application

The eShopOnContainers event bus, implemented using RabbitMQ, provides one-to-many

asynchronous publish-subscribe functionality. This means that after publishing an event, there can be

multiple subscribers listening for the same event. Figure 8-9 illustrates this relationship.

59 CHAPTER 8 | Containerized microservices

Figure 8-9: One-to-many communication

This one-to-many communication approach uses events to implement business transactions that span

multiple services, ensuring eventual consistency between the services. An eventual-consistent

transaction consists of a series of distributed steps. Therefore, when the user-profile microservice

receives the UpdateUser command, it updates the user's details in its database and publishes the

UserUpdated event to the event bus. Both the basket microservice and the ordering microservice

have subscribed to receive this event, and in response update their buyer information in their

respective databases.

Note: The eShopOnContainers event bus, implemented using RabbitMQ, is intended to be used
only as a proof of concept. For production systems, alternative event bus implementations should
be considered.

For information about the event bus implementation, see Architecting and Developing Containerized

and Microservice based .NET Applications.

Summary
Microservices offer an approach to application development and deployment that's suited to the

agility, scale, and reliability requirements of modern cloud applications. One of the main advantages

of microservices is that they can be scaled-out independently, which means that a specific functional

area can be scaled that requires more processing power or network bandwidth to support demand,

rather than unnecessarily scaling-out other areas of the application.

A container is an isolated, resource controlled, and portable operating environment, where an

application can run without touching the resources of other containers, or the host. Enterprises are

increasingly adopting containers when implementing microservice based applications, and Docker has

become the standard container implementation that has been adopted by most software platforms

and cloud vendors.

http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

60 CHAPTER 9 | Authentication and authorization

C H A P T E R

9

 Authentication
and authorization

Authentication is the process of obtaining identification credentials such as name and password from

a user, and validating those credentials against an authority. If the credentials are valid, the entity that

submitted the credentials is considered an authenticated identity. Once an identity has been

authenticated, an authorization process determines whether that identity has access to a given

resource.

There are many approaches for integrating authentication and authorization into a Xamarin.Forms

app that communicates with an ASP.NET MVC web application, including using ASP.NET Core Identity,

external authentication providers such as Microsoft, Google, Facebook, or Twitter, and authentication

middleware. The eShopOnContainers mobile app performs authentication and authorization with a

containerized identity microservice that uses IdentityServer 4. The mobile app requests security tokens

from IdentityServer, either for authenticating a user or for accessing a resource. For IdentityServer to

issue tokens on behalf of a user, the user must sign-in to IdentityServer. However, IdentityServer

doesn't provide a user interface or database for authentication. Therefore, in the eShopOnContainers

reference application, ASP.NET Core Identity is used for this purpose.

Authentication
Authentication is required when an application needs to know the identity of the current user.

ASP.NET Core's primary mechanism for identifying users is the ASP.NET Core Identity membership

system, which stores user information in a data store configured by the developer. Typically, this data

store will be an EntityFramework store, though custom stores or third party packages can be used to

store identity information in Azure storage, DocumentDB, or other locations.

For authentication scenarios that make use of a local user data store, and that persist identity

information between requests via cookies (as is typical in ASP.NET MVC web applications), ASP.NET

Core Identity is a suitable solution. However, cookies are not always a natural means of persisting and

transmitting data. For example, an ASP.NET Core web application that exposes RESTful endpoints that

are accessed from a mobile app will typically need to use bearer token authentication, since cookies

can't be used in this scenario. However, bearer tokens can easily be retrieved and included in the

authorization header of web requests made from the mobile app.

61 CHAPTER 9 | Authentication and authorization

Issuing bearer tokens using IdentityServer 4

IdentityServer 4 is an open source OpenID Connect and OAuth 2.0 framework for ASP.NET Core,

which can be used for many authentication and authorization scenarios including issuing security

tokens for local ASP.NET Core Identity users.

Note: OpenID Connect and OAuth 2.0 are very similar, while having different responsibilities.

OpenID Connect is an authentication layer on top of the OAuth 2.0 protocol. OAuth 2 is a protocol
that allows applications to request access tokens from a security token service and use them to
communicate with APIs. This delegation reduces complexity in both client applications and APIs
since authentication and authorization can be centralized.

The combination of OpenID Connect and OAuth 2.0 combine the two fundamental security
concerns of authentication and API access, and IdentityServer 4 is an implementation of these
protocols.

In applications that use direct client-to-microservice communication, such as the eShopOnContainers

reference application, a dedicated authentication microservice acting as a Security Token Service (STS)

can be used to authenticate users, as shown in Figure 9-1. For more information about direct client-

to-microservice communication, see Communication between client and microservices.

Figure 9-1: Authentication by a dedicated authentication microservice

The eShopOnContainers mobile app communicates with the identity microservice, which uses

IdentityServer 4 to perform authentication, and access control for APIs. Therefore, the mobile app

requests tokens from IdentityServer, either for authenticating a user or for accessing a resource:

• Authenticating users with IdentityServer is achieved by the mobile app requesting an identity

token, which represents the outcome of an authentication process. At a bare minimum, it

contains an identifier for the user, and information about how and when the user

authenticated. It can also contain additional identity data.

• Accessing a resource with IdentityServer is achieved by the mobile app requesting an access

token, which allows access to an API resource. Clients request access tokens and forward

them to the API. Access tokens contain information about the client, and the user (if present).

APIs then use that information to authorize access to their data.

Note: A client must be registered with IdentityServer before it can request tokens.

Adding IdentityServer to a web application

In order for an ASP.NET Core web application to use IdentityServer 4, it must be added to the web

application's Visual Studio solution. For more information, see Setup and Overview in the

IdentityServer documentation.

https://github.com/IdentityServer/IdentityServer4
https://identityserver4.readthedocs.io/en/release/quickstarts/0_overview.html

62 CHAPTER 9 | Authentication and authorization

Once IdentityServer is included in the web application's Visual Studio solution, it must be added to

the web application's HTTP request processing pipeline, so that it can serve requests to OpenID

Connect and OAuth 2.0 endpoints. This is achieved in the Configure method in the web application's

Startup class, as demonstrated in the following code example:

public void Configure(

 IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)

{

 ...

 app.UseIdentity();

 ...

}

Order matters in the web application's HTTP request processing pipeline. Therefore, IdentityServer

must be added to the pipeline before the UI framework that implements the login screen.

Configuring IdentityServer

IdentityServer should be configured in the ConfigureServices method in the web application's

Startup class by calling the services.AddIdentityServer method, as demonstrated in the

following code example from the eShopOnContainers reference application:

public void ConfigureServices(IServiceCollection services)

{

 ...

 services.AddIdentityServer(x => x.IssuerUri = "null")

 .AddSigningCredential(Certificate.Get())

 .AddInMemoryApiResources(Config.GetApis())

 .AddInMemoryIdentityResources(Config.GetResources())

 .AddInMemoryClients(Config.GetClients(clientUrls))

 .AddAspNetIdentity<ApplicationUser>()

 .Services.AddTransient<IProfileService, ProfileService>();

}

After calling the services.AddIdentityServer method, additional fluent APIs are called to

configure the following:

• Credentials used for signing.

• API and identity resources that users may request access to.

• Clients that will be connecting to request tokens.

• ASP.NET Core Identity.

Tip: Dynamically load the IdentityServer 4 configuration

IdentityServer 4's APIs allow for configuring IdentityServer from an in-memory list of configuration
objects. In the eShopOnContainers reference application, these in-memory collections are hard-
coded into the application. However, in production scenarios they can be loaded dynamically from
a configuration file or from a database.

For information about configuring IdentityServer to use ASP.NET Core Identity, see Using ASP.NET

Core Identity in the IdentityServer documentation.

https://identityserver4.readthedocs.io/en/release/quickstarts/6_aspnet_identity.html
https://identityserver4.readthedocs.io/en/release/quickstarts/6_aspnet_identity.html

63 CHAPTER 9 | Authentication and authorization

Configuring API resources

When configuring API resources, the AddInMemoryApiResources method expects an

IEnumerable<ApiResource> collection. The following code example shows the GetApis method that

provides this collection in the eShopOnContainers reference application:

public static IEnumerable<ApiResource> GetApis()

{

 return new List<ApiResource>

 {

 new ApiResource("orders", "Orders Service"),

 new ApiResource("basket", "Basket Service")

 };

}

This method specifies that IdentityServer should protect the orders and basket APIs. Therefore,

IdentityServer managed access tokens will be required when making calls to these APIs. For more

information about the ApiResource type, see API Resource in the IdentityServer 4 documentation.

Configuring identity resources

When configuring identity resources, the AddInMemoryIdentityResources method expects an

IEnumerable<IdentityResource> collection. Identity resources are data such as user ID, name, or

email address. Each identity resource has a unique name, and arbitrary claim types can be assigned to

it, which will then be included in the identity token for the user. The following code example shows

the GetResources method that provides this collection in the eShopOnContainers reference

application:

public static IEnumerable<IdentityResource> GetResources()

{

 return new List<IdentityResource>

 {

 new IdentityResources.OpenId(),

 new IdentityResources.Profile()

 };

}

The OpenID Connect specification specifies some standard identity resources. The minimum

requirement is that support is provided for emitting a unique ID for users. This is achieved by

exposing the IdentityResources.OpenId identity resource.

Note: The IdentityResources class supports all of the scopes defined in the OpenID Connect
specification (openid, email, profile, telephone, and address).

IdentityServer also supports defining custom identity resources. For more information, see Defining

custom identity resources in the IdentityServer documentation. For more information about the

IdentityResource type, see Identity Resource in the IdentityServer 4 documentation.

Configuring clients

Clients are applications that can request tokens from IdentityServer. Typically, the following settings

must be defined for each client as a minimum:

• A unique client ID.

• The allowed interactions with the token service (known as the grant type).

• The location where identity and access tokens are sent to (known as a redirect URI).

https://identityserver4.readthedocs.io/en/release/reference/api_resource.html#refapiresource
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://identityserver4.readthedocs.io/en/release/topics/resources.html#defining-custom-identity-resources
https://identityserver4.readthedocs.io/en/release/topics/resources.html#defining-custom-identity-resources
https://identityserver4.readthedocs.io/en/release/reference/identity_resource.html

64 CHAPTER 9 | Authentication and authorization

• A list of resources that the client is allowed access to (known as scopes).

When configuring clients, the AddInMemoryClients method expects an IEnumerable<Client>

collection. The following code example shows the configuration for the eShopOnContainers mobile

app in the GetClients method that provides this collection in the eShopOnContainers reference

application:

public static IEnumerable<Client> GetClients(Dictionary<string,string> clientsUrl)

{

 return new List<Client>

 {

 ...

 new Client

 {

 ClientId = "xamarin",

 ClientName = "eShop Xamarin OpenId Client",

 AllowedGrantTypes = GrantTypes.Implicit,

 AllowAccessTokensViaBrowser = true,

 RedirectUris = { clientsUrl["Xamarin"] },

 RequireConsent = false,

 PostLogoutRedirectUris =

 {

 "http://13.88.8.119:5105/Account/Redirecting",

 "http://10.6.1.234:5105/Account/Redirecting"

 },

 AllowedCorsOrigins = { "http://eshopxamarin" },

 AllowedScopes =

 {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 "orders",

 "basket"

 }

 },

 ...

 };

}

This configuration specifies data for the following properties:

• ClientId: A unique ID for the client.

• ClientName: The client display name, which is used for logging and the consent screen.

• AllowedGrantTypes: Specifies how a client wants to interact with IdentityServer. For more

information see Configuring the authentication flow.

• AllowAccessTokensViaBrowser: Specifies whether the client can receive access tokens via

the browser. This is useful to harden authentication flows that allow multiple response types,

for example by disallowing a hybrid client flow that may leak the token to the browser.

• RedirectUris: Specifies the allowed URIs to return tokens or authorization codes to.

• RequireConsent: Specifies whether a consent screen is required.

• PostLogoutRedirectUris: Specifies the allowed URIs to redirect to after logout.

• AllowedCorsOrigins: Specifies the origin of the client so that IdentityServer can allow cross-

origin calls from the origin.

65 CHAPTER 9 | Authentication and authorization

• AllowedScopes: Specifies the resources the client has access to. By default, a client has no

access to any resources.

Configuring the authentication flow

The authentication flow between a client and IdentityServer can be configured by specifying the grant

types in the Client.AllowedGrantTypes property. The OpenID Connect and OAuth 2.0 specifications

define a number of authentication flows, including:

• Implicit. This flow is optimized for browser-based applications and should be used either for

user authentication-only, or authentication and access token requests. All tokens are

transmitted via the browser, and therefore advanced features like refresh tokens are not

permitted.

• Authorization code. This flow provides the ability to retrieve tokens on a back channel, as

opposed to the browser front channel, while also supporting client authentication.

• Hybrid. This flow is a combination of the implicit and authorization code grant types. The

identity token is transmitted via the browser channel and contains the signed protocol

response along with signatures for other artifacts such as the authorization code. After

successful validation of the response, the back channel is used to retrieve the access and

refresh token.

Tip: Use the hybrid authentication flow

The hybrid authentication flow mitigates a number of attacks that apply to the browser channel,
and is the recommended flow for native applications that want to retrieve access tokens (and
possibly refresh tokens).

For more information about authentication flows, see Grant Types in the IdentityServer 4

documentation.

Performing authentication

For IdentityServer to issue tokens on behalf of a user, the user must sign-in to IdentityServer.

However, IdentityServer doesn't provide a user interface or database for authentication. Therefore, in

the eShopOnContainers reference application, ASP.NET Core Identity is used for this purpose.

In the eShopOnContainers mobile app, authentication is performed by the IdentityService class,

which implements the IIdentityService interface. This interface specifies that the implementing

class must provide CreateAuthorizationRequest and CreateLogoutRequest methods.

Signing-in

When the user taps the LOGIN button on the LoginView, the SignInCommand in the LoginViewModel

class is executed, which in turn executes the SignInAsync method. The following code example

shows this method:

private async Task SignInAsync()

{

 ...

 LoginUrl = _identityService.CreateAuthorizationRequest();

 IsLogin = true;

 ...

}

This method invokes the CreateAuthorizationRequest method in the IdentityService class,

which is shown in the following code example:

https://identityserver4.readthedocs.io/en/release/topics/grant_types.html

66 CHAPTER 9 | Authentication and authorization

public string CreateAuthorizationRequest()

{

 // Create URI to authorization endpoint

 var authorizeRequest = new AuthorizeRequest(GlobalSetting.Instance.IdentityEndpoint);

 // Dictionary with values for the authorize request

 var dic = new Dictionary<string, string>();

 dic.Add("client_id", "xamarin");

 dic.Add("response_type", "id_token token");

 dic.Add("scope", "openid profile basket orders");

 dic.Add("redirect_uri", GlobalSetting.Instance.IdentityCallback);

 dic.Add("nonce", Guid.NewGuid().ToString("N"));

 // Add CSRF token to protect against cross-site request forgery attacks.

 var currentCSRFToken = Guid.NewGuid().ToString("N");

 dic.Add("state", currentCSRFToken);

 var authorizeUri = authorizeRequest.Create(dic);

 return authorizeUri;

}

This method creates the URI for IdentityServer's authorization endpoint, with the required parameters.

The authorization endpoint is at /connect/authorize on port 5105 of the base endpoint exposed as

a user setting. For more information about user settings, see Configuration management.

The returned URI is stored in the LoginUrl property of the LoginViewModel class. When the IsLogin

property becomes true, the WebView in the LoginView becomes visible. The WebView data binds its

Source property to the LoginUrl property of the LoginViewModel class, and so makes a sign-in

request to IdentityServer when the LoginUrl property is set to IdentityServer's authorization

endpoint. When IdentityServer receives this request and the user isn't authenticated, the WebView will

be redirected to the configured login page.

Once login is completed, the WebView will be redirected to a return URI. This WebView navigation will

cause the NavigateAsync method in the LoginViewModel class to be executed, which is shown in

the following code example:

private async Task NavigateAsync(string url)

{

 ...

 var authResponse = new AuthorizeResponse(url);

 if (!string.IsNullOrWhiteSpace(authResponse.AccessToken))

 {

 if (authResponse.AccessToken != null)

 {

 Settings.AuthAccessToken = authResponse.AccessToken;

 Settings.AuthIdToken = authResponse.IdentityToken;

 await NavigationService.NavigateToAsync<MainViewModel>();

 await NavigationService.RemoveLastFromBackStackAsync();

 }

 }

 ...

}

This method parses the authentication response, and provided that a valid access token is present, it

stores both the identity token (the outcome of the authentication process) and access token (which

allows access to API resources) as application settings, and then performs page navigation. Therefore,

the overall effect in the eShopOnContainers mobile app is that provided that the user is able to

https://identityserver4.readthedocs.io/en/release/endpoints/authorize.html

67 CHAPTER 9 | Authentication and authorization

successfully authenticate with IdentityServer, they are navigated to the MainView page, which is a

TabbedPage that displays the CatalogView as its selected tab.

Tip: Validate return URIs

Although the eShopOnContainers mobile app doesn't validate the return URI, the best practice is to
validate that the return URI refers to a known location in order to prevent open-redirect attacks.

For information about page navigation, see Navigation. For information about how WebView

navigation causes a view model method to be executed, see Invoking navigation using behaviors. For

information about application settings, see Configuration management.

Note: The eShopOnContainers also allows a mock sign-in, when the app is configured to use mock
services in the SettingsView. In this mode, the app doesn't communicate with IdentityServer,
instead allowing the user to sign-in using any credentials.

Signing-out

When the user taps the LOG OUT button in the ProfileView, the LogoutCommand in the

ProfileViewModel class is executed, which in turn executes the LogoutAsync method. This method

performs page navigation to the LoginView page, passing a LogoutParameter instance set to true

as a parameter. For more information about passing parameters during page navigation, see Passing

parameters during navigation.

When a view is created and navigated to, the InitializeAsync method of the view's associated

view model is executed. In turn this executes the Logout method of the LoginViewModel class, which

is shown in the following code example:

private void Logout()

{

 var authIdToken = Settings.AuthIdToken;

 var logoutRequest = _identityService.CreateLogoutRequest(authIdToken);

 if (!string.IsNullOrEmpty(logoutRequest))

 {

 // Logout

 LoginUrl = logoutRequest;

 }

 ...

}

This method invokes the CreateLogoutRequest method in the IdentityService class, passing the

identity token, retrieved from application settings, as a parameter. For more information about

application settings, see Configuration management. The following code example shows the

CreateLogoutRequest method:

public string CreateLogoutRequest(string token)

{

 ...

 return string.Format("{0}?id_token_hint={1}&post_logout_redirect_uri={2}",

 GlobalSetting.Instance.LogoutEndpoint,

 token,

 GlobalSetting.Instance.LogoutCallback);

}

68 CHAPTER 9 | Authentication and authorization

This method creates the URI to IdentityServer's end session endpoint, with the required parameters.

The end session endpoint is at /connect/endsession on port 5105 of the base endpoint exposed as

a user setting. For more information about user settings, see Configuration management.

The returned URI is stored in the LoginUrl property of the LoginViewModel class. While the IsLogin

property is true, the WebView in the LoginView is visible. The WebView data binds its Source property

to the LoginUrl property of the LoginViewModel class, and so makes a sign-out request to

IdentityServer when the LoginUrl property is set to IdentityServer's end session endpoint. When

IdentityServer receives this request, provided that the user is signed-in, sign-out occurs.

Authentication is tracked with a cookie managed by the cookie authentication middleware from

ASP.NET Core. Therefore, signing out of IdentityServer removes the authentication cookie and sends a

post logout redirect URI back to the client.

In the mobile app, the WebView will be redirected to the post logout redirect URI. This WebView

navigation will cause the NavigateAsync method in the LoginViewModel class to be executed, which

is shown in the following code example:

private async Task NavigateAsync(string url)

{

 ...

 Settings.AuthAccessToken = string.Empty;

 Settings.AuthIdToken = string.Empty;

 IsLogin = false;

 LoginUrl = _identityService.CreateAuthorizationRequest();

 ...

}

This method clears both the identity token and access token from application settings, and sets the

IsLogin property to false, which causes the WebView on the LoginView page to become invisible.

Finally, the LoginUrl property is set to the URI of IdentityServer's authorization endpoint, with the

required parameters, in preparation for the next time the user initiates a sign-in.

For information about page navigation, see Navigation. For information about how WebView

navigation causes a view model method to be executed, see Invoking navigation using behaviors. For

information about application settings, see Configuration management.

Note: The eShopOnContainers also allows a mock sign-out, when the app is configured to use
mock services in the SettingsView. In this mode, the app doesn't communicate with
IdentityServer, and instead clears any stored tokens from application settings.

Authorization
After authentication, ASP.NET Core web APIs often need to authorize access, which allows a service to

make APIs available to some authenticated users, but not to all.

Restricting access to an ASP.NET Core MVC route can be achieved by applying an Authorize attribute

to a controller or action, which limits access to the controller or action to authenticated users, as

shown in the following code example:

[Authorize]

public class BasketController : Controller

{

 ...

}

https://identityserver4.readthedocs.io/en/release/endpoints/endsession.html#refendsession
https://identityserver4.readthedocs.io/en/release/endpoints/authorize.html

69 CHAPTER 9 | Authentication and authorization

If an unauthorized user attempts to access a controller or action that's marked with the Authorize

attribute, the MVC framework returns a 401 (unauthorized) HTTP status code.

Note: Parameters can be specified on the Authorize attribute to restrict an API to specific users.
For more information, see Authorization on the Microsoft Documentation Center.

IdentityServer can be integrated into the authorization workflow so that the access tokens it provides

control authorization. This approach is shown in Figure 9-2.

Figure 9-2: Authorization by access token

The eShopOnContainers mobile app communicates with the identity microservice and requests an

access token as part of the authentication process. The access token is then forwarded to the APIs

exposed by the ordering and basket microservices as part of the access requests. Access tokens

contain information about the client, and the user. APIs then use that information to authorize access

to their data. For information about how to configure IdentityServer to protect APIs, see Configuring

API resources.

Configuring IdentityServer to perform authorization

To perform authorization with IdentityServer, its authorization middleware must be added to the web

application's HTTP request pipeline. The middleware is added in the ConfigureAuth method in the

web application's Startup class, which is invoked from the Configure method, and is demonstrated

in the following code example from the eShopOnContainers reference application:

protected virtual void ConfigureAuth(IApplicationBuilder app)

{

 var identityUrl = Configuration.GetValue<string>("IdentityUrl");

 app.UseIdentityServerAuthentication(new IdentityServerAuthenticationOptions

 {

 Authority = identityUrl.ToString(),

 ScopeName = "basket",

 RequireHttpsMetadata = false

 });

}

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction

70 CHAPTER 9 | Authentication and authorization

This method ensures that the API can only be accessed with a valid access token. The middleware

validates the incoming token to ensure that it's sent from a trusted issuer, and validates that the token

is valid to be used with the API that receives it. Therefore, browsing to the ordering or basket

controller will return a 401 (unauthorized) HTTP status code, indicating that an access token is

required.

Note: IdentityServer's authorization middleware must be added to the web application's HTTP
request pipeline before adding MVC with app.UseMvc() or app.UseMvcWithDefaultRoute().

Making access requests to APIs

When making requests to the ordering and basket microservices, the access token, obtained from

IdentityServer during the authentication process, must be included in the request, as shown in the

following code example:

var authToken = Settings.AuthAccessToken;

Order = await _ordersService.GetOrderAsync(Convert.ToInt32(order.OrderNumber), authToken);

The access token is stored as an application setting, and is retrieved from platform-specific storage

and included in the call to the GetOrderAsync method in the OrderService class.

Similarly, the access token must be included when sending data to an IdentityService protected API, as

shown in the following code example:

var authToken = Settings.AuthAccessToken;

await _basketService.UpdateBasketAsync(new CustomerBasket

{

 BuyerId = userInfo.UserId,

 Items = BasketItems.ToList()

}, authToken);

The access token is retrieved from platform-specific storage and included in the call to the

UpdateBasketAsync method in the BasketService class.

The RequestProvider class, in the eShopOnContainers mobile app, uses the HttpClient class to

make requests to the RESTful APIs exposed by the eShopOnContainers reference application. When

making requests to the ordering and basket APIs, which require authorization, a valid access token

must be included with the request. This is achieved by adding the access token to the headers of the

HttpClient instance, as demonstrated in the following code example:

httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", token);

The DefaultRequestHeaders property of the HttpClient class exposes the headers that are sent

with each request, and the access token is added to the Authorization header prefixed with the

string Bearer. When the request is sent to a RESTful API, the value of the Authorization header is

extracted and validated to ensure that it's sent from a trusted issuer, and used to determine whether

the user has permission to invoke the API that receives it.

For more information about how the eShopOnContainers mobile app makes web requests, see

Accessing remote data.

71 CHAPTER 9 | Authentication and authorization

Summary
There are many approaches for integrating authentication and authorization into a Xamarin.Forms

app that communicates with an ASP.NET MVC web application. The eShopOnContainers mobile app

performs authentication and authorization with a containerized identity microservice that uses

IdentityServer 4. IdentityServer is an open source OpenID Connect and OAuth 2.0 framework for

ASP.NET Core that integrates with ASP.NET Core Identity to perform bearer token authentication.

The mobile app requests security tokens from IdentityServer, either for authenticating a user or for

accessing a resource. When accessing a resource, an access token must be included in the request to

APIs that require authorization. IdentityServer's middleware validates incoming access tokens to

ensure that they are sent from a trusted issuer, and that they are valid to be used with the API that

receives them.

72 CHAPTER 10 | Accessing remote data

C H A P T E R

10

 Accessing remote
data
Many modern web-based solutions make use of web services, hosted by web servers, to provide

functionality for remote client applications. The operations that a web service exposes constitute a

web API.

Client apps should be able to utilize the web API without knowing how the data or operations that the

API exposes are implemented. This requires that the API abides by common standards that enable a

client app and web service to agree on which data formats to use, and the structure of the data that is

exchanged between client apps and the web service.

Introduction to Representational State Transfer
Representational State Transfer (REST) is an architectural style for building distributed systems based

on hypermedia. A primary advantage of the REST model is that it's based on open standards and

doesn't bind the implementation of the model or the client apps that access it to any specific

implementation. Therefore, a REST web service could be implemented using Microsoft ASP.NET Web

API, and client apps could be developing using any language and toolset that can generate HTTP

requests and parse HTTP responses.

The REST model uses a navigational scheme to represent objects and services over a network, referred

to as resources. Systems that implement REST typically use the HTTP protocol to transmit requests to

access these resources. In such systems, a client app submits a request in the form of a URI that

identifies a resource, and a HTTP method (such as GET, POST, PUT, or DELETE) that indicates the

operation to be performed on that resource. The body of the HTTP request contains any data required

to perform the operation.

Note: REST defines a stateless request model. Therefore, HTTP requests should be independent and
may occur in any order.

The response from a REST request makes use of standard HTTP status codes. For example, a request

that returns valid data should include the HTTP response code 200 (OK), while a request that fails to

find or delete a specified resource should return a response that includes the HTTP status code 404

(Not Found).

A RESTful web API exposes a set of connected resources, and provides the core operations that

enable an app to manipulate those resources and easily navigate between them. For this reason, the

URIs that constitute a typical RESTful web API are oriented towards the data that it exposes, and use

the facilities provided by HTTP to operate on this data.

73 CHAPTER 10 | Accessing remote data

The data included by a client app in a HTTP request, and the corresponding response messages from

the web server, could be presented in a variety of formats, known as media types. When a client app

sends a request that returns data in the body of a message, it can specify the media types it can

handle in the Accept header of the request. If the web server supports this media type, it can reply

with a response that includes the Content-Type header that specifies the format of the data in the

body of the message. It's then the responsibility of the client app to parse the response message and

interpret the results in the message body appropriately.

For more information about REST, see API design and API implementation on Microsoft Docs.

Consuming RESTful APIs
The eShopOnContainers mobile app uses the Model-View-ViewModel (MVVM) pattern, and the

model elements of the pattern represent the domain entities used in the app. The controller and

repository classes in the eShopOnContainers reference application accept and return many of these

model objects. Therefore, they are used as data transfer objects (DTOs) that hold all the data that is

passed between the mobile app and the containerized microservices. The main benefit of using DTOs

to pass data to and receive data from a web service is that by transmitting more data in a single

remote call, the app can reduce the number of remote calls that need to be made.

Making web requests

The eShopOnContainers mobile app uses the HttpClient class to make requests over HTTP, with

JSON being used as the media type. This class provides functionality for asynchronously sending HTTP

requests and receiving HTTP responses from a URI identified resource. The HttpResponseMessage

class represents a HTTP response message received from a REST API after a HTTP request has been

made. It contains information about the response, including the status code, headers, and any body.

The HttpContent class represents the HTTP body and content headers, such as Content-Type and

Content-Encoding. The content can be read using any of the ReadAs methods, such as

ReadAsStringAsync and ReadAsByteArrayAsync, depending on the format of the data.

Making a GET request

The CatalogService class is used to manage the data retrieval process from the catalog

microservice. In the RegisterDependencies method in the ViewModelLocator class, the

CatalogService class is registered as a type mapping against the ICatalogService type with the

Autofac dependency injection container. Then, when an instance of the CatalogViewModel class is

created, its constructor accepts an ICatalogService type, which Autofac resolves, returning an

instance of the CatalogService class. For more information about dependency injection, see

Introduction to dependency injection.

Figure 10-1 shows the interaction of classes that read catalog data from the catalog microservice, for

displaying by the CatalogView.

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-implementation

74 CHAPTER 10 | Accessing remote data

Figure 10-1: Retrieving data from the catalog microservice

When the CatalogView is navigated to, the OnInitialize method in the CatalogViewModel class is

called. This method retrieves catalog data from the catalog microservice, as demonstrated in the

following code example:

public override async Task InitializeAsync(object navigationData)

{

 ...

 Products = await _productsService.GetCatalogAsync();

 ...

}

This method calls the GetCatalogAsync method of the CatalogService instance that was injected

into the CatalogViewModel by Autofac. The following code example shows the GetCatalogAsync

method:

public async Task<ObservableCollection<CatalogItem>> GetCatalogAsync()

{

 UriBuilder builder = new UriBuilder(GlobalSetting.Instance.CatalogEndpoint);

 builder.Path = "api/v1/catalog/items";

 string uri = builder.ToString();

 CatalogRoot catalog = await _requestProvider.GetAsync<CatalogRoot>(uri);

75 CHAPTER 10 | Accessing remote data

 ...

 return catalog?.Data.ToObservableCollection();

}

This method builds the URI that identifies the resource the request will be sent to, and uses the

RequestProvider class to invoke the GET HTTP method on the resource, before returning the results

to the CatalogViewModel.

The RequestProvider class contains functionality that submits a request in the form of a URI that

identifies a resource, a HTTP method that indicates the operation to be performed on that resource,

and a body that contains any data required to perform the operation. In the RegisterDependencies

method in the ViewModelLocator class, the RequestProvider class is registered as a type mapping

against the IRequestProvider type with the Autofac dependency injection container. Then, when an

instance of the CatalogService class is created, its constructor accepts an IRequestProvider type,

which Autofac resolves, returning an instance of the RequestProvider class. For more information

about dependency injection, see Introduction to dependency injection.

The following code example shows the GetAsync method in the RequestProvider class:

public async Task<TResult> GetAsync<TResult>(string uri, string token = "")

{

 HttpClient httpClient = CreateHttpClient(token);

 HttpResponseMessage response = await httpClient.GetAsync(uri);

 await HandleResponse(response);

 string serialized = await response.Content.ReadAsStringAsync();

 TResult result = await Task.Run(() =>

 JsonConvert.DeserializeObject<TResult>(serialized, _serializerSettings));

 return result;

}

This method calls the CreateHttpClient method, which returns an instance of the HttpClient class

with the appropriate headers set. It then submits an asynchronous GET request to the resource

identified by the URI, with the response being stored in the HttpResponseMessage instance. The

HandleResponse method is then invoked, which throws an exception if the response doesn't include

a success HTTP status code. Then the response is read as a string, converted from JSON to a

CatalogRoot object, and returned to the CatalogService.

The CreateHttpCient method is shown in the following code example:

private HttpClient CreateHttpClient(string token = "")

{

 var httpClient = new HttpClient();

 httpClient.DefaultRequestHeaders.Accept.Add(

 new MediaTypeWithQualityHeaderValue("application/json"));

 if (!string.IsNullOrEmpty(token))

 {

 httpClient.DefaultRequestHeaders.Authorization =

 new AuthenticationHeaderValue("Bearer", token);

 }

 return httpClient;

}

76 CHAPTER 10 | Accessing remote data

This method creates a new instance of the HttpClient class, and sets the Accept header of any

requests made by the HttpClient instance to application/json, which indicates that it expects the

content of any response to be formatted using JSON. Then, if an access token was passed as an

argument to the CreateHttpClient method, it's added to the Authorization header of any

requests made by the HttpClient instance, prefixed with the string Bearer. For more information

about authorization, see Authorization.

When the GetAsync method in the RequestProvider class calls HttpClient.GetAsync, the Items

method in the CatalogController class in the Catalog.API project is invoked, which is shown in the

following code example:

[HttpGet]

[Route("[action]")]

public async Task<IActionResult> Items(

 [FromQuery]int pageSize = 10, [FromQuery]int pageIndex = 0)

{

 var totalItems = await _catalogContext.CatalogItems

 .LongCountAsync();

 var itemsOnPage = await _catalogContext.CatalogItems

 .OrderBy(c=>c.Name)

 .Skip(pageSize * pageIndex)

 .Take(pageSize)

 .ToListAsync();

 itemsOnPage = ComposePicUri(itemsOnPage);

 var model = new PaginatedItemsViewModel<CatalogItem>(

 pageIndex, pageSize, totalItems, itemsOnPage);

 return Ok(model);

}

This method retrieves the catalog data from the SQL database using EntityFramework, and returns it

as a response message that includes a success HTTP status code, and a collection of JSON formatted

CatalogItem instances.

Making a POST request

The BasketService class is used to manage the data retrieval and update process with the basket

microservice. In the RegisterDependencies method in the ViewModelLocator class, the

BasketService class is registered as a type mapping against the IBasketService type with the

Autofac dependency injection container. Then, when an instance of the BasketViewModel class is

created, its constructor accepts an IBasketService type, which Autofac resolves, returning an

instance of the BasketService class. For more information about dependency injection, see

Introduction to dependency injection.

Figure 10-2 shows the interaction of classes that send the basket data displayed by the BasketView,

to the basket microservice.

77 CHAPTER 10 | Accessing remote data

Figure 10-2: Sending data to the basket microservice

When an item is added to the shopping basket, the ReCaculateTotalAsync method in the

BasketViewModel class is called. This method updates the total value of items in the basket, and

sends the basket data to the basket microservice, as demonstrated in the following code example:

private async Task ReCalculateTotalAsync()

{

 ...

 await _basketService.UpdateBasketAsync(new CustomerBasket

 {

 BuyerId = userInfo.UserId,

 Items = BasketItems.ToList()

 }, authToken);

}

This method calls the UpdateBasketAsync method of the BasketService instance that was injected

into the BasketViewModel by Autofac. The following method shows the UpdateBasketAsync

method:

public async Task<CustomerBasket> UpdateBasketAsync(CustomerBasket customerBasket, string token)

{

 UriBuilder builder = new UriBuilder(GlobalSetting.Instance.BasketEndpoint);

 string uri = builder.ToString();

 var result = await _requestProvider.PostAsync(uri, customerBasket, token);

78 CHAPTER 10 | Accessing remote data

 return result;

}

This method builds the URI that identifies the resource the request will be sent to, and uses the

RequestProvider class to invoke the POST HTTP method on the resource, before returning the

results to the BasketViewModel. Note that an access token, obtained from IdentityServer during the

authentication process, is required to authorize requests to the basket microservice. For more

information about authorization, see Authorization.

The following code example shows the PostAsync method in the RequestProvider class:

public async Task<TResult> PostAsync<TResult>(

 string uri, TResult data, string token = "", string header = "")

{

 HttpClient httpClient = CreateHttpClient(token);

 ...

 var content = new StringContent(JsonConvert.SerializeObject(data));

 content.Headers.ContentType = new MediaTypeHeaderValue("application/json");

 HttpResponseMessage response = await httpClient.PostAsync(uri, content);

 await HandleResponse(response);

 string serialized = await response.Content.ReadAsStringAsync();

 TResult result = await Task.Run(() =>

 JsonConvert.DeserializeObject<TResult>(serialized, _serializerSettings));

 return result;

}

This method calls the CreateHttpClient method, which returns an instance of the HttpClient class

with the appropriate headers set. It then submits an asynchronous POST request to the resource

identified by the URI, with the serialized basket data being sent in JSON format, and the response

being stored in the HttpResponseMessage instance. The HandleResponse method is then invoked,

which throws an exception if the response doesn't include a success HTTP status code. Then, the

response is read as a string, converted from JSON to a CustomerBasket object, and returned to the

BasketService. For more information about the CreateHttpClient method, see Making a GET request.

When the PostAsync method in the RequestProvider class calls HttpClient.PostAsync, the Post

method in the BasketController class in the Basket.API project is invoked, which is shown in the

following code example:

[HttpPost]

public async Task<IActionResult> Post([FromBody]CustomerBasket value)

{

 var basket = await _repository.UpdateBasketAsync(value);

 return Ok(basket);

}

This method uses an instance of the RedisBasketRepository class to persist the basket data to the

Redis cache, and returns it as a response message that includes a success HTTP status code, and a

JSON formatted CustomerBasket instance.

Making a DELETE request

Figure 10-3 shows the interactions of classes that delete basket data from the basket microservice, for

the CheckoutView.

79 CHAPTER 10 | Accessing remote data

Figure 10-3: Deleting data from the basket microservice

When the checkout process is invoked, the CheckoutAsync method in the CheckoutViewModel class

is called. This method creates a new order, before clearing the shopping basket, as demonstrated in

the following code example:

private async Task CheckoutAsync()

{

 ...

 await _basketService.ClearBasketAsync(_shippingAddress.Id.ToString(), authToken);

 ...

}

This method calls the ClearBasketAsync method of the BasketService instance that was injected

into the CheckoutViewModel by Autofac. The following method shows the ClearBasketAsync

method:

public async Task ClearBasketAsync(string guidUser, string token)

{

 UriBuilder builder = new UriBuilder(GlobalSetting.Instance.BasketEndpoint);

 builder.Path = guidUser;

 string uri = builder.ToString();

 await _requestProvider.DeleteAsync(uri, token);

}

This method builds the URI that identifies the resource the request will be sent to, and uses the

RequestProvider class to invoke the DELETE HTTP method on the resource. Note that an access

token, obtained from IdentityServer during the authentication process, is required to authorize

requests to the basket microservice. For more information about authorization, see Authorization.

The following code example shows the DeleteAsync method in the RequestProvider class:

public async Task DeleteAsync(string uri, string token = "")

{

 HttpClient httpClient = CreateHttpClient(token);

80 CHAPTER 10 | Accessing remote data

 await httpClient.DeleteAsync(uri);

}

This method calls the CreateHttpClient method, which returns an instance of the HttpClient class

with the appropriate headers set. It then submits an asynchronous DELETE request to the resource

identified by the URI. For more information about the CreateHttpClient method, see Making a GET

request.

When the DeleteAsync method in the RequestProvider class calls HttpClient.DeleteAsync, the

Delete method in the BasketController class in the Basket.API project is invoked, which is shown

in the following code example:

[HttpDelete("{id}")]

public void Delete(string id)

{

 _repository.DeleteBasketAsync(id);

}

This method uses an instance of the RedisBasketRepository class to delete the basket data from

the Redis cache.

Caching data
The performance of an app can be improved by caching frequently accessed data to fast storage

that's located close to the app. If the fast storage is located closer to the app than the original source,

then caching can significantly improve response times when retrieving data.

The most common form of caching is read-through caching, where an app data by referencing the

cache. If the data isn't in the cache, it's retrieved from the data store and added to the cache. Apps

can implement read-through caching with the cache-aside pattern. This pattern determines whether

the item is currently in the cache. If the item isn't in the cache, it's read from the data store and added

to the cache. For more information, see the Cache-Aside pattern on Microsoft Docs.

Tip: Cache data that's read frequently and that changes infrequently

This data can be added to the cache on demand the first time it is retrieved by an app. This means
that the app needs to fetch the data only once from the data store, and that subsequent access can
be satisfied by using the cache.

Distributed applications, such as the eShopOnContainers reference application, should provide either

or both of the following caches:

• A shared cache, which can be accessed by multiple processes or machines.

• A private cache, where data is held locally on the device running the app.

The eShopOnContainers mobile app uses a private cache, where data is held locally on the device

that's running an instance of the app. For information about the cache used by the

eShopOnContainers reference application, see Architecting and Developing Containerized and

Microservice based .NET Applications.

Tip: Think of the cache as a transient data store that could disappear at any time

Ensure that data is maintained in the original data store as well as the cache. The chances of losing
data are then minimized if the cache becomes unavailable.

https://docs.microsoft.com/en-us/azure/architecture/patterns/cache-aside
http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

81 CHAPTER 10 | Accessing remote data

Managing data expiration

It's impractical to expect that cached data will always be consistent with the original data. Data in the

original data store might change after it's been cached, causing the cached data to become stale.

Therefore, apps should implement a strategy that helps to ensure that the data in the cache is as up-

to-date as possible, but can also detect and handle situations that arise when the data in the cache

has become stale. Most caching mechanisms enable the cache to be configured to expire data, and

hence reduce the period for which data may be out of date.

Tip: Set a default expiration time when configuring a cache

Many caches implement expiration, which invalidates data and removes it from the cache if it's not
accessed for a specified period. However, care must be taken when choosing the expiration period.
If it's made too short, data will expire too quickly and the benefits of caching will be reduced. If it's
made too long, the data risks becoming stale. Therefore, the expiration time should match the
pattern of access for apps that use the data.

When cached data expires, it should be removed from the cache, and the app must retrieve the data

from the original data store and place it back into the cache.

It's also possible that a cache might fill up if data is allowed to remain for too long a period. Therefore,

requests to add new items to the cache may be required to remove some items in a process known as

eviction. Caching services typically evict data on a least-recently-used basis. However, there are other

eviction policies, including most-recently-used, and first-in-first-out. For more information, see

Caching Guidance on Microsoft Docs.

Caching images

The eShopOnContainers mobile app consumes remote product images that benefit from being

cached. These images are displayed by the Image control, and the CachedImage control provided by

the FFImageLoading library.

The Xamarin.Forms Image control supports caching of downloaded images. Caching is enabled by

default, and will store the image locally for 24 hours. In addition, the expiration time can be

configured with the CacheValidity property. For more information, see Downloaded Image Caching

on the Xamarin Developer Center.

FFImageLoading's CachedImage control is a replacement for the Xamarin.Forms Image control,

providing additional properties that enable supplementary functionality. Amongst this functionality,

the control provides configurable caching, while supporting error and loading image placeholders.

The following code example shows how the eShopOnContainers mobile app uses the CachedImage

control in the ProductTemplate, which is the data template used by the ListView control in the

CatalogView:

<ffimageloading:CachedImage

 Grid.Row="0"

 Source="{Binding PictureUri}"

 Aspect="AspectFill">

 <ffimageloading:CachedImage.LoadingPlaceholder>

 <OnPlatform

 x:TypeArguments="ImageSource"

 iOS="default_product"

 Android="default_product"

 WinPhone="Assets/default_product.png"/>

 </ffimageloading:CachedImage.LoadingPlaceholder>

 <ffimageloading:CachedImage.ErrorPlaceholder>

 <OnPlatform

 x:TypeArguments="ImageSource"

https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://www.nuget.org/packages/Xamarin.FFImageLoading.Forms/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/images/#Downloaded_Image_Caching

82 CHAPTER 10 | Accessing remote data

 iOS="noimage"

 Android="noimage"

 WinPhone="Assets/noimage.png"/>

 </ffimageloading:CachedImage.ErrorPlaceholder>

</ffimageloading:CachedImage>

The CachedImage control sets the LoadingPlaceholder and ErrorPlaceholder properties to

platform-specific images. The LoadingPlaceholder property specifies the image to be displayed

while the image specified by the Source property is retrieved, and the ErrorPlaceholder property

specifies the image to be displayed if an error occurs when attempting to retrieve the image specified

by the Source property.

As the name implies, the CachedImage control caches remote images on the device, for the time

specified by the value of the CacheDuration property. When this property value isn't explicitly set, the

default value of 30 days is applied.

Increasing resilience
All apps that communicate with remote services and resources must be sensitive to transient faults.

Transient faults include the momentary loss of network connectivity to services, the temporary

unavailability of a service, or timeouts that arise when a service is busy. These faults are often self-

correcting, and if the action is repeated after a suitable delay it's likely to succeed.

Transient faults can have a huge impact on the perceived quality of an app, even if it has been

thoroughly tested under all foreseeable circumstances. To ensure that an app that communicates with

remote services operates reliably, it must be able to:

• Detect faults when they occur, and determine if the faults are likely to be transient.

• Retry the operation if it determines that the fault is likely to be transient and keep track of the

number of times the operation was retried.

• Use an appropriate retry strategy, which specifies the number of retries, the delay between

each attempt, and the actions to take after a failed attempt.

This transient fault handling can be achieved by wrapping all attempts to access a remote service in

code that implements the retry pattern.

Retry pattern

If an app detects a failure when it tries to send a request to a remote service, it can handle the failure

by:

• Retrying the operation. The app could retry the failing request immediately.

• Retrying the operation after a delay. The app should wait for a suitable amount of time before

retrying the request.

• Cancelling the operation. The application should cancel the operation and report an

exception.

The retry strategy should be tuned to match the business requirements of the app. For example, it's

important to optimize the retry count and retry interval to the operation being attempted. If the

operation is part of a user interaction, the retry interval should be short and only a few retries

attempted to avoid making users wait for a response. If the operation is part of a long running

workflow, where cancelling or restarting the workflow is expensive or time-consuming, it's appropriate

to wait longer between attempts and retry more times.

83 CHAPTER 10 | Accessing remote data

Note: An aggressive retry strategy with minimal delay between attempts, and a large number of
retries, could degrade a remote service that's running close to or at capacity. In addition, such a
retry strategy could also affect the responsiveness of the app if it's continually trying to perform a
failing operation.

If a request still fails after a number of retries, it's better for the app to prevent further requests going

to the same resource and to report a failure. Then, after a set period, the app can make one or more

requests to the resource to see if they're successful. For more information, see Circuit breaker pattern.

Tip: Never implement an endless retry mechanism

Use a finite number of retries, or implement the Circuit Breaker pattern to allow a service to recover.

The eShopOnContainers mobile app does not currently implement the retry pattern when making

RESTful web requests. However, the CachedImage control, provided by the FFImageLoading library

supports transient fault handling by retrying image loading. If image loading fails, further attempts

will be made. The number of attempts is specified by the RetryCount property, and retries will occur

after a delay specified by the RetryDelay property. If these property values aren't explicitly set, their

default values are applied – 3 for the RetryCount property, and 250ms for the RetryDelay property.

For more information about the CachedImage control, see Caching images.

The eShopOnContainers reference application does implement the retry pattern. For more

information, including a discussion of how to combine the retry pattern with the HttpClient class,

see Architecting and Developing Containerized and Microservice based .NET Applications.

For more information about the retry pattern, see the Retry pattern on Microsoft Docs.

Circuit breaker pattern

In some situations, faults can occur due to anticipated events that take longer to fix. These faults can

range from a partial loss of connectivity to the complete failure of a service. In these situations, it's

pointless for an app to retry an operation that's unlikely to succeed, and instead should accept that

the operation has failed and handle this failure accordingly.

The circuit breaker pattern can prevent an app from repeatedly trying to execute an operation that's

likely to fail, while also enabling the app to detect whether the fault has been resolved.

Note: The purpose of the circuit breaker pattern is different to the retry pattern. The retry pattern
enables an app to retry an operation in the expectation that it'll succeed. The circuit breaker pattern
prevents an app from performing an operation that's likely to fail.

A circuit breaker acts as a proxy for operations that might fail. The proxy should monitor the number

of recent failures that have occurred, and use this information to decide whether to allow the

operation to proceed, or return an exception immediately.

The eShopOnContainers mobile app does not currently implement the circuit breaker pattern.

However, the eShopOnContainers does. For more information, see Architecting and Developing

Containerized and Microservice based .NET Applications.

Tip: Combine the retry and circuit breaker patterns

An app can combine the retry and circuit breaker patterns by using the retry pattern to invoke an
operation through a circuit breaker. However, the retry logic should be sensitive to any exceptions
returned by the circuit breaker and abandon retry attempts if the circuit breaker indicates that a
fault is not transient.

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://www.nuget.org/packages/Xamarin.FFImageLoading.Forms/
http://aka.ms/MicroservicesEbook
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesEbook

84 CHAPTER 10 | Accessing remote data

For more information about the circuit breaker pattern, see the Circuit Breaker pattern on Microsoft

Docs.

Summary
Many modern web-based solutions make use of web services, hosted by web servers, to provide

functionality for remote client applications. The operations that a web service exposes constitute a

web API, and client apps should be able to utilize the web API without knowing how the data or

operations that the API exposes are implemented.

The performance of an app can be improved by caching frequently accessed data to fast storage

that's located close to the app. Apps can implement read-through caching with the cache-aside

pattern. This pattern determines whether the item is currently in the cache. If the item isn't in the

cache, it's read from the data store and added to the cache.

When communicating with web APIs, apps must be sensitive to transient faults. Transient faults

include the momentary loss of network connectivity to services, the temporary unavailability of a

service, or timeouts that arise when a service is busy. These faults are often self-correcting, and if the

action is repeated after a suitable delay it's likely to succeed. Therefore, apps should wrap all attempts

to access a web API in code that implements a transient fault handling mechanism.

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

85 CHAPTER 11 | Unit testing

C H A P T E R

11

 Unit testing
Mobile apps have unique problems that desktop and web-based applications don't have to worry

about. Mobile users will differ by devices, by network connectivity, available of services, and a range of

other factors. Therefore, mobile apps should be tested as they will be used in the real world, in order

to improve their quality, reliability, and performance. There are many types of testing that should be

performed on an app, including unit testing, integration testing, and user interface testing, with unit

testing being the most common form of testing.

A unit test takes a small unit of the app, typically a method, isolates it from the remainder of the code,

and verifies that it behaves as expected. Its goal is to check that each unit of functionality performs as

expected, so that errors don't propagate throughout the app. Detecting a bug where it occurs is more

efficient that observing the effect of a bug indirectly at a secondary point of failure.

Unit testing has the greatest effect on code quality when it's an integral part of the software

development workflow. As soon as a method has been written, unit tests should be written that verify

the behavior of the method in response to standard, boundary, and incorrect cases of input data, and

that check any explicit or implicit assumptions made by the code. Alternatively, with test driven

development, unit tests are written before the code. In this scenario, unit tests act as both design

documentation and functional specifications.

Note: Unit tests are very effective against regression – that is, functionality that used to work but
has been disturbed by a faulty update.

Unit tests typically use the arrange-act-assert pattern:

• The arrange section of the unit test method initializes objects and sets the value of the data

that is passed to the method under test.

• The act section invokes the method under test with the required arguments.

• The assert section verifies that the action of the method under test behaves as expected.

Following this pattern ensures that unit tests are readable and consistent.

Dependency injection and unit testing
One of the motivations for adopting a loosely-coupled architecture is that it facilitates unit testing.

One of the types registered with Autofac is the OrderService class. The following code example

shows an outline of this class:

public class OrderDetailViewModel : ViewModelBase

{

 private IOrderService _ordersService;

 public OrderDetailViewModel(IOrderService ordersService)

86 CHAPTER 11 | Unit testing

 {

 _ordersService = ordersService;

 }

 ...

}

The OrderDetailViewModel class has a dependency on the IOrderService type which the container

resolves when it instantiates a OrderDetailViewModel object. However, rather than create an

OrderService object to unit test the OrderDetailViewModel class, instead replace the

OrderService object with a mock for the purpose of the tests. Figure 10-1 illustrates this relationship.

Figure 10-1: Classes that implement the IOrderService interface

This approach allows the OrderService object to be passed into the OrderDetailViewModel class at

runtime, and in the interests of testability, it allows the OrderMockService class to be passed into the

OrderDetailViewModel class at test time. The main advantage of this approach is that it enables unit

tests to be executed without requiring unwieldy resources such as web services, or databases.

Testing MVVM applications
Testing models and view models from MVVM applications is identical to testing any other classes, and

the same tools and techniques – such as unit testing and mocking, can be used. However, there are

some patterns that are typical to model and view model classes, that can benefit from specific unit

testing techniques.

Tip: Test one thing with each unit test

Don't be tempted to make a unit test exercise more than one aspect of the unit's behavior. Doing
so leads to tests that are difficult to read and update. It can also lead to confusion when
interpreting a failure.

The eShopOnContainers mobile app uses xUnit to perform unit testing, which supports two different

types of unit tests:

• Facts are tests that are always true, which test invariant conditions.

• Theories are tests that are only true for a particular set of data.

87 CHAPTER 11 | Unit testing

The unit tests included with the eShopOnContainers mobile app are fact tests, and so each unit test

method is decorated with the [Fact] attribute.

Note: xUnit tests are executed by a test runner. To execute the test runner, run the
eShopOnContainers.TestRunner project for the required platform.

Testing synchronous functionality

Synchronous functionality can easily be tested by unit tests. The following code example shows a unit

test that demonstrates testing synchronous functionality:

[Fact]

public void CommandExecutedWhenEventFiresText()

{

 bool executedCommand = false;

 var behavior = new MockEventToCommandBehavior

 {

 EventName = "ItemTapped",

 Command = new Command(() =>

 {

 executedCommand = true;

 })

 };

 var listView = new ListView();

 listView.Behaviors.Add(behavior);

 behavior.RaiseEvent(listView, null);

 Assert.True(executedCommand);

}

This unit test verifies that the EventToCommandBehavior executes a Command when the ItemTapped

event is raised on a ListView control. For more information about the EventToCommandBehavior

class, see Implementing behaviors.

Testing asynchronous functionality

When implementing the MVVM pattern, view models usually invoke operations on services, often

asynchronously. Tests for code that invokes these operations typically use mocks as replacements for

the actual services. The following code example demonstrates testing asynchronous functionality by

passing a mock service into a view model:

[Fact]

public async Task OrderPropertyIsNotNullAfterViewModelInitializationTest()

{

 var orderService = new OrderMockService();

 var orderViewModel = new OrderDetailViewModel(orderService);

 var order = await orderService.GetOrderAsync(1, GlobalSetting.Instance.AuthToken);

 await orderViewModel.InitializeAsync(order);

 Assert.NotNull(orderViewModel.Order);

}

This unit test checks that the Order property of the OrderDetailViewModel instance will have a value

after the InitializeAsync method has been invoked. The InitializeAsync method is invoked

88 CHAPTER 11 | Unit testing

when the view model's corresponding view is navigated to. For more information about navigation,

see Navigation.

When the OrderDetailViewModel instance is created, it expects an OrderService instance to be

specified as an argument. However, the OrderService retrieves data from a web service. Therefore,

an OrderMockService instance, which is a mock version of the OrderService class, is specified as the

argument to the OrderDetailViewModel constructor. Then, when the view model's

InitializeAsync method is invoked, which invokes IOrderService operations, mock data is

retrieved rather than having to communicate with a web service.

Testing INotifyPropertyChanged implementations

Implementing the INotifyPropertyChanged interface allows views to react to changes that originate

from view models and models. These changes are not limited to data shown in controls – they are

also used to control the view, such as view model states that cause animations to be started or

controls to be disabled.

Simple cases

Properties that can be updated directly by the unit test can be tested by attaching an event handler to

the PropertyChanged event and checking whether the event is raised after setting a new value for the

property. The following code example shows such a test:

[Fact]

public async Task SettingOrderPropertyShouldRaisePropertyChanged()

{

 bool invoked = false;

 var orderService = new OrderMockService();

 var orderViewModel = new OrderDetailViewModel(orderService);

 orderViewModel.PropertyChanged += (sender, e) =>

 {

 if (e.PropertyName.Equals("Order"))

 invoked = true;

 };

 var order = await orderService.GetOrderAsync(1, GlobalSetting.Instance.AuthToken);

 await orderViewModel.InitializeAsync(order);

 Assert.True(invoked);

}

This unit test invokes the InitializeAsync method of the OrderViewModel class, which causes its

Order property to be updated. The unit test will pass provided that the PropertyChanged event is

raised for the Order property.

Computed and non-settable properties

When properties cannot be set by test code, such as properties with non-public setters, or read-only

calculated properties, the test code needs to simulate that the object under test causes the change in

the property and its corresponding notification. However, the structure of the test is the same, such as

when a change in a model object causes a property in a view model to change.

Whole object notifications

When the INotifyPropertyChanged interface is implemented, objects can raise the

PropertyChanged event with a null value or empty string to indicate that all properties in the object

have changed. These cases can be tested just like the cases that notify individual property names.

89 CHAPTER 11 | Unit testing

Testing message-based communication

View models that use the MessagingCenter class to communicate between loosely-coupled classes

can be unit tested by subscribing to the message being sent by the code under test, as demonstrated

in the following code example:

[Fact]

public void AddCatalogItemCommandSendsAddProductMessageTest()

{

 bool messageReceived = false;

 var catalogService = new CatalogMockService();

 var catalogViewModel = new CatalogViewModel(catalogService);

 Xamarin.Forms.MessagingCenter.Subscribe<CatalogViewModel, CatalogItem>(

 this, MessageKeys.AddProduct, (sender, arg) =>

 {

 messageReceived = true;

 });

 catalogViewModel.AddCatalogItemCommand.Execute(null);

 Assert.True(messageReceived);

}

This unit test checks that the CatalogViewModel publishes the AddProduct message in response to

its AddCatalogItemCommand being executed. Because the MessagingCenter class supports multicast

message subscriptions, the unit test can subscribe to the AddProduct message, and execute a

callback delegate in response to receiving it. This callback delegate, specified as a lambda expression,

sets a boolean field that's used by the Assert statement to verify the behavior of the test.

Testing exception handling

Unit tests can also be written that check that specific exceptions are thrown for invalid actions or

inputs, as demonstrated in the following code example:

[Fact]

public void InvalidEventNameShouldThrowArgumentExceptionText()

{

 var behavior = new MockEventToCommandBehavior

 {

 EventName = "OnItemTapped"

 };

 var listView = new ListView();

 Assert.Throws<ArgumentException>(() => listView.Behaviors.Add(behavior));

}

This unit test will throw an exception, because the ListView control does not have an event named

OnItemTapped. The Assert.Throws<T> method is a generic method where T is the type of the

expected exception. The argument passed to the Assert.Throws<T> method is a lambda expression

that will throw the exception. Therefore, the unit test will pass provided that the lambda expression

throws an ArgumentException.

Testing validation

There are two aspects to testing the validation implementation: testing that any validation rules are

correctly implemented, and testing that the ValidatableObject<T> class performs as expected.

90 CHAPTER 11 | Unit testing

Validation logic is usually simple to test, because it is typically a self-contained process where the

output depends on the input. There should be test on the results of invoking the Validate method

on each property that has at least one associated validation rule, as demonstrated in the following

code example:

[Fact]

public void CheckValidationPassesWhenBothPropertiesHaveDataTest()

{

 var mockViewModel = new MockViewModel();

 mockViewModel.Forename.Value = "John";

 mockViewModel.Surname.Value = "Smith";

 bool isValid = mockViewModel.Validate();

 Assert.True(isValid);

}

This unit test checks that validation succeeds when the two ValidatableObject<T> properties in the

MockViewModel instance both have data.

As well as checking that validation succeeds, validation unit tests should also check the values of the

Value, IsValid, and Errors property of each ValidatableObject<T> instance, to verify that the

class performs as expected. The following code example demonstrates a unit test that does this:

[Fact]

public void CheckValidationFailsWhenOnlyForenameHasDataTest()

{

 var mockViewModel = new MockViewModel();

 mockViewModel.Forename.Value = "John";

 bool isValid = mockViewModel.Validate();

 Assert.False(isValid);

 Assert.NotNull(mockViewModel.Forename.Value);

 Assert.Null(mockViewModel.Surname.Value);

 Assert.True(mockViewModel.Forename.IsValid);

 Assert.False(mockViewModel.Surname.IsValid);

 Assert.Empty(mockViewModel.Forename.Errors);

 Assert.NotEmpty(mockViewModel.Surname.Errors);

}

This unit test checks that validation fails when the Surname property of the MockViewModel doesn't

have any data, and the Value, IsValid, and Errors property of each ValidatableObject<T> instance

are correctly set.

Summary
A unit test takes a small unit of the app, typically a method, isolates it from the remainder of the code,

and verifies that it behaves as expected. Its goal is to check that each unit of functionality performs as

expected, so that errors don't propagate throughout the app.

The behavior of an object under test can be isolated by replacing dependent objects with mock

objects that simulate the behavior of the dependent objects. This enables unit tests to be executed

without requiring unwieldy resources such as web services, or databases.

Testing models and view models from MVVM applications is identical to testing any other classes, and

the same tools and techniques can be used.

	Purpose
	What's left out of this guide's scope
	Who should use this guide
	How to use this guide

	Enterprise apps
	Sample application
	Sample application architecture
	Mobile app
	Mobile app solution

	eShopOnContainers.Core project
	Platform projects

	Summary
	The MVVM pattern
	View
	ViewModel
	Model

	Connecting view models to views
	Creating a view model declaratively
	Creating a view model programmatically
	Creating a view defined as a data template
	Automatically creating a view model with a view model locator

	Updating views in response to changes in the underlying view model or model
	UI interaction using commands and behaviors
	Implementing commands
	Invoking commands from a view

	Implementing behaviors
	Invoking behaviors from a view

	Summary
	Introduction to dependency injection
	Registration
	Resolution
	Managing the lifetime of resolved objects
	Summary
	Introduction to MessagingCenter
	Defining a message
	Publishing a message
	Subscribing to a message
	Unsubscribing from a message
	Summary
	Navigating between pages
	Creating the NavigationService instance
	Handling navigation requests
	Navigating when the app is launched
	Passing parameters during navigation
	Invoking navigation using behaviors
	Confirming or cancelling navigation

	Summary
	Specifying validation rules
	Adding validation rules to a property
	Triggering validation
	Triggering validation manually
	Triggering validation when properties change

	Displaying validation errors
	Highlighting a control that contains invalid data
	Displaying error messages

	Summary
	Creating a settings class
	Adding a setting
	Data binding to user settings
	Summary
	Microservices
	Containerization
	Communication between client and microservices
	Communication between microservices
	Summary
	Authentication
	Issuing bearer tokens using IdentityServer 4
	Adding IdentityServer to a web application
	Configuring IdentityServer
	Configuring API resources
	Configuring identity resources
	Configuring clients
	Configuring the authentication flow

	Performing authentication
	Signing-in
	Signing-out

	Authorization
	Configuring IdentityServer to perform authorization
	Making access requests to APIs

	Summary
	Introduction to Representational State Transfer
	Consuming RESTful APIs
	Making web requests
	Making a GET request
	Making a POST request
	Making a DELETE request

	Caching data
	Managing data expiration
	Caching images

	Increasing resilience
	Retry pattern
	Circuit breaker pattern

	Summary
	Dependency injection and unit testing
	Testing MVVM applications
	Testing synchronous functionality
	Testing asynchronous functionality
	Testing INotifyPropertyChanged implementations
	Simple cases
	Computed and non-settable properties
	Whole object notifications

	Testing message-based communication
	Testing exception handling
	Testing validation

	Summary

