

PUBLISHED BY

DevDiv, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any

form or by any means without the written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective

owners.

Author:

Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp.

Co-Authors:

Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp.

Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft Corp.

Participants and reviewers:

 Full name, Title, Team, Company

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

----------------------- To be completed when finished the review process ------------------------

--

i

Contents
Summary .. 1

Purpose .. 1

What is left out of this guide’s scope.. 2

Who should use this guide ... 2

How you can use this guide .. 2

Introduction to containers and Docker ... 3

What are containers?.. 3

What is Docker?.. 0

Comparing Docker containers with virtual machines ... 1

What is Container as a Service?... 1

Basic Docker definitions ... 2

Basic Docker taxonomy: containers, images, and registries .. 4

Choosing between .NET Core and .NET Framework for Docker containers 1

Summary ... 1

When to choose .NET Core for Docker containers ... 2

When to choose .NET Framework for Docker containers .. 3

Decision table - .NET frameworks to use for Docker... 5

What OS to target with .NET Containers .. 5

Official .NET Docker images .. 6

.NET Core and Docker image optimizations per variant ... 7

Architecting containerized .NET applications with Docker and Azure .. 8

Vision .. 8

Architecting Docker applications .. 8

Common container design principles.. 8

Container equals a process ... 8

Monolithic applications ... 9

Monolithic application deployed as a container ... 11

Publishing a single Docker container app to Azure App Service .. 11

State and data in Docker applications ... 12

Service-oriented architecture applications ... 14

Microservices architecture .. 15

Data Sovereignty Per Microservice ... 16

ii

Identifying domain-model boundaries per microservice .. 18

Challenges and solutions for Distributed Data Management .. 21

Composite UI based on microservices: Including the “UI per microservice” ... 23

Stateless vs Stateful Microservices and advanced frameworks ... 24

API Gateway pattern vs. Direct Client-to-Microservice communication .. 25

Communication between microservices ... 28

Resiliency and high availability in Microservices ... 36

Health Reports and Diagnostics in Microservices ... 37

Orchestrating microservices and multi-container applications for high-scalability and availability ... 38

Docker clusters in Microsoft Azure ... 40

Azure Container Service .. 41

Azure Service Fabric .. 43

Development process for Docker based applications .. 44

Vision ... 44

Development environment for Docker apps ... 44

Development tools choices: IDE or editor.. 44

.NET languages and frameworks for Docker containers .. 45

Development workflow for Docker apps .. 45

Workflow for developing Docker container based applications ... 45

Simplified workflow when developing containers with Visual Studio .. 56

Using PowerShell commands in a dockerfile to set up Windows Containers ... 56

Developing and deploying new single-container based .NET Core applications for Linux or

Windows Nano containers .. 57

Vision ... 57

Migrating and deploying legacy monolithic .NET Framework applications to Windows

containers .. 58

Problem Statement .. 58

Benefits ... 58

Path .. 59

Application Tour .. 59

Lifting and Shifting ... 61

Using the Catalog Microservice .. 61

Development and Production Environments .. 62

Conclusion ... 63

Designing and developing multi-container and microservice based .NET applications 64

Vision ... 64

Designing a microservice oriented application .. 64

Application context ... 64

Development team context ... 65

iii

Problem .. 65

Solution .. 65

Benefits ... 67

Drawbacks ... 68

External vs. Internal Architecture and Design Patterns ... 70

Creating a simple data-driven/CRUD microservice... 71

Designing a simple data-driven/CRUD microservice ... 72

Implementing a simple CRUD microservice with ASP.NET Core ... 73

Generating Swagger description metadata from your ASP.NET Core Web API 79

Defining your multi-container application with docker-compose.yml ... 83

A database server running as a container .. 89

Implementing event based communication between microservices: Integration Events 92

Integration Events .. 93

The Event Bus .. 93

Testing ASP.NET Core services and web apps .. 106

Tackling business complexity in microservices’ domains with Domain-Driven Design (DDD) and

Command & Query Responsibility Segregation (CQRS) patterns .. 110

“DDD” vs. “DDD patterns”: Not exactly the same ... 110

Applying simplified CQRS and DDD patterns within a microservice ... 111

CQRS and CQS approaches in a DDD microservice ... 112

Implementing the Reads/Queries in a CQRS microservice ... 115

Designing a Domain-Driven Design oriented microservice .. 118

Designing a microservice Domain-Model .. 122

Implementing a microservice’s Domain Model with .NET Core and Entity Framework Core 127

Designing the Infrastructure-Persistence Layer ... 143

Implementing the Infrastructure-Persistence Layer with Entity Framework Core 145

No-SQL databases as your persistence infrastructure .. 153

Designing the microservice’s Application Layer and Web API .. 156

Implementing the microservice’s Application Layer and Web API .. 157

Sagas ... 171

Implementing Resilient applications ... 172

Handling Partial Failure .. 172

Implementing Retries Logic with Exponential Fallbacks .. 174

Implementing Circuit Breaker pattern ... 174

Implementing Graceful Shutdowns .. 175

Securing .NET microservices and web applications .. 176

Authentication ... 176

ASP.NET Core Identity .. 177

iv

External Authentication ... 178

Other External Authentication Providers .. 180

Authenticating with Bearer Tokens ... 180

Authorization .. 183

Role-Based Authorization ... 183

Policy-Based Authorization .. 184

Safe storage of app secrets during development ... 185

Secrets from Environment Variables .. 185

Secretes using the Secret Manager .. 186

Using Azure Key Vault to protect secrets in production time .. 186

Securing the microservices’ communication ... 188

Conclusions .. 189

Key takeaways .. 189

1 Summary

S E C T I O N

1

Summary

Enterprises are increasingly adopting containers while implementing microservice architecture based

applications. Both subjects are very much related but they can both be implemented without the

other. This guide is mainly focusing on containerized applications while highlighting microservices

based architectures as the preferred approach when using containers, but not the only one, as

containres are also very beneficial when building, testing and deploying traditional applications.

On one hand, the enterprise is realizing the benefits of cost savings, solution to deployment problems,

and DevOps and production operations improvements that containers provide. Over the last years,

Microsoft has been rapidly releasing microservice and container innovations to the Windows and

Linux ecosystems – creating products like Azure Service Fabric and Azure Container Service by

partnering with industry leaders like Docker, Mesosphere, Kubernetes and others to deliver container

solutions that help companies build and deploy applications at cloud speed and scale, whatever their

choice of platform or tools.

On the second hand, the microservices architecture style is emerging as an important approach for

large and distributed mission-critical applications deriving from the experience of previous

approaches like SOA and Domain-Driven Design. A microservices based architecture is not easy to

implement without having clear many concepts that change significantly compared to with the

traditional design of monolithic deployment applications. It really requires a big change in your

mindset that this guidance is trying to introduce while providing practical examples with .NET Core.

Purpose
The main purpose is to provide an initial introduction to the mentioned subjects while making

available a related sample application that you can explore and can make it easier to get started.

The scope of this concrete guide is mainly about architecture approaches and related implementation

using .NET Core and containers (plain Linux and Windows Containers), with special focus on

microservices. However, it should be considered a foundational design and development guidance to

explore those mentioned subjects at a development and functional design level before taking any

further decision on specific orchestrators (i.e. Docker Swarm, Mesos DC/OS, Kubernetes and Azure

Service Fabric) or additional cloud infrastructure like messaging or security products which will impact

your final production-ready architecture. Therefore, cloud infrastructure and specific orchestrators are

only introduced in this guide.

2 Introduction to Containers and Docker

What is left out of this guide’s scope

Something important to highlight is that this guide does not focus much on the application lifecyle,

DevOps, CI/CD pipelines and team work because there’s another complementary guide, already

available, focusing on those subjects, named “Containerized Docker Application Lifecycle with Microsoft

Platform and Tools” which focuses more on DevOps lifecycle, Tooling, IT Operations and Monitoring

subjects.

Containerized Docker Application Lifecycle with Microsoft Platform and Tools

https://aka.ms/dockerlifecycleebook

Who should use this guide

The audience for this guide is mainly developers and architects who are new to Docker-based

application development and microservices architecture styles and would like to learn how to

architect, design and implement initial proof of concepts with Microsoft development technologies

(.NET Core) and Docker containers.

A secondary audience is about technical decision makers who would like to get an architecture and

technology overview before deciding on what approach to select for new and modern distributed

applications.

How you can use this guide

The whole guide should be interesting for any developer and architect new to these subjects.

However, the first part of this guide focuses on technology decisions and introductions to Docker

containers and .NET Core vs. .NET Framework plus a section on generic microservices architecture

ending with a high level introduction about orchestrators, so it clearly targets architects and technical

decision makers looking just for an overview and still don’t want to focus on code implementation

details.

The second part, which is the largest part of the guide, starting on the “Development process for

Docker based applications” section, focuses on development and microservice’s patterns

implementation with .NET Core and Docker, so it mainly targets developers and architects who want to

focus on the code and patterns implementation details.

https://aka.ms/dockerlifecycleebook

3 Introduction to Containers and Docker

S E C T I O N

2

Introduction to containers
and Docker

What are containers?
Containerization is an approach to software development in which an application, its versioned set of

dependencies, and its environment configuration (abstracted as deployment manifest files) are

packaged together as a container image, tested as a unit, and finally deployed as a container or image

instance to the host Operating System (OS).

Real-life shipping containers are used transport goods by ship, train, or truck; they look the same on

the outside regardless of the goods being transported inside them. Software containers are similar –

they are simply a standard unit of software that behaves the same on the outside regardless of what

code and dependencies are included on the inside. This enables developers and IT Professionals to

transport them across environments with little or no modifications to the implementation, regardless

of different configurations for each environment.

Containers isolate applications from each other on a shared OS. This approach standardizes

application delivery, allowing apps to run as Linux or Windows containers on top of the host OS (Linux

or Windows). Because containers share the same OS kernel (Linux or Windows), they have a significant

smaller footprint than virtual machine (VM) images.

When running containers on regular Docker hosts, the isolation is not as strong as when using plain

VMs. If you need further isolation than that provided by regular containers, Microsoft offers an

additional choice: Hyper-V containers. In this case, each container runs inside of a special virtual

machine. This provides kernel level isolation between each Hyper-V container and the container host.

Therefore, Hyper-V containers provide better isolation, with a little more overhead than regular

Docker containers.

Inconsistent environment setups can create problems when deploying applications. By running an app

or service inside a container, you avoid most of the issues associated with inconsistent environments.

Another important benefit when using containers is the ability to quickly instance any container. For

example, you can scale-up fast by instancing a specific short term task in the form of a container.

From an application point of view, instantiating an image (the container) should be treated in a similar

way as instantiating a process (like a service or web app). For reliability, however, when running

multiple instances of the same image across multiple host servers, you typically want each container

(image instance) to run in a different host server/VM in different fault domains.

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/management/hyperv_container

0 Summary

In short, the main benefits provided by containers are isolation, portability, agility, scalability and

control across the whole application lifecycle workflow. The most important benefit is the isolation

provided between Dev and Ops.

What is Docker?
Docker is an open-source project for automating the deployment of applications as portable, self-

sufficient containers that can run on any cloud or on-premises. Docker is also a company promoting

and evolving this technology with a tight collaboration with cloud, Linux, and Windows vendors,

including Microsoft.

Docker is becoming the standard unit of deployment and is emerging as the de-facto standard

implementation for containers as it is being adopted by most software platform and cloud vendors

(Microsoft Azure, Amazon AWS, Google, etc.).

Figure X-X. Docker deploys containers at all layers of the hybrid cloud

Docker containers can run natively on Linux and Windows. You can use MacOS as a development

environment alternative to edit code or run the Docker CLI, but (at the time of this writing) containers

do not run directly on MacOS. When targeting Linux containers, you will need a Linux host (typically a

Linux VM) to run Linux containers on both Windows and MacOS development machines.

To host containers, and provide additional developer tools, Docker ships Docker for Mac and Docker

for Windows. These products install the necessary VM to host Linux containers.

Related to Windows Containers, there are two types or runtimes:

Windows Server Containers – provide application isolation through process and namespace

isolation technology. A Windows Server container shares a kernel with the container host and all

containers running on the host.

Hyper-V Containers – expands on the isolation provided by Windows Server Containers by running

each container in a highly optimized virtual machine. In this configuration, the kernel of the container

host is not shared with the Hyper-V Containers, providing better isolation.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://www.docker.com/company/contact
https://blogs.msdn.microsoft.com/stevelasker/2016/05/26/docker-containers-as-the-new-binaries-of-deployment/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

1 Introduction to Containers and Docker

Comparing Docker containers with virtual machines

Virtual Machines

Virtual machines include the application, the

required libraries/binaries, and a full guest

operating system. Full virtualization requires

more resources than containerization.

Docker Containers

Containers include the application and all of its

dependencies but share the OS kernel with

other containers, running as isolated processes

in user space on the host operating system

(except in “Hyper-V containers” where each

container runs inside of a special virtual machine

per container).

Figure X-X. Comparison of traditional virtual machines to Docker containers

From an application architecture point of view, each Docker container is usually a single process which

could be a whole app (monolithic app) or a single service or microservice. The benefits you get when

your application or service process runs inside a Docker container is that it is also includes all its

dependencies, so its deployment on any environment that supports Docker is assured to be done

right.

Since Docker containers are sandboxes running on the same shared OS kernel it provides very

important benefits. They are easy to deploy and start fast. As a side effect of running on the same

kernel, you get less isolation than VMs, but also use far fewer resources.

Docker also is a way to package an app or service and deploy it in a reliable and reproducible way. So,

you could say that Docker is not only a technology, but also a philosophy and a process.

When using Docker, you won’t get the typical developer’s excuse “it works on my machine”. You can

simply say “it runs on Docker”, because the packaged Docker application can be executed on any

supported Docker environment and it will run the way it was intended to on all the deployment

targets (Dev/QA/Staging/Production, etc.).

What is Container as a Service?

Container as a Service (CaaS) is an IT managed and secured application environment of infrastructure

and content provided as a service (elastic and pay as you go, like the basic cloud principles), with no

2 Introduction to Containers and Docker

upfront infrastructure design, implementation and investment per project, where developers can

build, test and deploy applications and IT operations can run, manage and monitor those applications

in production.

From its original principles, it is partially like Platform as a Service (PaaS) in that resources are

provided “as a service” from a pool of resources. What’s different in this case is that the unit of

software is now measurable and based on containers. Images (per version) are immutable.

In regards to host OS related updates, it usually is responsibility of the person/organization owning

the container image to perform the updates; however, the service provider might also help to update

the Linux/Windows kernel and Docker engine version at the host level.

Either PaaS or CaaS can be supported in public clouds (like Microsoft Azure, Amazon AWS, Google,

etc.) or on-premises.

Basic Docker definitions

The following are the basic definitions you should be familiar with before getting deeper into Docker.

For further definitions, an extensive Docker Glossary is provided by Docker here:

https://docs.docker.com/v1.11/engine/reference/glossary/

Docker image: Docker images are the basis of containers. An image is an ordered collection of root

filesystem changes and the corresponding execution parameters for use within a container runtime.

An image typically contains a union of layered filesystems stacked on top of each other. An image

does not have state and it never changes as it’s deployed to various environments.

Container: A container is a runtime instance of a Docker image. A Docker container consists of: A

Docker image, an execution environment and a standard set of instructions. When scaling a service,

you would instance multiple containers from the same image. Or, in a batch job, instance multiple

containers from the same image, passing different parameters to each instance. A container “contains”

something singular, a single process, like a service or web app. It is a 1:1 relationship.

Tag: A tag is a label applied to a Docker image in a repository. Tags are how various images in a

repository are distinguished from each other. They are commonly used to distinguish between

multiple versions of the same image.

Dockerfile: A Dockerfile is a text document that contains instructions to build a Docker image.

Build: Build is the process of building Docker images using a Dockerfile. The build uses a Dockerfile

and a context. The context is the set of files in the directory in which the image is built. Builds can be

done with commands like “docker build” or “docker-compose”, which incorporates additional

information such as the image name and tag.

Repository: A collection of related images, differentiated by a tag that would differentiate the

historical version of a specific image. Some repos contain multiple variations of a specific image, such

as the SDK, runtime/fat, thin tags. As Windows containers become more prevalent, a single repo can

contain platform variants, such as a Linux and Windows image.

Registry: A Registry is a hosted service containing repositories of images which responds to the

Registry API. The default registry (from Docker as an organization) can be accessed using a browser at

Docker Hub or using the Docker search command. Therefore, a Registry usually contains many

Repositories from multiple teams. Most companies will want to keep their images private and their

https://docs.docker.com/v1.11/engine/reference/glossary/
https://docs.docker.com/registry/
https://hub.docker.com/

3 Introduction to Containers and Docker

network close to their deployment infrastructure, they can instance private registries in their

environment to maintain their apps and control over their base images.

Docker Hub: The Docker Hub is a centralized public resource for working with Docker and its

components. It provides the following services: Docker image hosting, user authentication, automated

image builds plus work-flow tools such as build triggers and web hooks, and integration with GitHub

and Bitbucket. Docker Hub is the public instance of a registry, similar to the public GitHub offering

compared to the GitHub enterprise offering where customers store their code in their own

environment.

Azure Container Registry: Centralized public resource for working with Docker Images and its

components in Azure, a registry network close to your deployments with control over access, making

it possible to use your Azure Active Directory groups and permissions.

Docker Trusted Registry: Docker Trusted Registry (DTR) is the enterprise-grade image storage

solution from Docker. You install it behind your firewall so that you can securely store and manage

the Docker images you use in your applications. Docker Trusted Registry is a sub-product included as

part of the Docker Datacenter product.

Docker for Windows and Mac: The local development tools for building, running and testing

containers locally. Docker for Windows provides both Windows and Linux container development

environments.

Docker for Windows and Docker for Mac replace Docker Toolbox, which was based on Oracle

VirtualBox. Docker for Windows is now based on Hyper-V VMs (Linux or Windows). Docker for Mac is

based on Apple Hypervisor framework and xhyve hypervisor which provides a Docker-ready virtual

machine on Mac OS X.

Compose: Compose is a tool for defining and running multi container applications. With compose,

you define a multi-container application in a single file, then spin your application up in a single

command which does everything that needs to be done to get it running. Docker-compose.yml files

are used to build and run multi container applications, defining the build information as well the

environment information for interconnecting the collection of containers.

Cluster: A Docker cluster pools together multiple Docker hosts and exposes them as a single virtual

Docker host so it is able to scale up to many hosts very easily. Examples of Docker clusters can be

created with Docker Swarm, Mesosphere DC/OS, Google Kubernetes and Azure Service Fabric. If using

Docker Swarm, you typically refer to it as a swarm instead of a cluster.

Orchestrator: A Docker Orchestrator simplifies management of clusters and Docker hosts.

Orchestrators enable users to manage their images, containers and hosts through a user interface,

either a command line interface (CLI) or graphical UI. This interface allows users to administer

container networking, configurations, load balancing, service discovery, High Availability, Docker host

management and a much more. An orchestrator is responsible for running, distributing, scaling and

healing workloads across a collection of nodes. Typically, Orchestrator products are the same

products providing the cluster infrastructure like Mesosphere DC/OS, Kubernetes, Docker Swarm and

Azure Service Fabric.

https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://github.com/mist64/xhyve

4 Introduction to Containers and Docker

Basic Docker taxonomy: containers, images, and registries

Figure 2-3 shows how each basic component in Docker relates to each other as well as the multiple

Registry offerings from vendors.

Figure X-X. Taxonomy of Docker terms and concepts

As mentioned in the definitions section, a container is one or more runtime instances of a Docker

image that usually will contain a single app/service. The container is considered the live artifact being

executed in a development machine or the cloud or server.

An image is an ordered collection of root filesystem changes and the corresponding execution

parameters for use within a container runtime. An image typically contains a union of layered

filesystems (deltas) stacked on top of each other. An image does not have state and it never changes.

A registry is a service containing repositories of images from one or more development teams.

Multiple development teams may also instance multiple registries. The default registry for Docker is

the public "Docker Hub" but you will likely have your own private registry network close to your

orchestrator to manage and secure your images, and reduce network latency when deploying images.

The beauty of the images and the registry resides on the possibility for you to store static and

immutable application bits including all their dependencies at OS and frameworks level so they can be

versioned and deployed in multiple environments providing a consistent deployment unit.

You should use a private registry (an example of use of Azure Container Registry) if you want to:

 Tightly control where your images are being stored.

 Reduce network latency between the registry and the deployment nodes.

 Fully own your image distribution pipeline.

 Integrate image storage and distribution tightly into your in-house development workflow

1 Summary

S E C T I O N

3

 Choosing between .NET
Core and .NET Framework
for Docker containers

Summary
There are two supported choices of frameworks for building server-side containerized Docker

applications with .NET: .NET Framework and .NET Core. Both share a lot of the same .NET platform

components and you can share code across the two. However, there are fundamental differences

between the two and your choice will depend on what you want to accomplish. This section provides

guidance on when to use each.

You should use .NET Core for your containerized Docker server application when:

 You have cross-platform needs. For example, when you want to use both Linux and Windows

containers.

 Your application architecture is based on microservices.

 You need best-in-class high performance and hyper-scale.

 In summary, when creating new containerized .NET applications, you should try .NET Core as

your “by default choice for Docker”, as it has many benefits and fits much better with the

containers philosophy and way of work.

You should use .NET Framework for your containerized Docker server application when:

 Your application currently uses .NET Framework and has strong dependencies on Windows

 You need to use Windows APIs not supported by .NET Core.

 You need to use third-party .NET libraries or NuGet packages not available for .NET Core.

 You need to use .NET technologies that are not available for .NET Core.

 In summary, the ability of using .NET Framework on Docker can improve your deployment

experiences minimizing deployment to production issues, so this “lift and shift” scenario is

important for “dockerizing” legacy applications (probably not based on microservices).

Note than an additional benefit from .NET Core is that you can run side by side .NET versions for

applications within the same machine, however this benefit is more important for plain servers or VMs

not using containers because when using containers each container’s image could also use a different

.NET framework as long as they are compatible with the underneath OS (Linux or Windows).

https://www.microsoft.com/net/download/framework
https://www.microsoft.com/net/download/core

2 Introduction to Containers and Docker

When to choose .NET Core for Docker containers
Containers are commonly used in conjunction with a microservices architecture, although they can

also be used to containerize web apps or services which follow any architectural pattern. The

modularity and lightweight nature of .NET Core makes it perfect for containers. When creating and

deploying a container, the size of its image is far smaller with .NET Core than with .NET Framework.

Because it is cross-platform, you can deploy server apps to Linux Docker containers, for example

The following is a more detailed explanation of the previously-stated reasons for picking .NET Core.

Cross-platform needs

Clearly, if your goal is to have an application (web/service) that is able to run on multiple platforms

supported by Docker (Linux and Windows), the right choice is to use .NET Core, as .NET Framework

only supports Windows.

.NET Core also supports MacOS as a development platform, but when deploying containers to a

Docker host, that host currently must be based on Linux or Windows. For example, in a development

environment you could use a Linux VM running on a Mac.

Visual Studio provides an Integrated Development Environment (IDE) for Windows and Mac. Visual

Studio for Mac is an evolution of Xamarin Studio. You can also use Visual Studio Code on MacOS,

Linux and Windows. Visual Studio Code fully supports .NET Core, including IntelliSense and

debugging. You can also target .NET Core with most third-party editors like Sublime, Emacs, VI, and

the open source Omnisharp project which also provides Intellisense support. In addition to the IDEs

and editors you can also the .NET Core command-line tools (dotnet CLI), available for all supported

platforms.

The “by-default” selection when targeting containers in new projects (“green-field”)

Containers are commonly used in conjunction with a microservices architecture, although they can

also be used to containerize web apps or services which follow any architectural pattern. You can use

the .NET Framework for Windows containers, but the modularity and lightweight nature of .NET Core

makes it perfect for containers. When creating and deploying a container, the size of its image is far

smaller with .NET Core than .NET Framework. Because .NET Core is cross-platform, you can deploy

server apps to Linux Docker containers, for example.

Microservices architecture

.NET Core is the best candidate if you are embracing a microservices oriented system composed of

multiple independent, dynamically scalable, stateful or stateless microservices. .NET Core is

lightweight and its API surface can be minimized to the scope of the microservice. A microservices

architecture also allows you to mix technologies across a service boundary, enabling a gradual

migration to .NET Core for new microservices that work in conjunction with other microservices or

services developed with Node.js, Python, Java, Ruby, or other technologies.

There are many infrastructure platforms you can use when targeting microservices and containers.

https://www.visualstudio.com/
https://code.visualstudio.com/

3 Introduction to Containers and Docker

For large and complex microservice systems being deployed as Linux containers, Azure Container

Service with its multiple orchestrator offering (Mesos DC/OS, Kubernetes and Docker Swarm) is a

great and mature choice. You can also use Azure Service Fabric for Linux which also supports Docker

Linux containers (Note: At the time of writing this offering was still in Preview. Check the Azure Service

Fabric for the latest status).

For large and complex microservice systems being deployed as Windows containers, most

orchestrators are currently in a less mature state, but you will be able to use Azure Service Fabric

supporting Windows containers soon, as well as Azure Container Service. However, Azure Service

Fabric has a long experience running mission-critical Windows applications (without Docker) in

comparison to other orchestrators.

All these platforms support .NET Core and make them ideal for hosting your microservices.

A need for high performance and scalable systems

When your container-based system needs the best possible performance and scalability, .NET Core

and ASP.NET Core are your best options. ASP.NET Core outperforms ASP.NET by a factor of 10, and it

leads other popular industry technologies for microservices such as Java servlets, Go and node.js.

This is especially relevant for microservices architectures, where you could have hundreds of

microservices/containers running. With ASP.NET Core can run your system with a much lower number

of servers/VMs, ultimately saving costs in infrastructure and hosting.

When to choose .NET Framework for Docker

containers
While .NET Core offers significant benefits for new applications and application patterns, the .NET

Framework will continue to be a good choice for many existing scenarios and as such, it won’t be

replaced by .NET Core for all containerized server applications.

Current .NET Framework application directly migrated to a Docker container

You may want to use Docker containers for reasons other than targeting microservices. It could be

simply because you want to improve safety of your DevOps workflow and eliminate deployment

issues caused by missing dependencies in production environments. In this case, even when the

deployment type of your application might be monolithic, it makes sense to use Docker and Windows

containers for your current .NET Framework applications.

In most cases, you won’t need to migrate your existing applications to .NET Core. Instead, a

recommended approach is to use .NET Core as you extend an existing application, for example writing

a new service in ASP.NET Core.

A need to use third-party .NET libraries or NuGet packages not available for .NET Core

Libraries are quickly embracing .NET Standard, which enables sharing code across all .NET flavors

including .NET Core. With .NET Standard 2.0 this will be even easier, as the .NET Core API surface will

become significantly bigger and .NET Core applications can directly use existing .NET Framework

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-overview
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/

4 Introduction to Containers and Docker

libraries. This transition won’t be immediate, though, so we recommend checking the specific libraries

required by your application before deciding.

However, consider that whenever you run a library/process based on the traditional .NET Framework,

because of its dependencies on Windows, the container image used for that application/service will

need to be based on a Windows Container image.

A need to use .NET technologies not available for .NET Core

Some .NET Framework technologies are not available in .NET Core 1.1. Some of them will be available

in later .NET Core releases (.NET Core 2), but others don’t apply to the new application patterns

targeted by .NET Core and may never be available. The following list shows the most common

technologies not found in .NET Core 1.1:

 ASP.NET Web Forms applications: ASP.NET Web Forms is only available on the .NET

Framework, so you cannot use ASP.NET Core / .NET Core for this scenario. Currently there are

no plans to bring ASP.NET Web Forms to .NET Core.

 ASP.NET Web Pages applications: ASP.NET Web Pages are not included in ASP.NET Core 1.1,

although it is planned to be included in a future release as explained in the .NET Core

roadmap.

 ASP.NET SignalR server/client implementation. At .NET Core 1.1 release timeframe (November

2016), ASP.NET SignalR is not available for ASP.NET Core (neither client nor server), although

plans are to include it in a future release, as explained in the .NET Core roadmap. Preview

state is available at the Server-side and Client Library GitHub repositories.

 WCF services implementation. Even when there’s a WCF-Client library to consume WCF

services from .NET Core, as of January 2017, WCF server implementation is only available on

the .NET Framework. This scenario is being considered for future releases of .NET Core.

 Workflow related services: Windows Workflow Foundation (WF), Workflow Services (WCF +

WF in a single service) and WCF Data Services (formerly known as “ADO.NET Data Services”)

are only available on the .NET Framework and there are no plans to bring them to .NET Core.

 Language support: Visual Basic and F# don’t currently have tooling support for .NET Core, but

both will be supported in Visual Studio 2017 and later versions of Visual Studio.

In addition to the official .NET Core roadmap, there are other features to be ported to .NET Core - For

a full list, take a look at CoreFX issues marked as port-to-core. Please note that this list doesn’t

represent a commitment from Microsoft to bring those components to .NET Core — they are simply

capturing the desire from the community to do so. That being said, if you care about any of the

components listed above, consider participating in the discussions on GitHub so that your voice can

be heard. And if you think something is missing, please file a new issue in the CoreFX repository.

A need to use a platform/API that doesn’t support .NET Core

Some Microsoft or third-party platforms don’t support .NET Core. For example, some Azure services

provide an SDK not yet available for consumption on .NET Core. This is temporary, as all of Azure

services will eventually use .NET Core. For example, the Azure DocumentDB SDK for .NET Core was

released as preview on November 16th 2016. In the meantime, you can always use the equivalent REST

API instead of the client SDK.

https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/aspnet/SignalR-Server
https://github.com/aspnet/SignalR-Client-Net
https://github.com/dotnet/wcf
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/0.1.0-preview

5 Introduction to Containers and Docker

Decision table - .NET frameworks to use for Docker
As a recap, the following is a summary decision table depending on your architecture or application

type and the server operating system you are targeting for your Docker containers.

Consider that if you are targeting Linux containers you will need Linux based Docker hosts (VMs or

Servers) and in a similar way, if you are targeting Windows containers you will need Windows Server

based Docker hosts (VMs or Servers).

Architecture / App Type Linux containers Windows containers

Microservices .NET Core .NET Core

Monolithic deployment App .NET Core .NET Framework

.NET Core

Best-in-class performance and

scalability

.NET Core .NET Core

Windows Server “brown-field”

migration to containers

-- .NET Framework

Containers “green-field” .NET Core .NET Core

ASP.NET Core .NET Core .NET Core recommended

.NET Framework is possible

ASP.NET 4 (MVC 5, Web API 2) -- .NET Framework

SignalR services .NET Core in upcoming

releases

.NET Framework

.NET Core in upcoming

releases

WCF, WF and other traditional

frameworks

WCF in .NET Core (In the

Roadmap)

.NET Framework

WCF in .NET Core (In the

Roadmap)

Consumption of Azure services .NET Core

(Eventually all Azure services

will provide Client SDKs for

.NET Core)

.NET Framework

.NET Core

(Eventually all Azure services

will provide Client SDKs for

.NET Core)

What OS to target with .NET Containers
Given the diversity of Operating systems supported by Docker and the “by design” differences

between .NET Framework and .NET Core, you should target specific OS and versions depending on

the framework you are using. For instance, in Linux there are many distros available but just few of

them are targeted in the official .NET Docker images (like Debian and Alpine). In Windows you can use

Windows Server Core or Nano Server which provide different characteristics (like IIS vs. Kestrel, etc.)

that might be needed by .NET Framework or NET Core.

In figure X-X you can see the recommended OS version depending on the .NET frameworks.

6 Introduction to Containers and Docker

However, you could also create your own Docker image from scratch in cases where you want to use a

different Linux distro or an image with versions not provided by Microsoft. For example, ASP.NET Core

running on traditional .NET Framework and Windows Server Core.

When adding the image name to your dockerfile file, you can select the Operating System and version

depending on the tag you use, as in the following examples.

microsoft/dotnet:1.1-runtime .NET Core 1.1 runtime-only on Linux

microsoft/dotnet:1.1-runtime-nanoserver .NET Core 1.1 runtime-only on Windows Nano Server

Official .NET Docker images
The Official .NET Docker images are Docker images created and optimized by Microsoft and publicly

available at Docker Hub within Microsoft’s repositories.

Each repository may contain multiple images depending on specific .NET versions plus specific OS and

versions (Linux Debian, Linux Alpine, Windows Nano Server, Windows Server Core, etc.).

Microsoft’s vision for .NET repositories is to have granular/focused repos, where a repo represents a

specific scenario or workload. For instance, the microsoft/aspnetcore images should be used for

ASP.NET Core containers as that image provides additional optimizations for ASP.NET Core.

On the other hand, the .NET Core images (microsoft/dotnet) are intended to be used for console apps

based on .NET Core. For example, batch processes, Azure WebJobs and other console scenarios

should use .NET Core, because adding the ASP.NET Core stack in this smaller image would result in a

bigger image

In any case, most image repos provide extended tags so you can select not just a specific framework

version, but also choose an OS (Linux distro or Windows version), since those versions don’t change

the application level scenario.

Figure X-X. OS to Target depending on .NET frameworks

https://hub.docker.com/u/microsoft/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/

7 Introduction to Containers and Docker

For further information about the official .NET Docker images provided by Microsoft, see the Official

.NET Docker Images reference.

.NET Core and Docker image optimizations per variant

When building Docker images for developers, Microsoft focused on three main scenarios:

 Images used to develop and build .NET Core apps

 Images used to run .NET Core apps

Why multiple images? When developing, building and running containerized applications, you usually

have different priorities.

Development and Building: When developing, what’s important is how fast you can iterate changes,

and the ability to debug the changes. The size of the image isn't as important as the ability to make

changes to your code and see them quickly. Some of our tools, like yo docker for use in Visual Studio

Code, use this image during development time. When building “inside a Docker container”, what’s

important is what's needed to compile your app. This includes the compiler and any other .NET

dependencies plus web development dependencies like NPM, Gulp, Bower, etc.

Why this type of “build image” is important? - This kind of image is not the image you deploy to

production, rather it's an image you use to build the content you place into a production image. This

image would be used in your continuous integration, or build environment, that’s the important reason.

For instance, rather than manually installing all your application dependencies directly on a build

agent host (a VM, for instance), the build agent would instance a .NET Core build image with all the

dependencies required to build the application. Your build agent only needs to know how to run this

Docker image. This simplifies your CI environment and makes it much more predictable.

Production: What’s important in production is how fast you can deploy and start your containers

based on a “production .NET Core image”. Therefore, this image is small so it can quickly travel across

the network from your Docker Registry to your Docker hosts. The contents are ready to run enabling

the fastest time from Docker run to processing results. In the immutable Docker model, there's no

need for dynamic compilation of code. The content you place in this image would be limited to the

binaries and content needed to run the application. For example, the published output using dotnet

publish contains the compiled .NET binaries, images, .js and .css files. Over time, you'll see images that

contain pre-jitted packages.

Although there are multiple versions of the .NET Core image, they all share one or more layers. The

amount of disk space needed to store or the delta to pull from your registry is much smaller than the

whole because all the images share the same base layer, and potentially others.

Therefore, when exploring most of the .NET image repositories at Docker Hub you can find multiple

image versions based on tags like:

microsoft/dotnet:1.1-runtime .NET Core 1.1, with runtime-only, on Linux

microsoft /dotnet: 1.1-runtime-deps .NET Core 1.1, with runtime and framework

dependencies for self-contained apps, on Linux

microsoft/dotnet:1.1.0-sdk-msbuild .NET Core 1.1 with SDK included, on Linux

https://aka.ms/dotnetdockerimages
https://aka.ms/dotnetdockerimages

8 Microsoft Platform and Tools for Docker

S E C T I O N

4

Architecting containerized
.NET applications with
Docker and Azure

Vision
Architect and design scalable solutions with containers in mind.

There are many great-fit use cases for containers, not just for microservices oriented architectures but

also for regular services or web applications where want to reduce friction between development and

deployment to production environments.

Architecting Docker applications

In the first section of this document you learned the fundamental concepts regarding containers and

Docker. That information is the basic level of information to get started. But enterprise applications

can be complex and composed of multiple services instead of a single service/container. For those

optional use cases, you need to understand further architectural approaches such as Service

Orientation and the more advanced Microservices and container orchestration concepts. The scope of

this document is not limited to microservices but to any Docker application lifecycle, therefore, it does

not drill down deeply into microservices architecture because you can also use containers and Docker

with regular Service Orientation, background tasks/jobs or even with monolithic application

deployment approaches.

However, before getting into the application lifecycle and DevOps, it is important to know what and

how you are going to design and construct your application and what are the design choices.

Common container design principles

Container equals a process

In the container model, a container represents a single process. By defining a container as a process

boundary, you start to create the primitives used to scale, or batch off processes. When running a

Docker container, you’ll see an ENTRYPOINT definition. This defines the process and the lifetime of

the container. When the process completes, the container lifecycle ends. There are long running

processes like web servers and short lived processes like batch jobs, which formerly might have been

implemented as Azure WebJobs. If the process fails, the container ends, and the orchestrator takes

https://docs.docker.com/engine/reference/builder/
https://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/

9 Microsoft Platform and Tools for Docker

over. If the orchestrator was told to keep 5 instances running, and one fails, the orchestrator will

instance another container to replace the failed process. In a batch job, the process is started with

parameters. When the process completes, the work is complete.

You may find a scenario where you may want multiple processes running in a single container. In any

architecture document, there’s never a “never”, nor is there always an “always”. For scenarios requiring

multiple processes, a common pattern is to use http://supervisord.org/

Monolithic applications
In this scenario, you are building a single and monolithic-deployment based Web Application or

Service and deploying it as a container. Within the application, it might not be monolithic but

structured in several libraries, components or even layers (Application layer, Domain layer, Data access

layer, etc.). Externally it is a single container like a single process, single web application or single

service.

To manage this model, you deploy a single container to represent the application. To scale, just add a

few more copies with a load balancer in front. The simplicity comes from managing a single

deployment in a single container or VM.

You can include multiple components/libraries or internal layers within each container, as illustrated in

Figure X-X. But, following the container principal of “a container does one thing, and does it in one

process”, the monolithic pattern might be a conflict.

Figure X-X. Monolithic application architecture example

http://supervisord.org/

10 Microsoft Platform and Tools for Docker

The downside of this approach comes if/when the application grows, requiring it to scale. If the entire

application scaled, it’s not really a problem. However, in most cases, a few parts of the application are

the choke points requiring scaling, while other components are used less.

Using the typical eCommerce example; what you likely need to scale is the product information

component. Many more customers browse products than purchase them. More customers use their

basket than use the payment pipeline. Fewer customers add comments or view their purchase history.

And you likely only have a handful of employees, in a single region, that need to manage the content

and marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.

In addition to the scale everything problem, changes to a single component require complete

retesting of the entire application, and a complete redeployment of all the instances.

The monolithic approach is common, and many organizations are developing with this architectural

approach. Many are having good enough results, while others are hitting limits. Many designed their

applications in this model, because the tools and infrastructure were too difficult to build service

oriented architectures (SOA), and they didn’t see the need - until the app grew.

From an infrastructure perspective, each server can run many applications within the same host and

have an acceptable ratio of efficiency in your resources usage, as shown in Figure X-X.

Deploying monolithic applications in Microsoft Azure can be achieved using dedicated VMs for each

instance. Using Azure VM Scale Sets, you can easily scale the VMs. Azure App Services can run

monolithic applications and easily scale instances without having to manage the VMs. Since 2016,

Azure App Services can run single instances of Docker containers as well, simplifying the deployment.

And using Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the

Azure balancer, as shown in the Figure 5-3, you can manage scaling.

Figure X-X. Host running multiple apps/containers

Figure 5-3. Example of multiple hosts scaling-out a single container

application apps/containers

https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

11 Microsoft Platform and Tools for Docker

The deployment to the various hosts can be managed with traditional deployment techniques. The

Docker hosts can be managed with commands like docker run performed manually, or through

automation such as Continuous Delivery (CD) pipelines.

Monolithic application deployed as a container

There are benefits of using containers to manage monolithic application deployments. Scaling the

instances of containers is far faster and easier than deploying additional VMs. Even using VM Scale

Sets to scale VMs, they take time to instance. When deployed as app instances, the configuration of

the app is managed as part of the VM.

Deploying updates as Docker images are far faster and network efficient. Docker Images typically start

in seconds, speeding rollouts. Tearing down a Docker instance is as easy as issuing a docker stop

command, typically completing in less than a second.

As containers are inherently immutable by design, you never need to worry about corrupted VMs,

whereas update scripts might forget to account for some specific configuration or file left on disk.

While monolithic apps can benefit from Docker, we’re only touching on the potential benefits. Larger

benefits of managing containers come from deploying with container orchestrators which manage the

various instances and lifecycle of each container instance. Breaking up the monolithic application into

sub systems which can be scaled, developed and deployed individually are your entry point into the

realm of microservices.

Publishing a single Docker container app to Azure App Service

Whether you want to get a quick validation of a container deployed to Azure or an app is simply a

single container app, Azure App Services provides a great way to provide scalable single container

services.

Using Azure App Service is very simple and easy to get started with. It provides great git integration to

take your code, build it in Visual Studio and directly deploy it to Azure.

Figure X-X. Publishing a Container to Azure App Service from Visual Studio

apps/containers

12 Microsoft Platform and Tools for Docker

Without Docker, if you needed other capabilities/frameworks/dependencies that aren’t supported in

App Services you needed to wait until the Azure team updated those dependencies in App Service, or

you needed to switch to other services like Service Fabric, Cloud Services or even plain VMs where you

had further control and you could install a required component/framework for your application.

Container support in Visual Studio 2017 gives you the ability to include whatever you want in your

app environment, as shown in Figure X-X. Since you are running it in a container, if you add a

dependency to your app, you now have the capability of including the dependency in your dockerfile

or Docker image.

As also shown in figure X-X, the publish flow pushes an image through a Container Registry which can

be the Azure Container Registry (a registry close to your deployments in Azure and secured by Azure

Active Directory groups and accounts) or any other Docker Registry like Docker Hub or on-premises

registries.

State and data in Docker applications
Containers are immutable; when compared to a VM, they don’t disappear as a common occurrence. A

VM may fail from dead processes, an overloaded CPU, or a full or failed disk. However, we expect the

VM to always be available and RAID drives are commonplace to assure data is maintained despite

drive failures.

Think of a container as an instance of a process. A process doesn’t maintain durable state. While a

container can write to its local storage, assuming that an instance will be around indefinitely would be

like assuming that a single copy memory will be durable. Containers, like processes, should be

assumed to be duplicated or killed, or when managed with a container orchestrator, they may get

moved.

Docker uses a feature known as an overlay file system to implement a copy-on-write process that

stores any updated information to the root file system of a container, compared to the original image

on which it is based. These changes are lost if the container is subsequently deleted from the system.

A container therefore does not have persistent storage by default. While it’s possible to save the state

of a container, designing a system around this would conflict with the premise of container

architecture.

To manage persistent data in Docker applications, there are common solutions:

- Data volumes which mount to the host as noted above.

- Data volume containers which provide shared storage across containers, using an external

container that may cycle.

- Volume Plugins which mount volumes to remote locations, providing long term persistence.

- Remote data sources like SQL, NO-SQL databases or cache services like Redis.

- Azure Storage which provides geo distributable PaaS storage, providing the best of containers

as long term persistence.

Data volumes are specially-designated directories within one or more containers that bypass the

Union File System. Data volumes are designed to persist data independent of the container’s life cycle.

Docker never automatically deletes volumes when you remove a container, nor will it “garbage

https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://azure.microsoft.com/en-us/documentation/services/storage/
https://docs.docker.com/engine/reference/glossary/#/union-file-system

13 Microsoft Platform and Tools for Docker

collect” volumes that are no longer referenced by a container. The data in any volume can be freely

browsed and edited by the host operating system, which is just another reason to use data volumes

sparingly.

Data volume container. A data volume container is an improvement over regular data volumes. It is

essentially a dormant container that has one or more data volumes created within it (as described

above). The data volume container provides access to containers from a central mount point. The

benefit of this method of access is that it abstracts the location of the original data, making the data

container a logical mount point. It also allows application containers accessing the data container

volumes to be created and destroyed while keeping the data persistent in a dedicated container.

As shown in the Figure 5-5, regular Docker volumes can be placed on storage outside of the

containers themselves but within the host server/VM physical boundaries. Docker volumes can’t

access a volume from one host server/VM to another.

Due to the inability to manage data shared between containers that run on separate physical hosts, it

is not recommended to use volumes for business data unless the Docker host is a fixed host/VM.

When using Docker containers in an orchestrator, containers are expected to be moved between

hosts depending on the optimizations to be performed by the cluster. Therefore, regular data volumes

are a good mechanism to work with trace files, temporal files or any similar concept that won’t impact

the business data consistency if/when your containers are moved across multiple hosts.

Volume Plugins like Flocker provide data across all hosts in a cluster. While not all volume plugins are

created equally, volume plugins typically provide externalized persistent reliable storage from the

immutable containers.

Remote data sources and cache like SQL DB, DocDB or a remote cache like Redis would be used the

same way as developing without containers. This is a proven way to store business application data.

Figure X-X. Data Volumes and external data sources for containers

apps/containers apps/containers

https://docs.docker.com/v1.8/userguide/dockervolumes/
https://clusterhq.com/flocker/

14 Microsoft Platform and Tools for Docker

Azure Storage provides the following four services in the cloud: Blob storage, Table storage, Queue

storage, and File storage.

 Blob Storage stores unstructured object data. A blob can be any type of text or binary data,

such as a document, media file, or application installer. Blob storage is also referred to as

Object storage.

 Table Storage stores structured datasets. Table storage is a NoSQL key-attribute data store,

which allows for rapid development and fast access to large quantities of data.

 Queue Storage provides reliable messaging for workflow processing and for communication

between components of cloud services.

 File Storage offers shared storage for legacy applications using the standard SMB protocol.

Azure virtual machines and cloud services can share file data across application components

via mounted shares, and on-premises applications can access file data in a share via the File

service REST API.

Service-oriented architecture applications
Service-oriented architecture (SOA) was an overused term and meant many different things to

different people. But as minimum and common denominator, SOA or service orientation mean that

you structure the architecture of your application by decomposing it into multiple services (most

commonly as Http services) that can be classified in different types like sub-systems or in other cases

as tiers.

Those services can now be deployed as Docker containers, which solves deployment issues as all the

dependencies are included within the container image. However, when you need to scale out service

oriented applications, you might have challenges if you are deploying based on single instances. This

is where a Docker clustering software or orchestrator will help you out, as explained in later sections

describe deployment approaches for microservices.

Docker containers are useful for both traditional SOA architectures and the more advanced

microservices architectures. In regards to architecture patterns and implementation, this paper is

focusing on microservices because a SOA approach means you are using a sub-set of the requisites

and techniques used in a microservice architecture. If you know how to build a microservice based

application, you also know how to build a simpler service-oriented application.

15 Microsoft Platform and Tools for Docker

Microservices architecture
As the name implies, microservices architecture is an approach to build a server application as a set of

small services, each service running in its own process and communicating with each other via

protocols such as HTTP and WebSockets. Each microservice implements specific, end-to-end

domain/business capabilities within a certain Bounded-Context per service and must be developed

autonomously and deployed independently by automated mechanisms. Finally, each service should

own its related domain data model and domain logic (sovereignty and decentralized data

management), and can employ different data storage technologies (SQL, No-SQL) and different

programming languages per microservice.

What size should a microservice have? In service development, autonomy is much more important

than size. It is much easier to reduce a monolithic service down to autonomous components than it is

to unpick a web of complex service integrations. So, think about autonomous services within a context

boundary rather than trying to create the smallest service possible, which would be bad in some

cases.

Why microservices? In short, they provide long term agility. Microservices enable superior

maintainability in large, complex and highly scalable systems by designing applications based on

many independently deployable services that allow for granular release planning.

As an additional benefit, microservices can scale out independently. Instead of having giant

monolithic application blocks that you must scale out at once, you can instead scale out specific

microservices. That way, just the specific functional area that needs more processing power or

network bandwidth to support demand can be scaled, rather than scaling out other areas of the

application that really don’t need it.

As figure X-X shows, with the microservices approach it’s all about efficiency for agile changes and

rapid iteration because you’re able to change specific, small portions of large, complex and scalable

applications.

Figure X-X. Monolithic deployment vs. the Microservices approach

16 Microsoft Platform and Tools for Docker

Architecting fine-grained microservice applications enables continuous integration and continuous

development practices, and accelerates delivery of new functions into the application. Fine-grain

decomposition of applications also lets you run and test microservices in isolation, and to evolve

microservices independently while maintaining rigorous contracts among them. As long as you don’t

break the contracts or interfaces, you can change any microservice implementation under the hood

and add new functionality without breaking the other microservices that depend on it.

Before you go into production with a microservices system, you need to ensure that you have key

prerequisites in place:

 Rapid Provisioning

 Basic Monitoring

 Rapid Application Deployment

 Devops Culture

References – Microservices architecture

Microservices: An application revolution powered by the cloud – By Mark Russinovich

https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/

Understanding microservices

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices

Microservices patterns – By Martin Fowler

http://www.martinfowler.com/articles/microservices.html

http://martinfowler.com/bliki/MicroservicePrerequisites.html

Chunk Cloud Computing

https://www.infoq.com/articles/CCC-Jimmy-Nilsson

Data Sovereignty Per Microservice

An important rule to follow in this approach is that each microservice must own its domain data and

logic. Just as a full application owns its logic and data, so must each microservice own its logic and

data under an autonomous lifecycle, with independent deployment per microservice.

This means that the conceptual model of the domain will differ between sub-systems or

microservices. Consider enterprise applications, where customer relationship management (CRM)

applications, transactional purchase subsystems and customer support subsystem each call on unique

customer entity attributes and data and employ a different bounded context.

This principle is similar in DDD where each Bounded-Context (BC), which is a pattern comparable to a

subsystem/service, must own its domain-model (data+logic). Each DDD Bounded-Context would

correlate to a different microservice.

On the other hand, the traditional (or monolithic) approach used in many applications is to have a

single centralized database, often a normalized SQL database, for the whole application and all its

internal subsystems, as shown in figure X-X.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
http://www.martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
https://www.infoq.com/articles/CCC-Jimmy-Nilsson

17 Microsoft Platform and Tools for Docker

The centralized database approach looks initially simpler and seems to enable re-use of entities in

different subsystems to make everything consistent. But the reality is you end up with huge tables

that serve many different subsystems and include attributes and columns that simply are not needed

in most cases. It’s like trying to use the same physical map for hiking a short trail, taking a day-long

car trip, or learning geography.

A monolithic application with typically a single relational database has two important benefits. First,

ACID transactions and second SQL language, but both across all the tables and data related to your

app. This provides a very simple way to easily write a query that combines data from multiple tables.

However, data access becomes much more complex when you move to a microservices architecture.

That is because the data owned by each microservice is private to that microservice and can only be

accessed via its microservice API. Encapsulating the data ensures that the microservices are loosely

coupled and can evolve independently of one another. If multiple services were accessing the same

data, schema updates require coordinated updates to all the services and that would eliminate the

microservice lifecycle autonomy.

Going even further, different microservices often use different kinds of databases. Modern

applications store and process diverse kinds of data and a relational database is not always the best

choice. For some use cases, a particular NoSQL database (such as Azure DocumentDB or MongoDB)

might have a more convenient data model and offer much better performance and scalability than a

SQL database like SQL Server or Azure SQL DB. In other cases, a relational DB is still the best

approach. Therefore, microservices-based applications often use a mixture of SQL and NoSQL

databases, the so-called polyglot persistence approach.

A partitioned, polyglot-persistent architecture for data storage has many benefits, including loosely

coupled services, better performance, and scalability. However, it does introduce some distributed

data management challenges that will be explained in a later section.

Figure X-X. Data Sovereignty Comparison: Microservices vs. Monolithic DB

https://en.wikipedia.org/wiki/ACID
http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/PolyglotPersistence.html

18 Microsoft Platform and Tools for Docker

Relationship between the Microservice pattern and the Bounded-Context pattern

The concept of microservice derives from the Bounded-Context pattern (BC) in Domain-Driven Design

(DDD). DDD deals with large models by dividing them into multiple Bounded-Contexts and being

explicit about their boundaries where each Bounded-Context must have its own model or database, in

a similar way that a microservice owns its related data. In addition, each Bounded-Context usually has

its own Ubiquitous Language to help communication between software developers and domain

experts.

Those terms (mainly Domain Entities) in the Ubiquitous Language can be named differently between

different Bounded-Contexts even when different Domain Entities might share the same Identity. For

instance, in a “User-Profile” Bounded-Context or microservice you might have the “User” Domain

Entity which can share the same identity with the “Buyer” Domain entity in the “Ordering” Bounded-

Context or microservice.

Therefore, a microservice is pretty much like a Bounded-Context but it also specifies that it is a

distributed service, so it is built as a separate process per Bounded-Context and must use distributed

protocols like HTTP or AMQP in order to access to the microservice. The Bounded-Context pattern,

however, doesn’t specify whether it is a distributed service or if it is simply a logical boundary within a

monolithic-deployment application, but ultimately, both patterns are very much related.

DDD benefits from microservices by getting real boundaries (distributed microservices), and ideas like

not sharing the model between microservices are what you also want in a bounded context.

 References – Data Sovereignty per Microservice and Bounded-Context patterns

“Database per microservice” pattern: http://microservices.io/patterns/data/database-per-service.html

Bounded-Context pattern: http://martinfowler.com/bliki/BoundedContext.html

The PolyglotPersistence approach: http://martinfowler.com/bliki/PolyglotPersistence.html

Context Map: https://www.infoq.com/articles/ddd-contextmapping

Identifying domain-model boundaries per microservice

The goal when identifying model boundaries and size for each microservice is not to get to the most

granular separation possible, although is interesting to tend toward small microservices. Instead, your

goal should be to get to the most meaningful separation guided with your domain knowledge. The

emphasis is not on the size, but instead on the business capabilities.

The term microservices puts a lot of emphasis on the size of the services, a point that most

practitioners find to be rather unfortunate. For instance, Sam Newman (a recognized promoter of

microservices and author of the book “Building Microservices”) emphasizes that you should derive

your microservices based on the DDD notion of Bounded Context, as introduced earlier in this papery.

A domain model with specific domain entities applies within a concrete bounded context or

microservice. A Bounded-Context delimits the applicability of a model and gives developer team

members a clear and shared understanding of what must be consistent and what can be developed

independently, which are the same goals for microservices.

A DDD technique that can be used for this is "Context Mapping". Via this technique, you identify the

various contexts in the application landscape and their boundaries. The Context Map is the primary

tool used to make boundaries between domains explicit. A Bounded Context encapsulates the details

http://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design
http://martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://microservices.io/patterns/data/database-per-service.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/PolyglotPersistence.html
http://samnewman.io/
http://samnewman.io/books/building_microservices/

19 Microsoft Platform and Tools for Docker

of a single domain, such as the domain model with its domain entities, and defines the integration

points with other bounded contexts/domains. This matches perfectly with the definition of a

Microservice: autonomous, well defined interfaces, implementing a business capability. This makes

Context Mapping (and DDD in general) an excellent tool in the architect’s toolbox for identifying and

designing Microservices.

When dealing with a large application, its domain model will tend to fragment: a domain expert from

the Catalog domain will think differently about 'inventory' than a logistics domain expert, for example.

Or the user entity might be different in size and needed attributes when dealing with a CRM expert

who wants to store every detail about the customer than for an Ordering Domain expert who just

needs partial data about the customer. It requires lots of coordinated efforts to disambiguate all terms

across all domains. And worse, if you try to have a single unified database for the whole application,

this 'unified vocabulary' is awkward and unnatural to use, and will very likely be ignored in most cases.

Here bounded contexts (implemented as microservices) will help again: they make clear where you

can safely use the natural domain terms and where you will need to bridge to other domains. With the

right boundaries and sizes of your bounded contexts you can make sure your domain models are

clearly defined and that you don’t have to switch between models too often.

So perhaps the best answer to the question of how big a Microservice should be is: it should have a

well-defined bounded context that will enable you to work without having to consider, or swap,

between contexts.

In figure X-X you can see how multiple microservices (multiple bounded-contexts) with its own model

for each microservice and how their entities can be defined depending on your specific requirements

for each of the identified Domains in your system.

In that same figure X-X you can see a sample scenario related to an online Conference Management

system, you could have identified several Bounded-Contexts that could be implemented as

microservices, based on multiple identified domains that each domain expert defined for you. As you

can observe, there are entities that are present just in a single microservice’s model, like “Payments” in

Figure X-X. Identifying Entities and Microservice’s Model Boundaries

20 Microsoft Platform and Tools for Docker

the Payment microservice or sub-system. Those will be easy to implement. However, you may also

have entities which have a different flavor or shape but share the same identity across multiple

domain models from the multiple microservices. For example, the “User” entity is identified in the

“Conferences Management” microservice. That same user, with the same identity, is the one named

“Buyers” in the “Ordering” microservice, or named as “Payer” in the “Payment” microservice and even

present in the “Customer Service” microservice as “Customer”. The reason for that is because

depending on the Ubiquitous Language that each domain expert is using, a user might have a

different perspective even with different attributes. The user entity in the microservice model

“Conferences Management” might have most of its personal data attributes. However, that same user

in the shape of a “Payer” in the microservice “Payment” or in the shape of a “Customer” in the

microservice “Customer Service” might not need the same list of attributes. A similar approach is

illustrated in the image X-XX.

You can see how the “User” is present in the “Conferences Management” microservice’s model, but it

is also present in the form of a “Buyer”, with alternate attributes, in the “Pricing” microservice’s model

because each microservice or Bounded-Context might not need all the data related to a “User” but

just part of it, depending on the problem to solve or the context. For instance, for the pricing you

don’t need the “Address” or the “Passport number” of the user but just his “ID” and the “Status” which

will impact on discounts when pricing the seats per buyer.

In the case of the “Seat”, it is called with the same name but with different attributes per domain-

model, however, it shares the same identity based on the same “ID”, as it happens with the “User” and

“Buyer”.

Figure X-X. Decomposing traditional data models into multiple domain-models

21 Microsoft Platform and Tools for Docker

Challenges and solutions for Distributed Data Management

Challenge #1: How to maintain consistency across multiple services

As stated previously, the data owned by each microservice is private to that microservice and can only

be accessed via its microservice API. The first challenge presented by this approach is how to

implement business transactions that maintain consistency across multiple microservices.

To analyze this problem, let’s look at an example from the eShopOnContainers reference application.

The Catalog microservice maintains information about all the products, including their stock level. The

Ordering microservice manages orders and must verify that a new order doesn’t exceed the available

catalog product’s stock. In a hypothetical monolithic version of this app, the Ordering subsystem

could simply use an ACID transaction (like “Two Phase Commit” transactions that you can do with SQL

Server and the DTC) to check the available stock, create the order and update the available stock in

the Products table.

In contrast, in a microservices architecture the Order and Product tables are private to their respective

services, as shown in image X-X.

The Ordering microservice should not access the Products table directly, as the product table is

owned by the Catalog microservice. It can only use the API provided by the Catalog microservice.

As stated by the CAP theorem, you need to choose between availability and ACID-style consistency,

and availability is usually the better choice for large and scalable systems like the ones that

microservice-based architectures target. Moreover, ACID-style or Two-phase commit transactions are

not just against microservices principles, but most NO-SQL databases (like Azure Document DB,

MongoDB, etc.) do not support Two-phase commit transactions. However, maintaining data

consistency across services and databases is essential and this challenge is also related to the question

“How to propagate changes across multiple microservices when certain attributes are redundant?”.

Figure X-X. Cannot access directly Tables from other microservices

http://aka.ms/eshoponcontainers
https://en.wikipedia.org/wiki/CAP_theorem

22 Microsoft Platform and Tools for Docker

A good solution for both questions is based on “Eventual Consistency between microservices”

articulated through Event-Driven communication and a Publish/Subscription system, which is covered

in the section about “Event-Driven Communication” later in this document.

Challenge #2: How to implement queries that retrieve data from multiple microservices

The second challenge is the question of how you can implement queries that retrieve data from

multiple services while avoiding a super-chatty communication from remote client apps that might

need data from multiple microservices. An example could be a mobile app screen that needs to show

info owned by multiple microservices. Another example would be a complex report involving many

tables. The right solution really depends on the complexity of the queries. The most popular solutions

are the following.

A. API Gateway: For simple data aggregation coming from several microservices (several

databases at the end of the day), the recommended approach would be to handle the

aggregation in an “Aggregation microservice”, also known as the API Gateway pattern which

is explained in the following section when talking about inter-microservice communication.

B. CQRS “Query-Table”: This solution is also known as the Materialized view pattern that pre-

joins data owned by multiple microservices. For complex data aggregation from multiple

tables and databases, comparable to a very complex join that you could do with a complex

SQL sentence involving multiple tables, that could be addressed with a CQRS approach by

creating a de-normalized “Query-Table” in a different database used just for queries. That

table will be designed per the data you need for that complex query, with a 1:1 relationship

between fields needed by your application’s screen and the columns in the query-table. This

approach not only solves this problem but also improves considerably the application

performance when comparing it with a complex relational join targeting multiple tables,

because you already have the query result persisted in an “Ad-Hoc” table for that query. Of

course, using a CQRS approach means more development work and you again need to

embrace “eventual consistency”, but performance and high-scalability requires these types of

approaches and solutions.

C. “Cold-Data” in central databases: For complex reports and queries, a common approach is

to export your “hot data” (transactional data from the microservices) into large databases only

used for reporting. That central database can be a relational database like in SQL Server, Data

Warehouse based like Azure SQL Data Warehouse or even based on Big Data solutions like

Hadoop. Keep in mind that this centralized database would be used only for queries, but not

for the original updates and transactions, as “your source of truth has to be in your

microservices data”. The way you would synchronize data would be either by using Event-

Driven Communication (covered in the next sections) or by using other database

infrastructure import/export tools. If using Event-Driven communication, that integration

would be like the way you propagate data to the mentioned CQRS “Query Database”.

However, it is important to highlight that if you have this problem very often and you constantly need

to aggregate information from multiple microservices for complex queries needed by your application

(not considering reports/analytics that always should use cold-data central databases), that is a

symptom of a possible bad design as a microservice should tend to be as isolated as possible from

other microservices. Having this problem very often might be a reason why you would want to merge

two microservices. You need to balance autonomy of evolution and deployment of each microservice

with strong dependencies and data aggregation.

https://msdn.microsoft.com/en-us/library/dn589782.aspx

23 Microsoft Platform and Tools for Docker

References – Distributed Data

The CAP Theorem: https://en.wikipedia.org/wiki/CAP_theorem

Eventual Consistency: https://en.wikipedia.org/wiki/Eventual_consistency

Data Consistency Primer: https://msdn.microsoft.com/en-us/library/dn589800.aspx

CQRS (Command and Query Responsibility Segregation): http://martinfowler.com/bliki/CQRS.html

Materialized View pattern: https://msdn.microsoft.com/en-us/library/dn589782.aspx

ACID vs. BASE: http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

Compensating Transaction pattern: https://msdn.microsoft.com/en-us/library/dn589804.aspx

Composite UI based on microservices: Including the “UI per

microservice”

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------------------------- To be written in upcoming versions --------------------------------

 -------- However, for the initial Guide’s edition, Composite UI will be just discussed in the

architecture section. The initial eShopOnContainers implementation does not implements a

Composite UI, but might be implemented in future versions --------------------------------------

--

References – Composite UI based on microservices

Composite UI using ASP.NET (Particular’s Workshop)

http://bit.ly/particular-microservices

The Monolithic Frontend in the Microservices Architecture

http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/

The secret of better UI composition

https://particular.net/blog/secret-of-better-ui-composition

Including Front-End Web Components Into Microservices

https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/

Managing Frontend in the Microservices Architecture

http://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

https://en.wikipedia.org/wiki/CAP_theorem
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://msdn.microsoft.com/en-us/library/dn589804.aspx
http://bit.ly/particular-microservices
http://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/

24 Microsoft Platform and Tools for Docker

Stateless vs Stateful Microservices and advanced frameworks

As mentioned earlier, each microservice must own its domain model (data+logic). In the case of

stateless microservices, the databases will be external, employing relational options like SQL Server or

No-SQL options like MongoDB or Azure Document DB. Going further, the services themselves can be

stateful, which means the data resides within the same microservice. This data could exist not just

within the same server, but within the same microservice’s process, in-memory and persisted on hard

drive and replicated to other nodes. Figure X-XX shows the different approaches.

Stateless is a perfectly valid approach and easier to implement than stateful microservices, as it is

similar to traditional and well-known patterns. But stateless microservices impose latency between

the process and data sources, while also presenting more moving pieces when trying to improve

performance via additional cache and queues. The result is that you can end up with complex

architectures with too many tiers.

Stateful microservices, on the other hand, can excel in advanced scenarios, as there is no latency

between the domain logic and data. Heavy data processing, gaming back-ends, databases as a

service, and other low-latency scenarios all benefit from stateful services, which enable local state for

faster access.

Stateless and stateful services are, however, complementary. For instance, you can see in the image X-

XX that a stateful service could be split in multiple partitions. To get access to those partitions you

might need a stateless service acting as a gateway service that knows how to address each partition

depending on partition keys.

The drawback in stateful services? - Stateful services impose a level of complexity to scale out.

Functionality that would usually be implemented within the external database boundaries must be

addressed for things such as data replication across stateful microservices replicas, data partitioning

and so on. However, this is precisely one of the areas where an orchestrator like Azure Service Fabric

can help you the most—by simplifying the development and lifecycle of stateful microservices on

Service Fabric with Reliable Services API and Reliable Actor framework.

Other additional microservice oriented frameworks that allow stateful services and the actors pattern,

and improve fault tolerance and latency between business logic and data are project Orleans, from

Microsoft Research, and Akka.NET. Currently both frameworks are improving their Docker support.

Notice that Docker containers are by themselves, stateless. If you want to implement a stateful service

you will need any of the mentioned additional, prescriptive and higher-level frameworks. However, at

the time of this writing, Stateful Services in Service Fabric are still not supported as containers but only

on plain microservices. This support (Reliable services support in containers) will come in upcoming

versions of Service Fabric.

Figure X-XX. Stateless vs. Stateful services

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://dotnet.github.io/orleans/
https://github.com/akkadotnet/akka.net

25 Microsoft Platform and Tools for Docker

API Gateway pattern vs. Direct Client-to-Microservice communication

In a microservices architecture, each microservice exposes a set of what are typically fine‑grained

endpoints. That fact can impact the client‑to‑microservice communication.

Direct Client-to-Microservice communication

A first possible architecture approach with microservices can be using a “Direct Client-To-Microservice

communication architecture” which means that a client app can make direct requests to each of the

microservices, as shown in figure X-XX.

Each microservice will have a public endpoint like https://servicename.applicationname, sometimes

with a different TCP port per microservice. In production, that URL would map to the microservice’s

load balancer, which distributes requests across the available instances.

This “Direct Client-To-Microservice communication architecture” is good enough for a small

microservice-based application, however when building large and complex microservice based

application (for example, when handling tens of microservice types) that approach faces possible

issues as explained in the following cases.

You need to consider the following questions when developing a large application based on

microservices:

 How do clients minimize the number of requests to the backend and reduce chatty

communication to many microservices? - Requiring interaction with multiple microservices to

build a single UI screen increases the number of required network round trips across Internet

which increases latency and complexity in the UI side. Ideally, responses would need to be

efficiently aggregated in the server side.

Figure X-XX. Using the Direct Client-To-Microservice communication architecture

https://servicename.applicationname.companyname/

26 Microsoft Platform and Tools for Docker

 How to allow clients to communicate with services that use non-Internet-friendly protocols? -

Protocols used on the server side (like AMQP or binary protocols) are not always well

supported in clients, so requests will need to be translated.

 How can you handle cross-cutting concerns such as authorization, load balancing, data

transformations, and dynamic request dispatching? – Implementing security and cross-cutting

concerns on every microservice can be costly. A possible approach would be to have those

services within the Docker host restricting access from the outside and implementing those

cross-cutting concerns like security and authorization in a centralized place.

 How to shape a façade especially made for mobile apps? - API’s are normally not designed

around the needs of specific mobile platforms, so responses will need to be efficiently

transformed, aggregated and compressed.

API Gateway

When designing and building large/complex microservice based applications, a good approach to be

considered for your architecture is known as an API Gateway. An API Gateway is a service that is the

single-entry point into the application’s backend system. It is similar to the Facade pattern from

object‑oriented design, but in this case in a distributed system. The figure X-XX shows how an API

Gateway can fit into a microservice-based architecture:

In this case, the API Gateway would be implemented as a custom Web API service running as a

container. That approach, based only on a custom-built API Gateway, might be good enough for

medium size applications where your only requirement here is about that mentioned API Gateway.

Figure X-XX. Using the API Gateway pattern in a microservice based architecture

http://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/Facade_pattern
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html

27 Microsoft Platform and Tools for Docker

Another alternative is to use a product like Azure API Management which can solve your API Gateway

needs plus additional features like gathering insights from your APIs. This allows you to get a better

understanding of how your APIs are being used and performing by viewing near real-time analytics

reports and identify trends that might impact your business. Plus, you can have log request and

response data for further online and offline analysis.

With Azure API Management you can secure your APIs using a key, token, and IP filtering and enforce

flexible and fine-grained quotas and rate limits, modify the shape and behavior of your APIs using

policies, and improve latency and scale your APIs with response caching. However, this document is

limiting the architecture to a simpler and custom-made containerized architecture to specifically focus

on plain containers without using PaaS products like Azure API Management. But for large

microservice-based applications deployed into Microsoft Azure, we encourage to review and adopt

Azure API Management as the base for your API Gateways.

References – API Gateway and API Management

API Gateway pattern

http://microservices.io/patterns/apigateway.html

Azure API Management

https://azure.microsoft.com/en-us/services/api-management/

Figure X-XX. Using Azure API Management for your API Gateway

https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
http://microservices.io/patterns/apigateway.html
https://azure.microsoft.com/en-us/services/api-management/

28 Microsoft Platform and Tools for Docker

Communication between microservices

On one hand, in a monolithic deployment application, components invoke one another via language-

level method or function calls; strongly coupled if creating objects with code like “new ClassName” or

in a decoupled way if using Dependency Injection. Either way, the objects are running within the same

process. The biggest issue in changing a monolith into microservices lies in changing the

communication pattern. A direct conversion from in-memory method calls to RPC calls to services

leads to chatty communications which don't perform well in distributed environments. Instead you

need to replace the fine-grained communication with a coarser -grained approach by grouping calls

and datasets being returned as much as possible.

On the other hand, a microservices-based application is a distributed system running on multiple

processes/services and even on multiple machines. Each service instance is typically a process.

Therefore, services must interact using an inter-process communication protocol such as HTTP, TCP,

AMQP or binary protocols, depending on the nature of each service.

The microservice community promotes “smart endpoints and dumb pipes”, which means to be as

decoupled as possible between microservices and as cohesive as possible within a single microservice.

As introduced, each microservice owns its own domain logic, but the microservices composing an

application are usually choreographed using simple REST approaches rather than complex protocols

such as WS-* or a centralized ESB.

The two protocols used most commonly are HTTP request-response with resource API's (when

querying, most of all) and lightweight asynchronous messaging when communicating updates across

multiple microservices, explained in more detail in the next sections.

Communication Types

When selecting a communication mechanism between services, it is important to think first about how

services should interact. Initially, these can be classified along two dimensions.

The first dimension is whether the invocation is synchronous or asynchronous:

 Synchronous – The client waits for a response from the service. The wait time typically blocks

the execution of the client while it waits. It is easier to debug, but overall performance can be

worse than when using asynchronous execution.

 Asynchronous – The client doesn’t block while waiting for a response. Depending on the logic,

you can expect immediate responses, or responses returning much later. It doesn’t impact

client execution as it isn’t blocked. When using asynchronous mechanisms, the overall

performance can be better balanced as you don’t have the bottlenecks associated with

synchronous communication, however, development and debugging can be more complex.

The second dimension is whether the communication is one-to-one or one-to-many:

 One-to-one – Each client request is processed by exactly one service instance.

o An example of this communication is the “Command pattern”.

 One-to-many – Each request is processed by multiple services or receivers. This type of

communication needs to be asynchronous, as a single client synchronous execution typically

can’t get responses from multiple services.

o An example of this type of communication is the Publish/Subscribe mechanism used

in patterns like Event-driven architecture, based on an Event-Bus interface or Message

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://microservices.io/patterns/data/event-driven-architecture.html

29 Microsoft Platform and Tools for Docker

Broker when propagating data-updates between multiple microservices through

events, usually implemented through a Service Bus or similar artifact like Azure

Service Bus by using Topics and subscription to topics.

The following table shows how the dimensions are applied in a complementary way.

 Synchronous Asynchronous

One-to-One Request/response Request/async response

Fire and forget (Notification)

One -to-Many -- Publish/Subscription

- Registration action

- Publish action

- Message Handlers

A microservice-based application will often use a combination of these communication styles. The

most common type is a One-to-One communication (either sync or async) when invoking regular

Web API HTTP services. However, when propagating data-updates between multiple microservices, a

one-to-many asynchronous communication as implemented in an event-driven architecture is very

flexible and convenient.

Communication protocols and technologies

There are many different protocols and choices you can use, depending on the communication type

you want to use. If you are using a synchronous request/response based communication mechanism,

protocols such as HTTP and REST approaches are the most common, especially when publishing your

services outside the Docker host or microservice cluster. If you are communicating between

microservices internally (within your Docker host or microservice cluster) you might also want to use

binary format communication mechanisms, depending on the development platform you are using.

Alternatively, you can use asynchronous, message-based communication mechanisms such as AMQP.

Additionally, there are also a variety of different message formats. Services can use human readable,

text-based formats such as JSON or XML. Alternatively, you can use a binary format (which can be

more efficient). If your chosen binary format is not a standard, it is probably not a good idea to

publicly publish your services using that format. You could use a non-standard format only for internal

communication between your microservices, like when communicating between microservices bwithin

your Docker host or microservice cluster (Docker orchestrators or Azure Service Fabric).

Request/Response communication with HTTP and REST (Synchronous and Asynchronous)

When using a request/response communication, a client sends a request to a service, then the service

processes the request and sends back a response.

https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/service-bus/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
http://microservices.io/patterns/data/event-driven-architecture.html

30 Microsoft Platform and Tools for Docker

Request/response communication (either sync or async) is especially well suited for querying data for

“live UI” (live User Interface) from client apps, so in a microservice architecture you will probably use

this communication mechanism for most of the needed queries for that purpose, as shown in figure

X-XX.

If it is a synchronous request/response communication, the thread that makes the request is blocked

while waiting for a response. That’s how it behaves in .NET when consuming an ASP.NET Web API

synchronously. However, you usually want to consume a microservice asynchronously, so the client

thread won’t be blocked until you get a response from the server. When consuming a service

asynchronously, you will usually have a call-back method in the client that will be called by the service

when returning the call response. In modern languages that is simplified - using modern async/await

keywords in C# you can program async services and client calls in a simplified way, as if if you were

invoking synchronous methods. You can therefore communicate asynchronously with ASP.NET Web

API services.

When using a request/response communication (either sync or async), the client assumes that the

response will arrive in a timely fashion, typically less than a second or a few seconds at most. For

delayed responses, you will need to implement asynchronous communication based on messaging

technologies.

A popular architectural communication style for this the request/response communication style is

REST, which is based and tightly coupled to the HTTP protocol embracing HTTP verbs like PUT, POST

and GET. REST is also the most commonly used architectural communication approach when creating

Data-Driven services. You can implement REST services when developing ASP.NET Core Web API

services, as will be explained in the implementation sections of this document.

There is additional value when using HTTP REST services as your interface definition language. For

instance, when using Swagger metadata to describe your service API you can use tools that generate

client stubs that are able to directly discover and consume your services. Later in this document you

will learn how to generate Swagger metadata in your ASP.NET Core Web API services.

For more information about REST or HTTP, see the following reference.

References – REST and HTTP request/response services

REST Maturity Model: http://martinfowler.com/articles/richardsonMaturityModel.html

Swagger: http://swagger.io/

Figure X-XX. Using HTTP Request/Response communication (Sync or Async)

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api
https://msdn.microsoft.com/en-us/library/mt674882.aspx
https://msdn.microsoft.com/en-us/library/mt674882.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://swagger.io/
http://martinfowler.com/articles/richardsonMaturityModel.html

31 Microsoft Platform and Tools for Docker

Asynchronous Message-Based Communication

Asynchronous messaging and event-driven communication are critical when propagating changes

across multiple microservices and their related Domain Models. As mentioned when discussing

microservices, Bounded-Contexts and how can you identify each model for each microservice, a User,

Customer, Product, Account, etc. may mean different things to different bounded-contexts or

microservices. That means that you’ll need some way to reconcile changes across the different models

when changes happen. This is where event-driven communication based on asynchronous messaging

must be used.

When using messaging, processes communicate by exchanging messages asynchronously. A client

makes a request to a service by sending it a message. If the service is expected to reply, it does so by

sending a separate message back to the client. Since the communication is asynchronous, the client

does not block waiting for a reply. Since it is a message-based communication, the client is assuming

that the reply will not be received immediately.

A message consists of headers (metadata such as identification or security information) and a

message body. Messages are exchanged over channels. Any number of senders can send messages to

a channel. Similarly, any number of consumers can receive messages from a channel.

In regards infrastructure for this type of communication the preferred approach in the microservices

community is to use messaging over a lightweight message bus. The infrastructure chosen is typically

dumb (dumb as in acts as a message router only) - simple implementations such as RabbitMQ or

cloud scale ready like Azure Service Bus, provide a reliable asynchronous fabric, but most of the

“smart thinking” still lives in the end points that are producing and consuming messages; in the

microservices.

There are two kinds of channels or communications, “one‑to‑one” communication and

“publish‑subscribe” communication.

One-to-One Asynchronous message communication

A point‑to‑point communication delivers a message to exactly one of the consumers that is reading

from the channel, so it will be processed just once. A publish‑subscribe channel delivers each message

to all the attached or subscribed consumers. Services use publish‑subscribe channels for the

one‑to‑many interaction styles described before.

Message-based asynchronous communication is especially well suited to propagate data updates

across a microservice architecture. For example, if one microservice’s data is updated but that same

data needs to be propagated to a different microservice, that kind of inter-microservice

communication should be based on asynchronous communication by using integration events

between microservices, as in image X-XX.

32 Microsoft Platform and Tools for Docker

Multiple protocols for the asynchronous message communications can be used. You could use

message queues for this communication, or you could also use HTTP asynchronously.

One-to-Many Asynchronous message communication

Additionally, you might want to use a Publish/Subscribe mechanism so your communication from the

sender will be available to additional subscriber microservices or even external applications in the

future.

When using a Publish/Subscribe communication you might be using an Event-Bus interface to publish

events to any subscriber. Another possibility (usually for different purposes) is a real-time and one-to-

many communication with protocols such as WebSockets and higher level frameworks such as

ASP.NET SignalR.

Asynchronous Real-Time communication

As shown in image X-XX, real-time asynchronous communication means that you can have server

code push content to connected clients instantly as it becomes available, rather than having the server

wait for a client to request new data.

Figure X-XX. One-to-One async message communication

Figure X-XX. Asynchronous Real-Time communication

https://en.wikipedia.org/wiki/WebSocket
https://www.asp.net/signalr

33 Microsoft Platform and Tools for Docker

Since it is real-time, client apps will show the changes almost instantly. This is usually handled by a

protocol such as WebSockets. A typical example is when a service communicates a change in the

score of a sports game to many client web apps, simultaneously.

Asynchronous Event-Driven communication

When using this type of communication and architectural approach, a microservice publishes an event

when something notable happens, such as when it updates a business entity. Other microservices

subscribe to those events. When a microservice receives an event, it can update its own business

entities, which might lead to more events being published. This subscription/publication system is

usually performed by using any implementation of an Event Bus. The Event Bus will be designed as an

abstraction/interface with the API needed to subscribe/unsubscribe to events and to publish events

plus one or multiple implementations based on any inter-process and messaging communication like

a messaging queue or Service Bus supporting asynchronous communication and a subs/pubs model.

As introduced in the previous section “Challenges and solutions for Distributed Data Management”,

you can use events to implement business transactions that span multiple services, and you will have

eventual consistency between those services. An Eventual-Consistent transaction consists of a series

of distributed steps. Each step consists of a microservice updating a business entity and publishing an

event that triggers the next step.

A very important point is that you might want to communicate the same event to multiple destination

microservices that are subscribed to the same event. For that, you can use the Publish/Subscribe

messaging based on event-driven communication, as shown in image X-XX. This Pub/Subs

mechanism is not exclusive to the microservice architecture, it is similar to the way Bounded-Contexts

in Domain-Driven Design should communicate or the way you propagate updates from the “writes-

database” to the “reads-database” in CQRS (Command and Query Responsibility Segregation)

architectural approach so you can have eventual consistency between multiple data sources across

your distributed system.

Figure X-XX. Event-Driven and async message communication

http://martinfowler.com/bliki/BoundedContext.html
http://dddcommunity.org/learning-ddd/what_is_ddd/
http://martinfowler.com/bliki/CQRS.html

34 Microsoft Platform and Tools for Docker

In regards to the protocol communication to use for event-driven message-based communications, it

depends on your implementation. A reliable queued communication could be achieved by using

AMQP, but using HTTP asynchronously could also be a choice, although less reliable.

What you will probably need is some kind of abstraction level (like an Event-Bus interface) based on a

related implementation in classes with code using the API from a service bus like Azure Service Bus

with Topics or a queue-based system as RabbitMQ, or even higher level Service Buses like

NServiceBus or MassTranssit, so you can articulate the mentioned Publish/Subscribe system.

Note on messaging technologies for production systems: Notice that among the multiple

messaging technologies you can choose for implementing your abstract Event Bus, some of them can

be at a different level than others. For instance, RabbitMQ (messaging broker transport) sits on a

lower level than other commercial products like Azure Service Bus, NServiceBus (which can work on

top of either RabbitMQ and even on top of Azure Service Bus), or MassTranssit (which can work on

top of RabbitMQ). It really depends on how many features and out-of-the-box scalability you need for

your application. For implementing just an Event Bus proof of concept for your development

environment like in the eShopOnContainers sample, a simple implementation on top of “RabbitMQ

running as a container” might be enough. But for mission critical and production systems needing

hyper-scalability you might want to evaluate and use Azure Service Bus. Or for having high level

abstractions and features that make distributed development easier, other commercial and Open

Source service buses like NServiceBus, MassTransit or any other like Rebus and Rhino ESB are pretty

much recommended for you to evaluate. Of course, you could always build more “service bus

features” on top of lower level technologies like RabbitMQ and Docker, but that “plumbing work”

might cost you too much for a custom enterprise application.

Challenge: Atomic transactional operation when publishing message based events

One challenge with implementing an event-driven architecture across multiple microservices is how to

atomically update state in the original microservice while publishing its related event, in a single

transaction. There are a few ways to accomplish this:

1. Using a transactional database table as a message queue that will be the base for an event-

creator component that would create the event and publish it.

2. Using transaction log mining.

3. Using the event sourcing pattern.

Resilient publish to the event bus

A challenge when implementing an event-driven architecture across multiple microservices is how to

atomically update state in the original microservice while resiliently publishing its related integration

event into the event bus, somehow based on transactions. The following are a few ways to accomplish

this, although there could be additional approaches, as well:

1. Using a transactional (DTC based) queue as MSMQ (However, this is a legacy approach)

2. Using transaction log mining

3. Using full event sourcing pattern

4. Using a transactional database table as a message queue that will be the base for an event-

creator component that would create the event and publish it.

These approaches are discussed in further details in the implementation sections of this

documentation.

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://www.rabbitmq.com/
http://www.scoop.it/t/sql-server-transaction-log-mining
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://www.scoop.it/t/sql-server-transaction-log-mining
https://msdn.microsoft.com/en-us/library/dn589792.aspx

35 Microsoft Platform and Tools for Docker

References – Publish/subscribe, eventual consistency and other DDD patterns

Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

Publish/Subscribe channel

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

CQRS (Command and Query Responsibility Segregation)

http://microservices.io/patterns/data/cqrs.html

https://msdn.microsoft.com/en-us/library/dn568103.aspx

Communicating Between Bounded-Contexts

https://msdn.microsoft.com/en-us/library/jj591572.aspx

Eventual Consistency

https://en.wikipedia.org/wiki/Eventual_consistency

Strategies for Integrating Bounded Contexts

http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

Creating and Evolving microservice APIs and Contracts

A microservice API is a contract between the service and its clients. You will only be able to evolve a

microservice independently if you don’t break your API contract; that is why that contract is so

important. If you change that contract, it will impact your client applications or your API Gateway. The

nature of the API definition depends on which protocol you are using. For instance, if you are using

messaging (like AMQP), the API consists of the message types. If you are using HTTP and RESTFul

services, the API consists of the URLs and the request and response JSON formats.

However, even when you might be thoughtful about your initial contracts, a service API will need to

change over time. When that happens, especially when your API is not used just by a single

application but it is a public API consumed by multiple client applications, you typically can’t force all

clients to upgrade to your new API contract. You will usually need to incrementally deploy new

versions of a service such that both old and new versions of a service contract will be running

simultaneously, therefore, it is important to have a strategy for your service versioning.

When the API changes are small, like when adding new attributes or parameters to your API, clients

that use an older API should continue to work with the new version of the service. You might be able

to provide default values for the missing required attributes and the clients might be able to ignore

any extra response attributes.

Sometimes, however, you need to make major and incompatible changes to a service API. Since you

might not be able to force client applications or services to upgrade immediately to the new version, a

service must support older versions of the API for some period. If you are using an HTTP-based

mechanism such as REST, one approach is to embed the API version number in the URL. Then, you

can decide between implementing both versions simultaneously within the same service instance or

alternatively, you could deploy different instances that each handle a version of the API.

References – Versioning ASP.NET Core Web API services

ASP.NET Core RESTful Web API versioning made easy

http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

http://microservices.io/patterns/data/cqrs.html
https://msdn.microsoft.com/en-us/library/dn568103.aspx
https://msdn.microsoft.com/en-us/library/jj591572.aspx
https://en.wikipedia.org/wiki/Eventual_consistency
https://www.amqp.org/
http://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

36 Microsoft Platform and Tools for Docker

Microservices addressability and the Service Registry

Each microservice has a unique name (URL) used to resolve its location. Your microservice needs to be

addressable wherever it is running. If you are thinking about machines and which one is running a

particular microservice, things can go bad quickly. In the same way that DNS resolves a URL to a

particular machine, your microservice needs to have a unique name so that its current location is

discoverable. Microservices need addressable names that make them independent from the

infrastructure that they are running on. This implies that there is an interaction between how your

service is deployed and how it is discovered, because there needs to be a service registry. Equally,

when a machine fails, the registry service must tell you where the service is now running.

The service registry is a key part of service discovery. It is a database containing the network locations

of service instances. A service registry needs to be highly available and up to date. Clients could cache

network locations obtained from the service registry. However, that information eventually becomes

out of date and clients become unable to discover service instances. Consequently, a service registry

consists of a cluster of servers that use a replication protocol to maintain consistency.

In some microservice deployment environments (called clusters, to be covered in a later section),

service discovery is built-in. For example, within an Azure Container Service environment, Kubernetes

and DC/OS with Marathon can handle service instance registration and deregistration. They also run a

proxy on each cluster host that plays the role of server-side discovery router. Another example is

Azure Service Fabric, which also provides a Service Registry.

References

The Service Registry pattern

http://microservices.io/patterns/service-registry.html

Resiliency and high availability in Microservices

Dealing with unexpected failures is one of the hardest problems to solve, especially in a distributed

system. Much of the code that we write as developers is handling exceptions, and this is also where

the most time is spent in testing. The problem is more involved than writing code to handle failures.

What happens when the machine where the microservice is running fails? Not only do you need to

detect this microservice failure (a hard problem on its own), but you also need something to restart

your microservice.

A microservice needs to be resilient to failures and restart often on another machine for availability

reasons. This also comes down to the state that was saved on behalf of the microservice, where the

microservice can recover this state from, and whether the microservice can restart successfully. In

other words, there needs to be resilience in the compute (the process restarts) as well as resilience in

the state or data (no data loss and the data remains consistent).

The problems of resiliency are compounded during other scenarios, such as when failures happen

during an application upgrade. The microservice, working with the deployment system, doesn't need

to recover. It also needs to then decide whether it can continue to move forward to the newer version

or instead roll back to a previous version to maintain a consistent state. Questions such as whether

enough machines are available to keep moving forward and how to recover previous versions of the

microservice need to be considered. This requires the microservice to emit health information to be

able to make these decisions.

http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/service-registry.html

37 Microsoft Platform and Tools for Docker

Health Reports and Diagnostics in Microservices

It may seem obvious, and it is often overlooked, but a microservice must report its health and

diagnostics. Otherwise, there is little insight from an operations perspective. Correlating diagnostic

events across a set of independent services and dealing with machine clock skews to make sense of

the event order is challenging. In the same way that you interact with a microservice over agreed-

upon protocols and data formats, there emerges a need for standardization in how to log health and

diagnostic events that ultimately end up in an event store for querying and viewing. In a microservices

approach, it is key that different teams agree on a single logging format. There needs to be a

consistent approach to viewing diagnostic events in the application.

Health is different from diagnostics. Health is about the microservice reporting its current state to take

appropriate actions. A good example is working with upgrade and deployment mechanisms to

maintain availability. Although a service may be currently unhealthy due to a process crash or machine

reboot, the service might still be operational. The last thing you need is to make this worse by

performing an upgrade. The best approach is to do an investigation first or allow time for the

microservice to recover. Health events from a microservice help us make informed decisions and, in

effect, help create self-healing services.

When creating a microservice-based application you need to deal with complexity. Of course, a single

microservice is simple to deal with, but tens or hundreds of types and thousands of instances of

microservices is a complex problem to solve. It’s not just about building your microservice architecture

but you will also need, high availability, addressability, resiliency, health and diagnostics if you intend

to have a stable and cohesive system.

Those mentioned complex problems shown in figure XX-X are very hard to solve by yourself.

However, development teams should focus on solving business problems and building custom

applications with microservices approaches but not solving those complex infrastructure problems or

the cost of any microservice-based application would be huge. Therefore, there are microservice-

oriented platforms (usually called orchestrators or microservice clusters) that try to solve those hard

problems of building and running a service and utilize infrastructure resources efficiently, reducing the

complexities of building applications with a microservice approach.

Orchestrators might sound similar in concept, but the capabilities offered by each of them can be

different in terms of features available from each and their maturity state, sometimes depending on

the OS platform.

Figure X-XX. A Microservice Platform is fundamental for Microservice based applications

38 Microsoft Platform and Tools for Docker

Orchestrating microservices and multi-container

applications for high-scalability and availability
In this more enterprise and advanced scenario using microservices or even simpler multi-container

applications, you are building an application composed by multiple services. If it is a microservice-

approach, each microservice would own its model/data so it will be autonomous from a development

and deployment point of view. But even if you have a more traditional application that is also

composed by multiple services (like SOA), you will also have multiple containers/services comprising a

single business application that need to be deployed as a distributed system.

An architecture for composed and microservices approaches using containers would be like the

diagram in Figure X-X.

It looks a logical approach, but now, how are you load-balancing, routing and orchestrating these

composed applications?

While the Docker CLI meets the needs of managing one container on one host, it falls short when it

comes to managing multiple containers deployed on multiple hosts targeting more complex

distributed applications. In most cases, you need a management platform that will automatically spin

containers up, suspend them or shut them down when needed and, ideally, also control how they

access resources like the network and data storage.

To go beyond the management of individual containers or very simple composed apps and target

larger enterprise applications and microservices approaches, you must turn to orchestration and

clustering platforms for Docker containers like Docker Swarm, Mesosphere DC/OS and Kubernetes

Figure X-X. Cluster of containers

39 Microsoft Platform and Tools for Docker

available as part of Microsoft Azure Container Service or Microsoft’s microservices orchestrator Azure

Service Fabric.

From an architecture and development point of view it is important to drill down on those mentioned

platforms and products supporting advanced scenarios (clusters and orchestrators) if you are building

large enterprise composed of microservices based applications.

Clusters. When applications are scaled out across multiple host systems, the ability to manage each

host system and abstract away the complexity of the underlying platform becomes attractive. That is

precisely what Docker clusters and schedulers provide. Examples of Docker clusters are Docker Swarm,

Mesosphere DC/OS. Both can run as part of the infrastructure provided by Microsoft Azure Container

Service.

Schedulers. "Scheduling" refers to the ability for an administrator to load a service file onto a host

system that establishes how to run a specific container. Launching containers in a Docker cluster tends

to be known as scheduling. While scheduling refers to the specific act of loading the service definition,

in a more general sense, schedulers are responsible for hooking into a host's init system to manage

services in whatever capacity needed.

A cluster scheduler has multiple goals: using the cluster’s resources efficiently, working with user-

supplied placement constraints, scheduling applications rapidly to not let them in a pending state,

having a degree of “fairness”, being robust to errors and always available.

As you can see, the concept of cluster and scheduler are very tight, so usually the final product

provided from different vendors provide both capabilities.

The list below shows the most important platform/software choices you have for Docker clusters and

schedulers. Those clusters can be offered in public clouds like Azure with Azure Container Service.

Software Platforms for Container Clustering, Orchestration and Scheduling

Docker Swarm

Docker Swarm is a clustering and scheduling tool for Docker containers.

It turns a pool of Docker hosts into a single, virtual Docker host. Because

Docker Swarm serves the standard Docker API, any tool that already

communicates with a Docker daemon can use Swarm to transparently

scale to multiple hosts.

Docker Swarm is a product created by Docker itself.

Docker v1.12 or later can run native and built-in Swarm Mode, although

v1.12 is also backwards compatible for people who desire K8S

(Kubernetes)

Mesosphere DC/OS

Mesosphere Enterprise DC/OS (based on Apache Mesos) is an enterprise

grade datacenter-scale operating system, providing a single platform for

running containers, big data, and distributed apps in production.

Mesos abstracts and manages the resources of all hosts in a cluster. It

presents a collection of the resources available throughout the entire

cluster to the components built on top of it. Marathon is usually used as

orchestrator integrated to DC/OS.

40 Microsoft Platform and Tools for Docker

Google Kubernetes

Kubernetes spans cluster infrastructure plus containers scheduling and

orchestrating capabilities. It is an open-source platform for automating

deployment, scaling, and operations of application containers across

clusters of hosts, providing container-centric infrastructure.

It groups containers that make up an application into logical units for

easy management and discovery.

Azure Service Fabric

Service Fabric is a Microsoft’s microservices platform for building

applications. It is an orchestrator of services and creates clusters of

machines. By default, Service Fabric deploys and activates services as

processes but Service Fabric can deploy services in Docker container

images and more importantly you can mix both services in processes and

services in containers together in the same application.

This feature (Service Fabric deploying services as Docker containers) is in

preview for Linux and will be in preview for Windows Server 2016 in the

upcoming release

Service Fabric services can be developed in many ways from using

the Service Fabric programming models to deploying guest executables

as well as containers. Service Fabric supports prescriptive application

models like Stateful services and Reliable Actors.

Figure 5-7. Software platforms for container clustering, orchestrating, and scheduling

Docker clusters in Microsoft Azure

From a cloud offering perspective, several vendors are offering Docker containers support plus Docker

clusters and orchestration support, including Microsoft Azure, Amazon EC2 Container Service, Google

Container Engine, and others.

Microsoft Azure provides Docker cluster and orchestrator support through Azure Container Service

(ACS) as explained in the next section.

Another choice is to use Microsoft’s Azure Service Fabric (a microservices platform) which will

support Docker in an upcoming release. Service Fabric runs on Azure or any other cloud, and also on-

premises.

https://azure.microsoft.com/en-us/documentation/articles/service-fabric-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-cluster-resource-manager-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-containers-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-containers-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-existing-app/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-anywhere/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-deploy-anywhere/

41 Microsoft Platform and Tools for Docker

Azure Container Service

A Docker cluster pools multiple Docker hosts and exposes them as a single virtual Docker host, so you

can deploy multiple containers into the cluster. The cluster will handle all the complex management

plumbing, like scalability, health, and so forth. Figure 5-8 represents how a Docker cluster for

composed applications maps to Azure Container Service (ACS).

Azure Container Service (ACS) provides a way to simplify the creation, configuration, and

management of a cluster of virtual machines that are preconfigured to run containerized applications.

Using an optimized configuration of popular open-source scheduling and orchestration tools, ACS

enables you to use your existing skills or draw upon a large and growing body of community expertise

to deploy and manage container-based applications on Microsoft Azure.

Azure Container Service optimizes the configuration of popular Docker clustering open source tools

and technologies specifically for Azure. You get an open solution that offers portability for both your

containers and your application configuration. You select the size, the number of hosts, and choice of

orchestrator tools, and Container Service handles everything else.

Figure 5-8. Clustering choices in ACS

ACS leverages Docker images to ensure that your application containers are fully portable. It supports

your choice of open-source orchestration platforms like DC/OS (powered by Apache Mesos),

Kubernetes (originally created by Google) and Docker Swarm, to ensure that these applications can

be scaled to thousands or even tens of thousands of containers.

42 Microsoft Platform and Tools for Docker

The Azure Container service enables you to take

advantage of the enterprise grade features of

Azure while still maintaining application

portability, including at the orchestration layers.

From a usage perspective, the goal of Azure

Container Service is to provide a container

hosting environment by using popular open-

source tools and technologies. To this end, it

exposes the standard API endpoints for your

chosen orchestrator. By using these endpoints,

you can leverage any software that can talk to

those endpoints. For example, in the case of the

Docker Swarm endpoint, you might choose to use

the Docker command-line interface (CLI). For

DC/OS, you might choose to use the DC/OS CLI.

Getting started with Azure Container Service

To begin using Azure Container Service, you deploy an Azure Container Service cluster from the Azure

portal by using an Azure Resource Manager template or with the CLI. Available templates include

(Docker Swarm, Kubernetes, and DC/OS. The provided quickstart templates can be modified to

include additional or advanced Azure configuration. For more information on deploying an Azure

Container Service cluster, see Deploy an Azure Container Service cluster.

There are no fees for any of the software installed by default as part of ACS. All default options are

implemented with open source software.

ACS is currently available for Standard A, D, DS, G and GS series Linux virtual machines in Azure.

You are only charged for the compute instances you choose, as well as the other underlying

infrastructure resources consumed such as storage and networking. There are no incremental charges

for the ACS itself.

References for Azure Container Service and related technologies

Azure Container Service introduction

https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/

Docker Swarm

https://docs.docker.com/swarm/overview/

https://docs.docker.com/engine/swarm/

Mesosphere DC/OS

https://docs.mesosphere.com/1.7/overview/

Kubernetes

http://kubernetes.io/

Figure 5-9. Orchestrators in ACS

https://azure.microsoft.com/documentation/articles/xplat-cli-install/
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-swarm
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-kubernetes
https://github.com/Azure/azure-quickstart-templates/tree/master/101-acs-dcos
https://azure.microsoft.com/en-us/documentation/articles/container-service-deployment/
https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/swarm/
https://docs.mesosphere.com/1.7/overview/
http://kubernetes.io/

43 Microsoft Platform and Tools for Docker

Azure Service Fabric

Azure Service Fabric arose from Microsoft’s transition from delivering box products, which were

typically monolithic in style, to delivering services. The experience of building and operating large

services at scale, such as Azure SQL Database, Azure Document DB, Azure Service Bus or Cortana’s

Backend, shaped Service Fabric. The platform evolved over time as more and more services adopted

it. Importantly, Service Fabric had to run not only in Azure but also in standalone Windows Server

deployments.

The aim of Service Fabric is to solve the hard problems of building and running a service and utilizing

infrastructure resources efficiently, so that teams can solve business problems using a microservices

approach.

Service Fabric provides two broad areas to help you build applications that use a microservices

approach:

 A platform that provides system services to deploy, scale-out/scale-in, upgrade, detect, and

restart failed services, discover service location, manage state, and monitor health. These

system services in effect enable many of the characteristics of microservices described

previously.

 Programming APIs, or frameworks, to help you build applications as microservices: reliable

actors and reliable services. Of course, you can choose any code to build your microservice,

but these APIs make the job more straightforward, and they integrate with the platform at a

deeper level. This way, for example, you can get health and diagnostics information, or you

can take advantage of reliable state management.

Service Fabric is agnostic to how you build your service, and you can use any technology. However, it

does provide built-in programming APIs that make it easier to build microservices.

As shown in figure X-XX, you can create and run microservices in Service Fabric either as simple

processes or as Docker containers.

Service Fabric clusters based on Linux and Windows hosts can run Docker containers. But, note that as

of early 2017, Service Fabric clusters on Windows support just guest containers, meaning that on

Windows only regular microservices with no containers can make use of the Reliable Services API.

However, in upcoming versions of Azure Service Fabric, you will be able to run either Linux containers

or Windows Containers with further access to the Azure Service Fabric infrastructure and APIs.

Figure X-X. Deploying microservices as processes or as containers in Azure Service Fabric

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework

44 Microsoft Platform and Tools for Docker

S E C T I O N

5

Development process for
Docker based applications

Vision
Develop containerized .NET applications the way you like, either IDE focused with Visual Studio and

Visual Studio tools for Docker or CLI/Editor focused with Docker CLI and Visual Studio Code.

Development environment for Docker apps

Development tools choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you

covered when developing Docker applications.

Visual Studio with Docker Tools. If you’re using Visual Studio 2015 you can install the add-in tools

“Docker Tools for Visual Studio”. If you’re using Visual Studio 2017, Docker Tools are already installed.

In either case you can develop, run and validate your applications directly in the target Docker

environment. F5 your application (single container or multiple containers) directly into a Docker host

with debugging, or CTRL + F5 to edit & refresh your app without having to rebuild the container. This

is the simplest and most powerful choice for Windows developers targeting Docker containers for

Linux or Windows.

Download Docker Tools for Visual Studio

Download Docker for Mac and Windows

Visual Studio Code and Docker CLI (Cross-Platform Tools for Mac, Linux and Windows). If you prefer

a lightweight and cross-platform editor supporting any development language, you can use Microsoft

Visual Studio Code and Docker CLI. These products provide a simple yet robust experience that

streamlines the developer workflow. By installing either the “Docker for Mac” or “Docker for Windows”

development environment, Docker developers can use a single Docker CLI to build apps for both

Windows and Linux. Additionally, Visual Studio Code supports extensions for Docker such as

intellisense for Dockerfiles and shortcut-tasks to run Docker commands from the editor.

Download Visual Studio Code

Download Docker for Mac and Windows

https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4
http://www.docker.com/products/docker
http://www.docker.com/products/docker
https://code.visualstudio.com/download
http://www.docker.com/products/docker
http://www.docker.com/products/docker

45 Microsoft Platform and Tools for Docker

.NET languages and frameworks for Docker containers

As introduced in initial sections, you can use .NET Framework, .NET Core, or the OSS project Mono

when developing Docker containerized .NET applications. You can develop in C#, F# or Visual Basic

targeting Linux or Windows containers, depending on the chosen framework.

Development workflow for Docker apps

The application development lifecycle starts from each developer’s machine, coding the app using

their preferred language and testing it locally. There is one very important point in common no matter

which language, framework, and platform you choose. With this workflow, you are always developing

and testing Docker containers, but you are doing so locally.

Each container (an instance of a Docker image) will contain the following components:

 An operating system selection (For example, a Linux distribution, Windows Nano Server, or

Windows Server Core).

 Files added by the developer (app binaries, etc.).

 Configuration (environment settings and dependencies).

 Instructions for the processes that Docker should run.

The inner-loop development workflow that utilizes Docker can be set up as the following process

explains in several steps. Note that the initial steps to set up the environment are not included, as that

has to be done only once.

Workflow for developing Docker container based applications

An app will be composed of your own services plus additional libraries (dependencies).

The following are the basic steps you usually take when building a Docker app, as illustrated in Figure

X-XX.

Figure X-XX. Step-by-step workflow developing Docker containerized apps

46 Microsoft Platform and Tools for Docker

In this guide, this whole process is detailed and every critical step is explained.

When using a CLI+Editor development approach like using just Visual Studio Code plus Docker CLI,

you need to know every step. If using Visual Studio Code and Docker CLI, check the eBook

Containerized Docker Application lifecycle with Microsoft Platforms and Tools for explicit non-Visual

Studio details.

When using Visual Studio 2015 or 2017, many of those steps are transparent so it dramatically

improves your productivity. This is especially true when using Visual Studio 2017 and targeting

multi-container applications. For instance, with just one mouse click, Visual Studio adds the dockerfile

and docker-compose.yml files to your projects with the needed configuration. Visual Studio builds the

Docker image and runs the multi-container application directly in Docker after hitting F5, and it even

allows you to debug several containers at once. These features will boost your development speed.

However, making those steps transparent doesn’t mean that you don’t need to know what’s going on

underneath with Docker. Therefore, every step is detailed in the following step-by-step guidance.

Visual Studio simplifies that workflow to “the minimum” as explained in the next sections.

Step 1. Start coding and create your initial app/service baseline

The way you develop your application is similar to the way you would do it without Docker. The

difference is that while developing for Docker, you are deploying and testing your application or

services running within Docker containers placed in your local environment (either a Linux VM or

Windows).

Setup of your local environment

With the latest version of Docker for Windows, it is easier than ever to develop Docker applications.

The setup is straightforward, as explained in the following reference.

Installing Docker for Windows: https://docs.docker.com/docker-for-windows/

In addition, you’ll need Visual Studio 2015 with the tools for Docker, or Visual Studio 2017 which

includes the tooling for Docker if you selected the “.NET Core and Docker” workload during

installation, as shown in Figure x-x.

Visual Studio 2017: https://www.visualstudio.com/vs/visual-studio-2017/

Visual Studio 2015: https://www.visualstudio.com/vs/visual-studio-2015/

Figure X-X. Selecting the VS workload including Docker Tools

http://aka.ms/dockerlifecycleebook/
https://docs.docker.com/docker-for-windows/
https://www.visualstudio.com/vs/visual-studio-2017/
https://www.visualstudio.com/vs/visual-studio-2015/

47 Microsoft Platform and Tools for Docker

Visual Studio Tools for Docker:

http://aka.ms/vstoolsfordocker

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker

Working with .NET and Visual Studio

You can start coding your app in .NET (usually in .NET Core if you are planning to use containers) even

before enabling Docker in your app and deploying/testing in Docker. However, it’s recommended that

you start working on Docker as soon as possible, as that will be the real environment and any issues

can be discovered as soon as possible. This is very much encouraged because Visual Studio makes it

so easy to work with Docker that it almost feels transparent, even with debugging support with multi-

container applications.

Step 2. Create a dockerfile related to an existing .NET base image

You will need a dockerfile per custom image to be built and per container to be deployed. If your app

contains a single custom service, you will need a single dockerfile. If your app contains multiple

services (as in a microservices architecture), you’ll need one dockerfile per service.

The dockerfile is placed within the root folder of your app/service and contains the required

commands so Docker knows how to setup up and run your app/service. You can manually create a

dockerfile in code and add it to your project along with your .NET dependencies, however, with Visual

Studio and its tools for Docker, it is as simple as a few mouse clicks.

When you create a new project in Visual Studio 2017, there’s a new check-box option named “Enable

Container (Docker) Support”, as highlighted in figure X-X.

You can also enable Docker support on a new or existing project by simply right clicking on your

project file in Visual Studio and selecting the menu option “Add-Docker Project Support” if your app

Figure X-X. Enabling Docker Support when creating a new project

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker

48 Microsoft Platform and Tools for Docker

contains a single project/service or “Add-Docker Solution support” if you app is a multi-container

application, as shown in figure X-X.

That simple action on a single project (single container application) will add a dockerfile to your

project with the required configuration, so you might not need to do anything else. However, the

following is what happens under the covers when Visual Studio creates the dockerfile for you.

Option A - Using an existing official .NET Docker image

You usually build your custom image for your container on top of a base-image you can get from any

official repository at the Docker Hub registry. Earlier it was explained which Docker images and repos

you can have, depending on the chosen framework and OS. For instance, if you chose to use ASP.NET

Core and Linux, the image to use would be “microsoft/aspnetcore:1.1.0”. Therefore, you just need to

specify what base Docker image you’ll be using for your container by writing that in your dockerfile,

for example, adding “FROM microsoft/aspnetcore:1.1.0” to your dockerfile.

Using an official .NET image repository at Docker Hub with a version number ensures that the same

language features are available on all machines (including development, testing, and production).

For instance, a sample dockerfile for an ASP.NET Core container would be the following:

In this case, it is using the version 1.1.0 of the official ASP.NET Core Docker image for Linux named
“microsoft/aspnetcore:1.1.0”. For further details, see the ASP.NET Core Docker Image page and

the .NET Core Docker Image page. In the dockerfile, you also need to instruct Docker to listen to the

TCP port you will use at runtime (like port 80, in this case).

There are other lines of configuration you can add in the Dockerfile depending on the

language/framework you are using, so Docker knows how to run the app. For instance, the

Figure X-XX. Enabling Docker support in a Visual Studio 2017 project

Figure X-XX. Sample Dockerfile for a .NET Core container

https://hub.docker.com/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/

49 Microsoft Platform and Tools for Docker

ENTRYPOINT line with ["dotnet", "MySingleContainerApp.dll"] is needed to run a .NET Core app,

although you can have multiple variants depending on the approach to build and run your service. If

using the SDK and dotnet CLI to build and run the .NET app it would be slightly different. The bottom

line is that the ENTRYPOINT line plus additional lines will be different depending on the

language/platform you choose for your application.

References - Base Docker images

Building Docker Images for .NET Core Applications

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

Build your own images

https://docs.docker.com/engine/tutorials/dockerimages/

Multi-Platform Image repositories

As Windows containers become more prevalent, a single repo can contain platform variants, such as a

Linux and Windows image. This feature allows vendors to use a single repo to cover multiple

platforms. For example, the microsoft/dotnet repository available in the DockerHub registry provides

support for Linux and Windows Nano Server by using the same repo name with different tags, as

shown in the following examples.

microsoft/dotnet:1.1-runtime .NET Core 1.1 runtime-only on Linux Debian

microsoft/dotnet:1.1-runtime-nanoserver .NET Core 1.1 runtime-only on Windows Nano Server

In the future it probably will be possible to use the same repo name and tag, so when pulling an

image from a Windows host it will pull the Windows variant, while pulling the same image name from

a Linux host will pull the Linux variant.

Option B - Create your base-image from scratch

You can create your own Docker base image from scratch as explained in this Docker article. This is a

scenario that is probably not recommended for people starting with Docker, but if you want to set the

specific bits of your own base image, you can do so.

Step 3. Create your custom Docker images embedding your service in it

For each custom service in your app, you’ll need to create its related image. If your app is made up of

a single service or web-app, then you just need a single image.

Note that the Docker images are built automatically for you in Visual Studio. The following steps are

only needed for the Editor/CLI workflow.

Each developer needs to develop and test locally until you push a completed feature or change to

your source control system (for example, to GitHub). This means that you need to create the Docker

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images
https://docs.docker.com/engine/tutorials/dockerimages/
https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

50 Microsoft Platform and Tools for Docker

images and deploy your containers to a local Docker host (Windows or Linux VM) and run, test, and

debug against those containers.

To create a custom image in your local environment by using Docker CLI and your dockerfile, you can

use the docker build command, as in the following example.

Optionally, instead of directly running docker build from the project’s folder, you can first generate

a deployable folder with the needed .NET libraries and binaries with run dotnet publish, and then

use the docker build command:

This will create a Docker image with the name cesardl/netcore-webapi-microservice-
docker:first. In this case :first is a tag representing a specific version. You can repeat this step

for each custom image you need to create for your composed Docker application with several

containers.

When an application is made by multiple containers (multi-container app) you can also use the

docker-compose up --build command so it builds all the related images with a single command

by using the metadata exposed at the related docker-compose.yml files.

You can find the existing images in your local repository (on your dev machine) by using the docker

images command.

Creating Docker Images with Visual Studio
When you are using Visual Studio and a project with Docker support, you don’t explicitly create an

image, it will be created for you when you press F5 and run the dockerized application or service. This

step is transparent when working in Visual Studio, but it’s important that you know what’s going on

underneath.

Step 4. Define your services in docker-compose.yml when building a

multi-container Docker app with multiple services

The docker-compose.yml file lets you define a set of related services to be deployed as a composed

application with the deployment commands explained in the following section.

You need to create the file in your main or root solution folder, with content similar to that shown in

figure X-XX.

Figure X-XX. Creating a custom Docker Image

Figure X-XX. Viewing existing images using

"docker images"

51 Microsoft Platform and Tools for Docker

Note that the docker-compose.yml of the previous example is a simplified version which contains

static configuration data for each container that always applies plus configuration that might depend

from the deployment environment, like the connection string. This is a simplification for the sake of

simplicity, but in later sections you will see how you can split the docker-compose.yml configuration

in multiple files and override values depending on de environment and execution type

(debug/release).

In the docker-compose.yml file example, it defines five services. The webmvc service (a web app), two

microservices (ordering.api and basket.api) and two data source containers, ordering.data

based on SQL Server for Linux running as a container, and basket.data with a Redis cache service.

Each service will be deployed as a container, so we need to use a concrete Docker image for each.

For instance, for the webmvc service:

 Uses the pre-built eshop/web:latest image.

 Uses two environment variables initialized in this file.

Figure X-XX. Example "docker-compose.yml" file for a multi-container based app

52 Microsoft Platform and Tools for Docker

 Forwards the exposed port 80 on the container to port 8000 on the host machine.

 Explicitly links the web service to the basket and ordering service with depends_on so it will

wait for those services until they are started.

We will re-visit the docker-compose.yml file in a later section covering microservices and multi-

container apps.

Working with docker-compose.yml in Visual Studio 2017

When you add Docker Solution Support to a service project in your solution, Visual Studio is not just

adding a dockerfile file to your project, it is also adding a service section in your solution’s docker-

compose.yml files (or creating the files if it didn’t exist). It is an easy way to start composing your

multiple-container solution, and you can then open the docker-compose.yml files and update them

with additional features.

This action will not only add the dockerfile to your project, but it will also add the required

configuration lines of code to a global docker-compose.yml set at the solution level.

After adding Docker support to your solution in Visual Studio, you will also see a new node tree at the

solution Explorer with the added docker-compose.yml files.

You could deploy a multi-container application by using a single docker-compose.yml file when using

docker-compose up, however, Visual Studio add a group of them so you can override values

depending on the environment (dev vs. production) and the execution type (release vs. debug). This

capability will be better explained in later sections.

Figure X-XX. Enabling Docker Solution support in a Visual Studio 2017

project

Figure X-XX. Docker-compose tree node in Visual Studio 2017 Solution Explorer

53 Microsoft Platform and Tools for Docker

Step 5. Build and run your Docker app

If your app only has a single container, you can run it by deploying it to your Docker Host (VM or

physical server). However, if your app contains multiple services, you need to compose it, too. Let’s

look at the different options.

Option A. Running a single container

Running a single container with Docker CLI

You can run the Docker container using docker run command, as the following execution.

docker run -t -d -p 80:5000 cesardl/netcore-webapi-microservice-docker:first

Figure X-XX. Code example – running a Docker container using the "docker run" command

Note that for this deployment, we’re redirecting requests sent to port 80 to the internal port 5000.

This means that the application is listening on the external port 80 at the host level.

Option B. Running a multi-container application

In most enterprise scenarios, a Docker application will be composed of

multiple services, which means you need to run a multi-container

application as shown in figure X-XX.

Running a multi-container application with Docker CLI

In this case, you can execute the command docker-compose up that

will use the docker-compose.yml file that you might have at the solution

level, so it deploys a composed application with all its related

containers. The following example shows the results when running

the command from your main project directory containing the

docker-compose.yml file.

Figure X-XX. Example results when running the "docker-compose up" command

After running docker-compose up, the application and its related containers deployed into your

Docker Host, as illustrated in the VM representation in Figure X-XX.

Running and debugging a multi-container application with Visual Studio

Again, when using Visual Studio 2017 it cannot get simpler. You are not only running the multi-

container application, but you’re able to debug all its containers at once.

Figure X-XX. VM with Docker containers

deployed

54 Microsoft Platform and Tools for Docker

As mentioned before, each time you add Docker Solution Support to a specific project within a

solution, you will get that project configured in the global/solution docker-compose.yml, so you will

be able to run or debug the whole solution at once. Visual Studio will spin up a container per project

that has Docker solution Support enabled, creating all the internal steps for you (dotnet publish,

docker build to build the Docker images, etc.).

The important point here is that, as shown in figure X-XX, in Visual Studio 2017 there is an additional

Docker command under the F5 command button. You can run or debug a multiple container

application by running all the containers that are defined in the docker-compose.yml file at the

solution level. The file was modified by Visual Studio while adding Docker Solution Support to each of

your projects. This means that you could set several breakpoints, each breakpoint in a different

project/container, and while debugging from Visual Studio you will be stopping at breakpoints

defined in different projects and running on different containers.

For further details on the services implementation and deployment to a Docker host, read the

following articles.

Deploy an ASP.NET container to a remote Docker host:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

IMPORTANT NOTE: The docker-compose up and docker run commands (or running/debugging

the containers in Visual Studio) might be adequate for testing your containers in your development

environment, but might not be used at all if you are targeting Docker clusters and orchestrators like

Docker Swarm, Mesosphere DC/OS or Kubernetes in order to be able to scale-up. If using a cluster,

like Docker Swarm mode (available in Docker for Windows and Mac since version 1.12), you need to

deploy and test with additional commands like docker service create for single services, or when

deploying an app composed of several containers, using docker compose bundle and docker

deploy myBundleFile, by deploying the composed app as a stack as explained in the article

Distributed Application Bundles.

For DC/OS and Kubernetes you would use different deployment commands and scripts as well.

Step 6. Test your Docker application (locally, in your local Docker Host)

This step will vary depending on what your app is doing.

In a very simple .NET Core Web API hello world deployed as a single container/service, you’d just need

to access the service by providing the TCP port specified in the dockerfile, as in the following simple

example.

Figure X-XX. Running multi-container apps in Visual Studio 2017

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/
https://docs.docker.com/engine/swarm/
https://blog.docker.com/2016/06/docker-app-bundle/
https://mesosphere.com/blog/2015/09/02/dcos-cli-command-line-tool-datacenter/
http://kubernetes.io/docs/user-guide/deployments/

55 Microsoft Platform and Tools for Docker

If localhost is not enabled, to navigate to your service, find the IP address for the machine with this

command:

docker-machine ip your-container-name

Open a browser on the Docker host and navigate to that site, and you should see your app/service

running.

Figure 5-22. Example of testing your Docker application locally using localhost

Note that it is using the port 80 but internally it was being redirected to the port 5000, because that’s

how it was deployed with the docker run command, as explained in a previous step.

It can also be tested with CURL from the terminal, as shown in figure 5-23. In a Docker installation on

Windows, the default IP is 10.0.75.1.

Figure 5-23. Example of testing your Docker application locally using CURL

Testing and Debugging containers with Visual Studio

When running and debugging the containers with Visual Studio, you’ll be able to debug the .NET

application running on containers in much the same way as you would when running on the plain OS.

For further details on how to debug containers, read the following article:

Build, Debug, Update and Refresh apps in a local Docker container:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-edit-and-refresh/

Testing and Debugging without Visual Studio

When developing without Visual Studio, just using the CLI and maybe a code editor like Visual Studio

code, debugging is more difficult.

Container debugging for VS Code is out-of-scope for this doc and when using VS Code, users will

want to debug outside of a container whenever possible.

56 Microsoft Platform and Tools for Docker

Simplified workflow when developing containers with Visual Studio

Effectively, the workflow when using Visual Studio is a lot simpler than a regular Docker container

development process because most of the steps required by Docker related to dockerfile and docker-

compose.yml are hidden or simplified by Visual Studio, as shown in the image X-XX.

Even further, step number 2, “Add Docker support to your projects” needs to be done just once. So

usually that process or workflow remains similar to your usual development tasks when using plain

.NET. However, you still need to know what’s going on under the covers (images build process, what

base images you are using, deployment of containers, etc.) and sometimes you will also need to edit

the dockerfile or docker-compose.yml when customizing the behaviors. But, for most of the work, it’ll

be greatly simplified by using Visual Studio, making you a lot more productive.

Using PowerShell commands in a dockerfile to set up Windows

Containers

Windows Containers allow you to convert your existing Windows applications into Docker images and

deploy them with the same tools as the rest of the Docker ecosystem.

To use Windows Containers, you just need to run PowerShell commands in the dockerfile, as in the

following example.

FROM microsoft/windowsservercore
LABEL Description="IIS" Vendor="Microsoft" Version="10"
RUN powershell -Command Add-WindowsFeature Web-Server
CMD ["ping", "localhost", "-t"]

Figure 5-27. Code example – running Dockerfile PowerShell commands

In this case, we are using a Windows Server Core base image, also installing IIS with a PowerShell

command. In a similar way, you could also use PowerShell commands to set up additional

components like ASP.NET 4.x, .NET 4.6, or any other Windows software. For example: RUN

powershell add-windowsfeature web-asp-net45

Figure X-XX. Simplified workflow when developing with Visual Studio

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

57 Microsoft Platform and Tools for Docker

S E C T I O N

6

Developing and deploying
new single-container
based .NET Core
applications for Linux or
Windows Nano containers

Vision

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

Short section – “Easy to get started with Docker” choice – Regular Docker containers on Linux or

Windows Server Nano – Simple case with for example a monolithic ASP.NET Core MVC application

--

58 Architecting and developing Docker applications

S E C T I O N

7

Migrating and deploying
legacy monolithic .NET
Framework applications to
Windows containers

Problem Statement
Earlier sections of this document have championed a microservices architecture where business

applications are distributed among different containers each running small, focused services. That

goal has many benefits. In new application development that fits into the microservices approaches,

it’s strongly recommended as some enterprise critical applications will also gain enough benefits to

justify the cost of a re-architecture and re-implementation. But not every application will gain enough

benefits to justify the cost. That doesn’t mean they can’t be used in container scenarios, or gain some

important benefits, as well.

In this section, we’ll explore an internal application for eShopOnContainers. It’s a WebForms

application used to browse and modify the catalog entries. The WebForms dependency means this

application won’t run on .NET Core, without being re-written on MVC. You’ll see how you can run

applications like these in containers without changes. You’ll also see how you can make minimal

changes to enable them to access some of the services that have been moved to a microservices

architecture.

Benefits
The Catalog.WebForms application worked fine as a stand-alone web application accessing a high

availability data store. Even so, there are benefits gained by running the application in a container.

You create an image for the application. From that point forward, every deployment will be running in

the same environment. Every container will use the same OS version, have the same version of

dependencies installed, be using the same framework, and have been built using the same process.

In addition, developers will all be running the application in this consistent environment. Issues that

only appear with certain versions will appear immediately for developers rather than surfacing in a

staging or production environment. Differences between the development environments among the

development team matter less once applications run in containers.

59 Architecting and developing Docker applications

Finally, containerized applications have a flatter scale-out curve. You’ve learned how containerized

enable more containers in a VM, or more containers in a physical machine. This translates to higher

density and fewer needed resources.

Scenarios like these benefit from a “lift and shift” operation to enable running these applications in a

Docker container. The phrase “lift and shift” describes the scope of the task: You lift the entire

application from a physical or virtual machine, and shift it into a container. In ideal situations, you

don’t need to make any changes to the application code to run it in a container.

Path
The original application was self-contained, including data access libraries. The database ran on a

separate high availability machine. That configuration is simulated in the sample code by using a

mock catalog service: you can run the catalog.WebForms application against that fake data to

simulate a pure ‘lift and shift’ scenario. This demonstrates the simplest path where you move existing

assets to run in a container without the smallest amount of code changes. This path is appropriate for

applications that are “done”, and have minimal interaction with functionality that you are moving to

microservices.

You’ll also see a path where applications that you’ve migrated to a Windows based container can gain

some benefits from a small refactoring. The catalog.WebForms application accesses the catalog data.

A small set of code changes enables the WebForms application to access the catalog through the

microservice. These changes demonstrate the continuum you work with for your own applications.

You can do anything from moving an existing application into containers, to making small changes

that enable existing applications to access some of the new microservices to completely rewriting an

application to fully participate in a new microservice based architecture. The right path depends on

both the cost of the migration and the benefits from any migration.

Application Tour
You can load the Catalog.WebForms solution (available as part of the eShopOnContainers application)

and run the application as a stand-alone app. In this configuration, the startup code configures the DI

container to use the fake catalog service. Run the application and you’ll see the WebForms application

displaying the catalog data.

Most of the techniques used in this application should be very familiar to anyone that has used

WebForms. The use of the catalog microservice has introduced two techniques that might be

unfamiliar: dependency injection, and working with asynchronous data stores in WebForms.

Dependency Injection inverts the typical object oriented strategy of writing classes that allocate all

needed resources. Dependency injection means that classes request their dependencies from a service

container. The advantages of Dependency Injection is that you can replace external services with fakes

or mocks to support testing or other environments.

The DI container uses web.config appSettings to control whether to use the fake catalog data, or the

live data from the running service. You can see this in the Global classes Application_Start method:

 // Register Containers:
 var settings= WebConfigurationManager.AppSettings;

60 Architecting and developing Docker applications

 var useFake = settings["usefake"];
 bool fake = useFake == "true";
 var builder = new ContainerBuilder();
 if (fake)
 {
 builder.RegisterType<CatalogMockService>()
 .As<ICatalogService>();
 } else {
 builder.RegisterType<CatalogMockService>()
 .As<ICatalogService>();
 }
 var container = builder.Build();
 Application.Add("container", container);

The Default.aspx code behind asks for the catalog service from the DI container when the page loads.

You can see that in the LoadDatalogDataAsync() method. The code asks the container for the catalog

service. Because the service runs asynchronously, you need to use a different idiom in that method to

call the service. You need to register an async task that loads the data for the page.

 protected override void OnLoad(EventArgs e)
 {
 RegisterAsyncTask(new PageAsyncTask(LoadCatalogDataAsync));

 base.OnLoad(e);
 }

 private async Task LoadCatalogDataAsync()
 {
 var container = Application.Get("container") as IContainer;
 using (scope = container?.BeginLifetimeScope())
 {
 catalog = container?.Resolve<ICatalogService>();
 var collection = await catalog?.GetCatalogAsync();
 catalogList.DataSource = collection;
 catalogList.DataBind();
 }
 }

This task loads the data asynchronously from the catalog data service. Once that task is completed,

the code binds the returned collection to the web forms list control.

This same technique is used on other pages that require data from the catalog service.

The default configuration for the catalog web forms application uses a mock implementation of the

catlog.api service. This mock uses a hard coded dataset for its data. This simplifies some tasks by

removing the dependency on the catalog.api service in development environments.

61 Architecting and developing Docker applications

Lifting and Shifting
Visual Studio provides great support for containerizing an application. You right-click on the project

node, and select “Add”, and “Docker Support”. This template adds a new project to the solution

called “docker-compose”. This project contains the Docker assets that compose the images you need,

and start the necessary containers. In the simplest lift and shift scenarios, this will be the single service

that you use for the web forms application. The template has also changes your startup project to

point to the docker-compose project. That means Ctrl+F5 and F5 will now create the Docker image

and launch the Docker container.

Before you press Ctrl-F5, make sure you configure Docker to use Windows containers. This will restart

Docker. When you build, you’ll build the application, and the Docker image for the WebForms project.

The first time you do this, it takes considerable time. You’ll pull down the base Windows Server image

and the additional image for ASP.NET. Subsequent build and run cycles will be much faster.

The wizard creates several files for you. Visual studio uses these files to create the Docker image and

launch a container. You can also use those same files from the CLI to run Docker commands manually.

This Dockerfile shows the basics for building a Docker image based on the Windows ASP.NET image

and built to run an ASP.NET site:

FROM microsoft/aspnet
ARG source
WORKDIR /inetpub/wwwroot
COPY ${source:-obj/Docker/publish} .

The most important difference here is that the base image is “microsoft/aspnet”, which is the current

Windows server image that includes the traditional full .NET Framework. Other differences are that the

directories copied from your source directory are different.

The other files in the docker-compose project are the docker assets needed to build and configure the

containers. Visual Studio puts the various docker-compose.yml files under one node to highlight how

they are used. The base docker-compose file contains the directives that are common to all

configurations. The docker-compose.override.yml file contains environment variables and related

overrides for a developer configuration. The variants with .vs.debug and .vs.release provide

environment settings that enable Visual Studio to attach to and manage the running container.

While Visual Studio integration is part of adding Docker support to your solution, you can also build

and run from the command line, using ‘docker-compose up’ as you saw in previous sections.

Using the Catalog Microservice
You can reconfigure the webforms application to use the catalog microservice instead of the fake

data. Edit the web.config file and set the value of the ‘useFake’ key to false. The DI container will use

the class that access the live catalog microservice instead of the class that returns the hard coded

data. No other code changes are needed.

Accessing the live catalog service does mean you need to update the docker-compose project to

build the catalog service image and launch the catalog service container. Docker for Windows

supports both Linux containers and Windows containers, but not at the same time. So, in order to run

the catalog microservice, you need to build an image that runs it on top of a windows based

62 Architecting and developing Docker applications

container. That requires a different Dockerfile for the microservices project than you’ve seen in earlier

sections. It would be like the following dockerfile.

FROM microsoft/dotnet:1.1-runtime-nanoserver
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "Catalog.API.dll"]

The catalog microservice relies on the SQL server database. You’ll also need to build a windows based

SQL server image based on a similar container info in your docker-compose.yml file.

 sql.data:
 image: microsoft/mssql-server-windows
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"

Or you could always use an external SQL Server, on-premises or in Azure SQL Database and just

change the connection strings. But spinning up all as containers is a much straightforward way and

great for integration test.

The docker-compose file now builds a new windows-based image to run the SQL database and the

catalog microservice using the new Dockerfiles that build Windows based images. Then, it launches

an instance of all three containers in the same Docker host. Using this configuration, you are running

a Docker host with all three services: the SQL data store, the catalog microservice, and the Web Forms

application.

Development and Production Environments
There are a couple differences between this configuration and a production configuration. In the

development environment, you’ll be running the WebForms application, the catalog microservice and

the SQL database in Windows containers, as part of the same Docker Host. In earlier sections, you’ve

seen them deployed in the same Docker host as the other .NET core based services on a Linux based

Docker host. The advantage of running the multiple microservices in the same Docker host (or cluster)

is that you get lower latency from the network communication.

In the development environment, you must run all the containers in the same OS. Docker for Windows

does not support running Windows and Linux based containers at the same time. In production, you

can decide if you want to run the catalog microservice in a windows container in the same Docker

host (or cluster), or have the web forms application communicate with an instance of the catalog

microservice running in a Linux container on a different Docker host. It depends on where you want

the greater network latency. In most cases, you’ll want the microservices your applications depend

upon running in the same Docker host (or cluster) for ease of deployment, and lower communication

latency. In those configurations, the only costly communications is between the microservice instances

and the high-availability servers for the persistent data storage.

63 Architecting and developing Docker applications

Conclusion
The Lift and Shift scenario provides you with the benefits of moving to containerized deployments for

existing .NET applications. You can run applications that have taken dependencies on Windows OS

features. You can run applications that rely on features in the .NET Framework that are not available in

.NET Core.

This scenario can be the correct long term solution for some applications. In others, it may be a short

term solution on the path to a more complete migration to microservices. The possible benefits can

continue to be measured, and the cost of a further migration can be estimated to determine when or

if further investment is justified.

64 Architecting and developing Docker applications

S E C T I O N

8

Designing and developing
multi-container and
microservice based .NET
applications

Vision
Developing containerized microservice applications means you are building multi-container

applications, however, a multi-container application could also be simpler (like a 3-tier application) and

not necessarily following a microservice architecture.

Earlier it was asked “is Docker necessary when building a microservice architecture?”. The answer is a

clear “No”. Docker is an enabler and can provide significant benefits, but containers and Docker are

not a hard requirement for microservices. As an example, you could create a microservice based

application with or without Docker when using Azure Service Fabric, which supports microservices

running as simple processes or as Docker containers.

However, if you know how to design and develop a microservice architecture based application that is

also based on Docker containers as its unit of deployment, you will be able to design and develop any

other simpler application model. For example, you might design a 3-tier application that also requires

a multi-container approach. Because of that fact and because microservice architectures are an

important trend within the container world, this section focuses on a microservice architecture

implementation using Docker containers.

Designing a microservice oriented application

Application context

This section focuses on developing a hypothetical server-side enterprise application. It must support a

variety of different clients including desktop browsers running SPA (Single Page Applications),

traditional web apps, mobile web apps and native mobile apps. The application might also expose an

API for 3rd parties to consume. It might also integrate with other applications via either http services

or a message bus. The application handles requests by executing business logic, accessing databases

and returning HTML, JSON, or XML responses.

65 Architecting and developing Docker applications

The application will consist of multiple types of components:

 Presentation components - responsible for handling the UI and consuming remote services.

 Domain/business logic - the application’s domain logic.

 Database access logic - data access components responsible for accessing databases (SQL or

NO-SQL).

 Application integration logic - messaging layer, possible service buses, etc.

The application will have requisites of high scalability, but probably, certain sub-systems will require

higher scalability than others.

The application must be able to be deployed in multiple infrastructure environments (multiple public

clouds and on-premises) and ideally should be cross-platform, being able to move from Linux to

Windows (or vice versa) very easily.

Development team context

 You have multiple dev teams focusing on different business areas of the application.

 New team members must quickly become productive and the application must be easy to

understand and modify.

 The application will have a long-term evolution with ever-changing business rules.

 You need a good long-term maintainability, which means having agility when implementing

new changes in the future while being able to update multiple sub-systems with minimum

impact on the other sub-systems. The application must be easy to understand and modify.

 You want to practice continuous integration and continuous deployment of the application.

 You want to take advantage of emerging technologies (frameworks, programming languages,

etc.) while evolving the application in the long term. You don’t want to make full migrations of

the application when moving to new technologies, as that would bring high costs and impact

predictability and stability of the application.

Problem

What is going to be the application deployment architecture?

Solution

Architect the application, decomposing it in many autonomous sub-systems in the form of

collaborating microservices and containers (each microservice would be a container).

Each service/container implements a set of narrowly related functions. For example, an application

might consist of services such as the catalog service, ordering service, basket service, user profile

service, etc.

Microservices communicate using protocols such as HTTP/REST, asynchronously whenever possible,

especially when propagating changes/updates.

Microservices are developed and deployed as containers independently of one another. This means

that a development team can be developing and deploying a certain microservice/container without

impacting other sub-systems.

66 Architecting and developing Docker applications

Each microservice has its own database, allowing it to be fully decoupled from other microservices.

When necessary, consistency between databases from different microservices is achieved using

application-level events (through a logical event bus), as handled in CQRS (Command and Query

Responsibility Segregation). Because of that, the business constraints must embrace eventual

consistency between the multiple microservices and related databases.

eShopOnContainers - Reference app for .NET Core and microservices/containers

So you can focus on the architecture and technologies instead of thinking about the business domain,

we have selected a simplified ecommerce or e-shop application that presents a catalog of products,

takes orders from customers, verifies inventory, and other business features. This container-based

application’s source code is available on GitHub.

Source code – eShopOnContainers reference app (.NET Core & microservices/containers)
https://aka.ms/eShopOnContainers/

The application consists of multiple sub-systems, including several store UI front-ends (Web app and

native mobile app) along with the backend microservices/containers for all the required server-side

operations, as shown in figure X-XX.

Hosting environment: In the architecture diagram shown you see several containers deployed within

a single Docker Host. That would be the case when deploying to a single Docker Host with the

docker-compose up command. However, if using an orchestrator or container-cluster, each container

could be running in a different host/node and any node could be running any number of containers,

as explained in the architecture section when introducing orchestrators and clusters like the ones

available in Azure Container Service (Docker Swarm, Kubernetes or DC/OS) or Azure Service Fabric.

Communication architecture – Initially using Direct Client-to-Microservice Communication.

Figure X-XX. eShopOnContainers reference app – Using Direct Client-to-Microservice Communication

67 Architecting and developing Docker applications

The application will be deployed as a set of microservices in the form of containers, and client apps

can communicate with those containers, as well as communicate between microservices/containers.

Note that this initial architecture is using a Direct Client-To-Microservice communication architecture,

which means that a client app can make requests to each of the microservices directly. Each

microservice will have a public endpoint like https://servicename.applicationname.companyname, or

even using a different TCP port per microservice. In production, that URL would map to the

microservice’s load balancer, which distributes requests across the available instances.

As mentioned and explained in the preliminary architecture section of this document, the Direct

Client-To-Microservice communication architecture can have possible drawbacks when building a

large and complex microservice-based application, but it can be good enough for a small application,

as in the eShopOnContainers application where the goal is to focus on the microservices deployed as

Docker containers.

However, if you are going to design a large microservice-based application with tens of microservices,

we strongly recommend that consider the API Gateway pattern as explained in the architecture

section.

Data Sovereignty Per Microservice

In terms of data, each microservice will “own” its own database or data source. Each database or data

source will be deployed as another container. This design decision was made only because this

application is a sample reference application, and any developer should be able to just grab the code

from GitHub, clone it, open it in Visual Studio or Visual Studio Code. You can also compile the custom

Docker images using .NET Core CLI and Docker CLI, and then deploy and run it in a Docker

development environment. This can be accomplished in a matter of minutes without having to

provision an external database or any other data source with hard dependencies on infrastructure

(cloud or on-premises). However, consider that in a real production environment, for high availability

and scalability reasons, the databases should be based on database servers in the cloud or on-

premises.

Therefore, the units of deployment for microservices (and even for databases in this application) are

Docker containers, and the reference application will indeed be a multi-container application that

embraces microservices principles.

Benefits

A microservice based solution like this has many benefits:

 Each microservice is relatively small, easy to manage and evolve:

o Easier for a developer to understand and get started quickly with good productivity.

o The container starts faster, which makes developers more productive, and speeds up

deployments.

o The IDE is faster for loading and managing smaller projects, making developers more

productive.

 Each service can be developed and deployed independently of other services - easier to

deploy new versions of services frequently.

https://servicename.applicationname.companyname/

68 Architecting and developing Docker applications

 It is now possible to scale-out just certain areas of the application. For instance, just the

catalog service or the basket service might need to scale-out more than the ordering process.

The resulting infrastructure will be much more efficient in regards to the resources used when

scaling out.

 It enables you to organize the development effort around multiple teams. Each service

can be owned by a single dev team. Each team can develop, deploy and scale their service

independently of all the other teams.

 Improved issues isolation. For example, if there is a bug or issue in one service then only

that service will initially be impacted. The other services will continue to handle requests. In

comparison, one malfunctioning component in a monolithic deployment architecture can

bring down the entire system when it is related to resources, for example with memory leaks.

Additionally, when the bug or issue is resolved, you can deploy just the affected microservice

without impacting the rest of the already running microservices.

 You can use the latest technologies. Because you can start developing autonomous services

independently and run them side-by-side, you can start using the latest technologies and

frameworks instead of being stuck on an older stack or framework for the whole application.

Drawbacks

A microservice based solution like this also has many possible drawbacks:

 Distributed system. This adds complexity that must be handled by developers when

designing and building the applications.

o Developers must implement inter-service communications, which adds complexity in

regards to testing and exception handling. It also adds latency to the system.

 Deployment complexity. In production, there is also the operational complexity of deploying

and managing a system comprised of many different service types. If not using a microservice

oriented infrastructure (like an orchestrator or scheduler). This additional complexity can

require more development efforts than the business application itself.

 Atomic transactions. Atomic transactions between multiple microservices usually aren’t

possible. The business requirements have to embrace eventual consistency between the

multiple microservices.

 Increased global resources consumption (memory, drives, network). The microservices

architecture replaces a number N of monolithic application instances (i.e. 10 monolithic

instances) with N times M services instances (i.e. 8 microservices per application instance). If

each service runs in its own .NET Core framework, which is preferred to isolate the instances,

then there is the overhead of M times as many .NET Core runtimes (80 vs 10). However, given

the cheap cost of resources in general and the benefit of being able to scale-out just certain

areas of the application compared to long-term costs when evolving monolithic applications,

this is usually something that can be assumed by large and long-term applications.

 Issues in the Direct Client‑to‑Microservice communication approach. When the

application is large, with tens of microservices, there are challenges and limitations with this

option. One problem is the mismatch between the needs of the client and the fine‑grained

69 Architecting and developing Docker applications

APIs exposed by each of the microservices. In certain cases, the client app might need to

make many separate requests per page or screen. While a client could make that many

requests, it would probably be too inefficient over the public Internet and would be

impractical over a mobile network, so requests from the client app to the backend system

should be minimized.

o Another problem with the client directly calling the microservices is that some

microservices might be using non-web-friendly protocols. One service might use a

binary communication while another service might use AMQP messaging protocol.

Those protocols are not firewall‑friendly and are best used internally. An application

should use protocols such as HTTP and WebSocket for communication outside of the

firewall.

o Another drawback with this approach is that it makes it difficult to refactor the

contracts of those microservices. Over time we might want to change how the system

is partitioned into services. For example, we might merge two services or split a

service into two or more services. If, however, clients communicate directly with the

services, then performing this kind of refactoring can break compatibility with client

apps.

As mentioned in the architecture section, when designing and building a large and complex

application based on microservices you would want to consider the API Gateway pattern

instead of the simpler Direct Client‑to‑Microservice communication approach.

Finally, another challenge no matter which approach you take for your microservice architecture is

deciding how to partition the system into microservices. This is very much an art, but there are several

strategies that can help. Basically, you need to identify areas of the application that are decoupled

from the other areas with a low number of hard dependencies. In many cases this is aligned to

partitioning services by use case. For example, in our e-Shop application we have the ordering service

that is responsible for all of the business logic related to the order process. You also have the catalog

service and the basket service implementing other differentiated capabilities. Ideally, each service

should have only a small set of responsibilities. This is similar to the Single Responsibility Principle

(SRP) applied to classes, which states that a class should only have one reason to change. In this case

it is about microservices, so the scope might be a bit larger than a single class, and most of all it has

to be completely autonomous, end to end, including responsibility for its data sources.

70 Architecting and developing Docker applications

External vs. Internal Architecture and Design Patterns

This is another important subject to discuss. The external architecture is precisely the microservice

architecture composed by multiple service, following the principles in the architecture section of this

document. However, depending on the nature of each microservice and independently of your chosen

high-level microservice architecture, it is common and advisable to have a different internal

architecture and patterns implementation per microservice. Potentially these could even use different

technologies and programming languages as illustrated in figure X-XX.

For instance, in our initial eShop sample system, the catalog, basket and user profile microservices are

simple and basically CRUD sub-systems, therefore, their internal architecture and design is

straightforward. However, you might have other microservices, in this case the Ordering microservice,

which has further complexity and ever-changing business rules with a high degree of

domain/business complexity. In such cases, you might want to implement more advanced patterns

within a particular microservice, like the ones defined with Domain-Driven Design approaches, as we

are doing in the eShop ordering microservice. You will be able to review these DDD patterns in the

section explaining the implementation of the eShop ordering microservice.

Another example of different implementation and technology per microservice might be related to

the nature of the microservice. For certain domain logic, it might be a better implementation if you

use a functional programming language such as F#, or even a language like R when targeting AI and

machine learning domains, instead of a more object-oriented programming language like C#.

The bottom line is that each microservice can have a different internal architecture and different

design patterns. Not all microservices should be implemented using advanced DDD patterns as that

would be over engineered, and in a similar way, complex microservices with a lot of ever-changing

business logic shouldn’t be implemented as CRUD components or you will end up with low quality

spaghetti code.

Figure X-XX. External vs. Internal Architecture and Design

71 Architecting and developing Docker applications

The new world: multi Architectural Patterns and polyglot microservices

There are many architectural patterns used by software architects and developers. The following are a

few typical architectural patterns that can be implemented:

- Simple CRUD, single Tier, sinle Layer

- Traditional NLayered

- Domain-Driven Design (DDD) patterns

- Command and Query Responsibility Segregation (CQRS) architectural patterns

- Event-Driven patterns

- Etc.

You can also build microservices with many technologies and languages, like ASP.NET Core Web APIs,

NancyFx, ASP.NET Core SignalR (.NET Core 2 timeframe), F#, Node.js, Python, Java. C++, GoLang, Etc.

The important point is that no particular architecture pattern or style, nor any particular technology is

right for all situations.

As shown in figure X-XX, (almost a random order, approaches and technologies could vary) when

building large composite applications composed by many microservices (bounded contexts in

Domain-Driven Design lingo, or simply call it subsystems in the form of autonomous microservices)

you should implement each microservice in a different way with a different architecture patterns and

even languages and databases depending on its “nature”, business requirements and priorities.

Figure X-XX. Multi-architectural-patterns and polyglot microservices world

72 Architecting and developing Docker applications

Sometimes all of them could be pretty similar, but usually that shouldn’t be the case as each

subsystem’s context boundary and their requirements are usually different.

For instance, for a simple CRUD maintenance application it might not make sense to design and

implement DDD patterns. But maybe, for you core-domain or (core-business) you might need to

apply more advanced patterns in order to tackle business complexity with a lot of “ever-changing

business rules”.

Even more, when dealing with large composited applications, you shouldn’t apply a single top-level

architecture based on a single architecture pattern approach. For instance, CQRS shouldn’t be applied

as a top level architecture for a whole application, but might be useful for a single or a specific set of

microservices.

There is no “silver bullet” or a unique “right architecture pattern” for every given case. You cannot

have “a single architecture pattern to rule all the microservices or bounded contexts in your system”.

Depending on the priorities of each microservice, you must choose a different approach.

Creating a simple data-driven/CRUD microservice

Designing a simple data-driven/CRUD microservice

From a design point of view, this type of containerized microservice could be as simple as possible, for

whatever reason. Might be because the problem to solve is extremely simple or because it is a proof

of concept.

An example of this kind of service is the Catalog microservice from the eShopOnContainers sample

application which is a very simple data-driven Catalog. This type of service implements all its

functionality within a single ASP.NET Core Web API project, including classes for its data model, and

any required business logic and data access code. In addition to that, you could have its related data

and database running in a SQL Server container as shown in the design diagram in the next figure X-

X.

Figure X-XX. Internal Design for simpler CRUD microservices

73 Architecting and developing Docker applications

When developing this API you only need to use ASP.NET Core and any data access API or ORM like

Entity Framework Core. You could also generate Swagger metadata automatically through

Swashbuckle to provide a description of what your service offers, as explained in the next section.

Note that running a database server like SQL Server within a Docker container is great for

development environments as you can have all your dependencies up and running without needing

to provision a database in the cloud or on-premises. This is very convenient when running integration

tests. However, for production environments running a database server in a container is not a

recommended environment, as you usually won’t have high availability with that approach. For a

production environment in Azure it is recommended to use Azure SQL DB or any other database

technology that can provide High Availability and High Scalability. For example, you might choose

DocumentDB when using a NO-SQL approach.

Finally, by editing the dockerfile and docker-compose.yml metadata files you can configure how the

image of this container will be created and what base image it will use, plus design settings such as

internal and external names and TCP ports used.

Implementing a simple CRUD microservice with ASP.NET Core

When implementing this type of service using .NET Core and Visual Studio, you start by creating a

simple ASP.NET Core Web API project (running on .NET Core so it can run on a Linux Docker host), as

shown in figure X-X.

Figure X-XX. Simple data-driven/CRUD microservice design diagram

Figure X-XX. Creating an ASP.NET Core Web API project in VS 2015

https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/ef/core/index
http://swagger.io/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

74 Architecting and developing Docker applications

After creating the project, you can implement your MVC controllers like you would in any other Web

API project, using the Entity Framework API or any other API. In the eShopOnContainers.Catalog.API

project, you can see that the main dependencies for that microservice are just ASP.NET Core itself,

Entity Framework and Swashbuckle:

Implementing CRUD Web API services with Entity Framework Core

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology. EF Core is an object-relational mapper (ORM) that enables

.NET developers to work with a database using .NET objects.

The Catalog microservice is using EF and the SQL Server provider because its database is running in a

container with the SQL Server for Linux Docker image. However, the database could be deployed into

any SQL Server, like Windows on-premises or Azure SQL DB. The only thing you would need to

change is the connection string in the ASP.NET Web API microservice.

Add Entity Framework Core to your dependencies

You can install the NuGet package for the database provider you want to use, in this case SQL Server,

from within the Visual Studio IDE, or with the NuGet console:

PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer

The model

With EF Core, data access is performed by using a model. A model is made up of entity classes and a

derived context that represents a session with the database, allowing you to query and save data. You

can generate a model from an existing database, manually code a model to match your database, or

use EF Migrations to create a database from your model (and evolve it as your model changes over

time). In the case of the Catalog microservice we are using the latter approach. You can see an

example of the Product entity class in figure X-X which is a simple POCO (Plain Old CLR Object) entity

class.

Figure X-XX. Dependencies in a simple CRUD Web API microservice

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

75 Architecting and developing Docker applications

You also need the previously mentioned DbContext that represents a session with the database. For

the Catalog microservice, it is the CatalogContext class deriving from the DbContext base class, as

shown below in figure X-XX.

You can have additional code within the DbContext implementation, like the OnModelCreating()

method being used in the CatalogContext class that automatically populates the sample data the

first time it tries to access the database. This method is useful for demo data.

You can also use the OnModelCreating method ir oder to to customize object/database entity

mappings as many other EF extensibility points.

Querying data from Web API controllers

Instances of your entity classes are typically retrieved from the database using Language Integrated

Query (LINQ). See Querying Data to learn more.

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 private readonly CatalogContext _context;
 private readonly IOptionsSnapshot<Settings> _settings;

Figure X-XX. Sample POCO Entity class: CatalogItem

Figure X-XX. Sample DBContext class: CatalogContext

Figure X-XX. Querying data from a Web API controller

https://blogs.msdn.microsoft.com/dotnet/2016/09/29/implementing-seeding-custom-conventions-and-interceptors-in-ef-core-1-0/
https://docs.microsoft.com/en-us/ef/core/querying/index

76 Architecting and developing Docker applications

 public CatalogController(CatalogContext context, IOptionsSnapshot<Settings> settings)
 {
 _context = context;
 _settings = settings;
 ((DbContext)context).ChangeTracker.QueryTrackingBehavior =
 QueryTrackingBehavior.NoTracking;
 }

 // GET api/v1/[controller]/items[?pageSize=3&pageIndex=10]
 [HttpGet]
 [Route("[action]")]
 public async Task<IActionResult> Items([FromQuery]int pageSize = 10,[FromQuery]int pageIndex=0)
 {
 var totalItems = await _context.CatalogItems
 .LongCountAsync();

 var itemsOnPage = await _context.CatalogItems
 .OrderBy(c=>c.Name)
 .Skip(pageSize * pageIndex)
 .Take(pageSize)
 .ToListAsync();

 itemsOnPage = ComposePicUri(itemsOnPage);

 var model = new PaginatedItemsViewModel<CatalogItem>(
 pageIndex, pageSize, totalItems, itemsOnPage);

 return Ok(model);
 }

 //…

}

Saving data

Data is created, deleted, and modified in the database using instances of your entity classes. See

Saving Data to learn more. You can add code like the following to your Web API controllers.

var catalogItem = new CatalogItem() {CatalogTypeId=2, CatalogBrandId=2, Name="Roslyn T-Shirt", Price = 12};
_context.Catalog.Add(blog);
_context.SaveChanges();

Dependency Injection in ASP.NET Core and Web API controllers

In ASP.NET Core you can use Dependency Injection (DI) out-of-the-box. There’s no need to set up a

third party IoC (Inversion of Control) container, although you can also plug your preferred IoC

container into the ASP.NET Core infrastructure if you’d like. In this case, it means that you can directly

inject the needed EF DBContext or additional repositories through the controller constructor. In the

figure X-XX above we are injecting an object of CatalogContext type.

An important configuration to set up in the Web API project is the DbContext class registration into

the services IoC container. You typically do so in the Startup.cs class and the ConfigureServices()

method, with the services.AddDbContext() method, as shown in figure X-XX.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<CatalogContext>(c =>
 {

Figure X-XX. Saving Data

Figure X-XX. Registering a DBContext class for DI use

https://docs.microsoft.com/en-us/ef/core/saving/index

77 Architecting and developing Docker applications

 c.UseSqlServer(Configuration["ConnectionString"]);
 // Changing default behavior when client evaluation occurs to throw.
 // Default in EF Core would be to log a warning when client evaluation is performed.
 c.ConfigureWarnings(warnings =>
 warnings.Throw(RelationalEventId.QueryClientEvaluationWarning));
 });

 //…
}

The DB connection string and environment variables used by Docker containers

You can use the ASP.NET Core settings and add a ConnectionString property to your settings.json

file as shown below.

The settings.json file can have initial by default values for the ConnectionString or any other

property. However, those properties will be overridden by the values of environment variables that

you specify in the docker-compose.override.yml file.

From your docker-compose.yml or docker-compose.override.yml files you can initialize those

environment variables, so that Docker will set them up as OS environment variables for you, as shown

in the docker-compose.override.yml file below.

docker-compose.override.yml

 catalog.api:
 environment:
 - ConnectionString=Server=sql.data;Database=Microsoft.eShopOnContainers.Services.CatalogDb;
User Id=sa;Password=Pass@word
 - ExternalCatalogBaseUrl=http://10.0.75.1:5101
 #- ExternalCatalogBaseUrl=http://dockerhoststaging.westus.cloudapp.azure.com:5101

 ports:
 - "5101:5101"

The docker-compose.yml files at the solution level are not just more flexible than configuration files at

the project/microservice level, but also more secure. Consider that the Docker images that you build

per microservice do not contain the docker-compose.yml files, only binary files and configuration files

per microservice, including the dockerfile. But since the docker-compose.yml file is not deployed along

Figure X-XX. Docker and environment variables for connection strings

78 Architecting and developing Docker applications

with your application but only used at deployment time, placing environment variables values within

those docker-compose.yml files (even without encrypting the values) is still more secure than placing

those values in regular .NET configuration files that will actually be deployed with your code.

Finally, you can get that value from your code with Configuration["ConnectionString"] as shown

in the method ConfigureServices() in figure X-XX above.

Application Configuration in ASP.NET Core services

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

Working with multiple environments

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

References – Securing .NET Applications

Configuration in ASP.NET Core
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration

Working with multiple environments: Dev, Production, Staging.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

RESTful web API Design and Implementation

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

References – API Design and Implementation

REST architectural style

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

API Design

https://docs.microsoft.com/en-us/azure/best-practices-api-design/

Best Practices for Designing a Pragmatic RESTful API

http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

API Implementation

https://docs.microsoft.com/en-us/azure/best-practices-api-implementation /

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/azure/best-practices-api-design/
https://docs.microsoft.com/en-us/azure/best-practices-api-implementation/

79 Architecting and developing Docker applications

Versioning ASP.NET Web APIs

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

---References – API Versioning

TBD

https://docs.microsoft.com/en-us/azure/best-practices-api-design#versioning-a-restful-web-api/

Generating Swagger description metadata from your ASP.NET Core

Web API

Swagger description metadata should probably be included

with any kind of microservice, either Data-Driven

microservices or more advanced Domain-Driven

microservices (explained in following section). In this case we

are using the simpler Data-Driven microservice

implementation but you should also implement this feature

in more complex microservices.

Swagger is a commonly used open source framework backed by a large ecosystem of tools that help

you design, build, document, and consume your RESTful APIs. It is becoming the main standard for

the APIs description metadata domain.

The heart of Swagger is the Swagger Specification (API description metadata in a JSON or YAML file).

The specification creates the RESTful contract for your API, detailing all its resources and operations in

a human and machine readable format for easy development, discovery, and integration.

The specification is the basis of the OpenAPI Specification (OAS) and is developed in an open,

transparent, and collaborative community to standardize the way RESTful interfaces are defined.

This specification defines the structure for how a service can be discovered and its capabilities

understood. More information, a Web Editor, and examples of Swaggers from companies like Spotify,

Uber, Slack, Microsoft and many more can be found at http://swagger.io

Why use Swagger?

The main reasons why you would want to generate Swagger metadata about your APIs are the

following:

- Ability to automatically consume and integrate your APIs - with tens of products and

commercial tools supporting Swagger plus many libraries and frameworks serving the

Swagger ecosystem. Microsoft has high level products and tools that can automatically

consume Swagger based APIs, such as the following:

o AutoRest - It automatically generates .NET client classes for calling Swagger. It can

be used fron the CLI and also integrates with Visual Studio for easy use through the

GUI.

https://docs.microsoft.com/en-us/azure/best-practices-api-design#versioning-a-restful-web-api/
http://swagger.io/
http://swagger.io/
http://swagger.io/commercial-tools/
http://swagger.io/open-source-integrations/
https://github.com/Azure/AutoRest

80 Architecting and developing Docker applications

o Microsoft Flow – Ability to automatically use and integrate your API into a high-level

Microsoft Flow workflow, with no programming skills required.

o Microsoft PowerApps – Ability to automatically consume your API from PowerApps

mobile apps built with PowerApps Studio, with no programming skills required.

o Azure App Service Logic Apps - Ability to automatically use and integrate your API

into an Azure App Service Logic App, with no programming skills required.

- APIs documentation automatically generated - When creating large scale RESTful APIs,

such as when building complex microservice based applications, you will need to handle

many endpoints with different data models used in the request/response payloads. Proper

documentation and having a solid API explorer is to the success of your API, as well as

likability by developers.

Swagger’s metadata is basically what Microsoft Flow, PowerApps and Azure Logic Apps use to

understand how to use services/APIs and connect to them.

How to automate API Swagger metadata generation with the Swashbuckle NuGet

package

Generating Swagger metadata manually (in a JSON or YAML file) can be tedious work. However, you

can automate API discovery of ASP.NET Web API services by using the Swashbuckle NuGet package to

dynamically generate Swagger API metadata.

Swashbuckle seamlessly and automatically adds Swagger metadata to ASP.NET Web API projects.

Depending on the package version, it supports ASP.NET Core Web API projects and the traditional

ASP.NET Web API and any other flavor such as Azure API App, Azure Mobile App, Azure Service Fabric

microservices based on ASP.NET, or plain Web API in containers, as in this case.

Swashbuckle combines API Explorer and Swagger/swagger-ui to provide a rich discovery and

documentation experience to your API consumers.

In addition to its Swagger metadata generator engine, Swashbuckle also contains an embedded

version of swagger-ui , which it will automatically serve up once Swashbuckle is installed.

This means you can complement your API with a slick discovery UI to assist developers with their

integration efforts. Best of all, it requires minimal coding and maintenance because it is automatically

generated, allowing you to focus on building your API. The result for the API explorer will look like the

figure X-XX below:

https://flow.microsoft.com/en-us/
https://flow.microsoft.com/en-us/blog/integrating-custom-api/
https://powerapps.microsoft.com/en-us/
https://powerapps.microsoft.com/en-us/blog/register-and-use-custom-apis-in-powerapps/
https://powerapps.microsoft.com/en-us/blog/register-and-use-custom-apis-in-powerapps/
https://powerapps.microsoft.com/en-us/guided-learning/learning-powerapps-parts/
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-what-are-logic-apps
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-custom-hosted-api
https://docs.microsoft.com/en-us/azure/app-service-logic/app-service-logic-custom-hosted-api
http://aka.ms/swashbuckledotnetcore

81 Architecting and developing Docker applications

The UI explorer is not the most important thing here. Once you have a Web API that can describe

itself in Swagger metadata, your API can be used seamlessly be from Swagger-based tools, including

client proxy classes code generators that can target many platforms. For example, as mentioned,

AutoRest automatically generates .NET client classes but additional tools like swagger-codegen are

also available which allow code generation of API client libraries, server stubs and documentation

automatically.

Currently, Swashbuckle consists of two NuGet packages - Swashbuckle.SwaggerGen and

Swashbuckle.SwaggerUi. The former provides functionality to generate one or more Swagger

documents directly from your API implementation and expose them as JSON endpoints. The latter

provides an embedded version of the swagger-ui tool that can be served by your application and

powered by the generated Swagger documents to describe your API. However, recent versions of

Swashbuckle wrap these with the Swashbuckle.AspNetCore meta-package

Once you have installed those Nuget packages in your Web API project, you will need to configure

Swagger in your Startup.cs class, as in the following code:

 public class Startup
 {
 public IConfigurationRoot Configuration { get; }

 //Other Startup code...

 public void ConfigureServices(IServiceCollection services)
 {
 //Other ConfigureServices() code...

 services.AddSwaggerGen();
 services.ConfigureSwaggerGen(options =>
 {
 options.DescribeAllEnumsAsStrings();
 options.SingleApiVersion(new Swashbuckle.Swagger.Model.Info()
 {
 Title = "eShopOnContainers - Catalog HTTP API",
 Version = "v1",
 Description = "The Catalog Microservice HTTP API",

Figure X-XX. Swashbuckle UI based on Swagger metadata – eShop Catalog microservice example

https://github.com/Azure/AutoRest
https://github.com/swagger-api/swagger-codegen

82 Architecting and developing Docker applications

 TermsOfService = "Terms Of Service"
 });
 });

 //Other ConfigureServices() code...
 }
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 //Other Configure() code...
 // ...
 app.UseSwagger()
 .UseSwaggerUi();
 }
 }

Once this is done, you should be able to spin up your app and browse the following Swagger JSON

and UI endpoints respectively.

http://<your-root-url>/swagger/v1/swagger.json
http://<your-root-url>/swagger/ui

You previously showed the generated UI created by Swashbuckle with the URL http://<your-root-

url>/swagger/ui, but in figure X-XX you can also see how you can test any specific API method.

In the following figure X-XX is the Swagger JSON metadata generated from the eShopOnContainer

microservice (which is really what the tools use underneath) when you test it and request the <your-

root-url>/swagger/v1/swagger.json URL using the convenient Postman tool.

Figure X-XX. Swashbuckle UI testing the Catalog/Items API method

https://www.getpostman.com/

83 Architecting and developing Docker applications

It is that simple, and because it is automatically generated, the Swagger metadata will grow when you

add more functionality to your API.

NOTE: Currently, Swashbuckle.AspNetCore is version 1.0.0-rc1 or later (now that it is refactored into a

new package) is what you need to use for .NET Core Web API projects.

References – Swagger and Swashbuckle

ASP.NET Web API Help Pages using Swagger

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

Defining your multi-container application with

docker-compose.yml
As previously introduced, you can explicitly describe how you would like to deploy your multi-

container application in the docker-compose.yml file. Optionally, you can also describe how you are

going to build your custom Docker images (custom Docker images can also be built with the Docker

CLI). Basically, you define each of the containers you want to deploy plus certain characteristics for

each container deployment. Then, once you have a multi-container deployment description file, you

can deploy the whole solution in a single action orchestrated by the CLI command docker-compose

up, or you can deploy it transparently from Visual Studio. Otherwise, you would need to use the

Docker CLI to deploy container-by-container in multiple steps by using the command docker run

from the command line.

Therefore, each service defined in docker-compose.yml must specify exactly one of image or build.

Other keys are optional, and are analogous to their docker run command-line counterparts.

In this document, the docker-compose.yml file was introduced in the section “Step 4. Define your

services in docker-compose.yml when building a multi-container Docker app with multiple services”,

however, there are additional ways to use the docker-compose files that are worth exploring in further

detail.

Figure X-XX. Swagger JSON metadata

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/

84 Architecting and developing Docker applications

The following yaml code is the definition of a possible global but single docker-compose.yml for the

eShopOnContainers sample. This is not the actual docker-compose file from eShopOnContainers but

a simplified and consolidated version in a single file, which is not the best way to work with docker-

compose files, as will be explainedlater.

version: '2'
services:
 webmvc:
 image: eshop/webmvc
 environment:
 - CatalogUrl=http://catalog.api
 - OrderingUrl=http://ordering.api
 - BasketUrl=http://basket.api
 ports:
 - "5100:80"
 depends_on:
 - catalog.api
 - ordering.api
 - basket.api
 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=sql.data;Initial Catalog=CatalogData;User Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data
 ordering.api:
 image: eshop/ordering.api
 environment:
 - ConnectionString=Server=sql.data;Database=Services.OrderingDb;User Id=sa;Password=your@password
 ports:
 - "5102:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data
 basket.api:
 image: eshop/basket.api
 environment:
 - ConnectionString=sql.data
 ports:
 - "5103:80"
 depends_on:
 - sql.data
 sql.data:
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"
 basket.data:
 image: redis

First of all, the root key in this file is “services” and under that key you define the multiple services

you want to deploy and run when executing the “docker-compose up” command or deploying from

Visual Studio by using this “docker-compose.yml” file. In this case, the “docker-compose.yml” file has

multiple services defined, as described in the following table.

85 Architecting and developing Docker applications

Service name in

docker-compose.yml

Description

webmvc Container with ASP.NET Core MVC app consuming the microservices from server-

side C#

catalog.api Container with the Catalog ASP.NET Core Web API microservice

ordering.api Container with the Ordering ASP.NET Core Web API microservice

sql.data Container running SQL Server for Linux, with the microservices’ databases

basket.api Container with the Basket ASP.NET Core Web API microservice

basket.data Container running REDIS Cache service, with the Basket database as REDIS cache

A simple Web Service API container

The catalog.api container-microservice has a simple and straightforward definition:

 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=catalog.data;Initial Catalog=CatalogData;User Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"
 depends_on:
 - sql.data

 This containerized service has the following basic configuration in place:

 It is based on the custom eshop/catalog.api image. In this case, for simplicity’s sake, there

is no “build: key” in the file, so the image must have been previously built (with docker

build) or be available locally by downloading it with the docker pull command from any

Docker registry before running the docker-compose up command using this docker-

compose.yml file.

 It defines an environment variable named ConnectionString with the connection string to

be used by Entity Framework to access the SQL Server containing the Catalog data model. In

this particular case, the same SQL Server container is holding multiple databases so you’d

need less memory in your development machine assigned to Docker, but if you’d want to, you

could also deploy one SQL Server container per microservice’s database.

 Note that the SQL server name is sql.data, which is the same name/id used for the container

that is running the SQL Server for Linux. This is very convenient, as being able to use this

name resolution (internal to the Docker host) it will resolve the network address so you don’t

need to know the internal IP for the containers you are accessing from other containers.

Important: Since the connection string is defined by an environment variable, you could set

that variable through a different mechanism and at a different time, for example setting a

different value when deploying to production in the final hosts or by doing it from your CI/CD

pipelines in VSTS or your chosen DevOps system.

 It exposes port 80 for internal access to the catalog.api within the Docker host. The host is

currently a Linux VM because it is based on a Docker image for Linux, but you could configure

the container to run on a Windows image, too.

 Forwards the exposed port 80 on the container to port 5101 on the Docker host machine (The

Linux VM).

86 Architecting and developing Docker applications

 Links the web service to the sql.data service, (the SQL Server for Linux database running in a

container). This is useful as by specifying this dependency, the Catalog.API container won’t

start until the sql.data container has already started, as you need to have the SQL database up

and running first. However, this kind of container dependency is not enough in many cases as

Docker checks only at the container level, but sometimes the service (in this case SQL Server)

might still not be ready, so it is advisable to implement retry logic with exponential backoff in

your client microservices so in case a dependency container is not ready for a short time, the

app will still be resilient.

 Accessing external servers: Another interesting property is the “extra_hosts” which allows you

to access external servers or machines out of the Docker host (i.e. out of the default Linux VM

which is a development Docker Host). A typical case is when you need to access a database

server any other server type placed out of the Docker Host, for instance a local SQL Server on

your development PC.

extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"

There are other more advanced and very interesting possible configuration settings at the docker-

compose.yml level worth mentioning in the following sections.

Scenarios: When to use the docker-compose

The docker-compose.yml files are definition file and could be used by multiple infrastructures that are

able to understand that format. The most straightforward tool is the command docker-compose, but

other more advanced scenarios like orchestrators could also understand that file.

However, when using the command docker-compose, it mainly targets the following scenarios

(extracted from Docker docs).

Development environments

When you’re developing software, the ability to run an application in an isolated environment and

interact with it is crucial. The Compose command line tool can be used to create the environment and

interact with it.

The Compose file provides a way to document and configure all of the application’s service

dependencies (databases, queues, caches, web service APIs, etc). Using the Compose command line

tool you can create and start one or more containers for each dependency with a single command

(docker-compose up).

Together, these features provide a convenient way for developers to get started on a project.

Compose can reduce a multi-page “developer getting started guide” to a single machine readable

Compose file and a few commands.

Automated testing environments

An important part of any Continuous Deployment or Continuous Integration process is the automated

test suite. Automated end-to-end testing requires an environment in which to run tests. Compose

provides a convenient way to create and destroy isolated testing environments for your test suite. By

defining the full environment in a Compose file you can create and destroy these environments in just

a few commands:

$ docker-compose up -d

87 Architecting and developing Docker applications

$./run_tests
$ docker-compose down

Production deployments

You can also use Compose to deploy to a remote Docker Engine. A typical case could be to deploy to

a single Docker host instance (like a production VM or server provisioned with Docker Machine) but it

could also be an entire Docker Swarm cluster which also I compatible with compose.

If using any other orchestrator is pretty possible that you might need to add extra configuration setup

and metadata comparable to docker-compose.yml but in the additional format required by the other

orchestrator as Azure Service Fabric, Mesos DC/OS, Kubernetes, etc.

In any case, docker-compose is a very convenient tool for development and testing workflows.

The production workflow will depend on your selected orchestrator.

https://docs.docker.com/machine/overview/
https://docs.docker.com/swarm/overview/

88 Architecting and developing Docker applications

Using several Compose files to handle multiple environments

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

References – Docker Compose

ASP.NET Web API Help Pages using Swagger

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

Overview of Docker Compose

https://docs.docker.com/compose/overview/

Multiple Compose files

https://docs.docker.com/compose/extends/#multiple-compose-files

Building Optimized Docker Images with ASP.NET Core

https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger
https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/

89 Architecting and developing Docker applications

A database server running as a container

SQL Server running as a container with a microservice-related database

As mentioned, the related catalog.data container would run SQL Server for Linux with the Catalog

database. That is configured with the following yaml code at your docker-compose.yml file and

executed when running with “docker-compose up” which will use it.

 catalog.data:
 image: microsoft/mssql-server-linux
 environment:
 - SA_PASSWORD=your@password
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"

A similar command could be run directly with “docker run”.

docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD= your@password' -p 1433:1433 -d microsoft/mssql-server-linux

However, if deploying a multi-container application like eShopOnContainers, using “docker-compose

up” is a much more convenient method.

When starting this container for the first time, it will initialize SQL Server with the SA password that

you are providing. At this time and once you have SQL Server running as a container, you can update

new data into the database by connecting through any regular SQL connection, either from SQL

Server Management studio, Visual Studio or from C# code.

The eShopOnContainers application is initializing the database with sample data by seeding with Test

Data on the first Startup, as explained in the following section.

Having SQL Server running as a container is not just useful for a demo where you might don’t have a

SQL Server ready. It is also great for development and testing environments so you can easily run

integration tests starting from a clean SQL Server image and know state in regards data by seeding

new sample data.

In order to get further insights about SQL Server for Linux running as a container, check the following

references.

References – SQL Server for Linux running on Docker containers

Run the SQL Server Docker image on Linux, Mac, or Windows

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-docker

Connect and query SQL Server on Linux with sqlcmd

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-connect-and-query-sqlcmd

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-docker
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-connect-and-query-sqlcmd

90 Architecting and developing Docker applications

Seeding with Test Data on the Web API Startup

To add data to the database when the application starts up, you can do so by adding some code to

the Configure() method at the Startup.cs class from the Web API project:

 public class Startup
 {
 //Other Startup code…
 //...

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 //Other Configure code...

 //Seed Data through our custom class
 CatalogContextSeed.SeedAsync(app)
 .Wait();

 //Other Configure code...
 }

 }

Then, in our custom CatalogContextSeed it is where data gets populated from code.

 public class CatalogContextSeed
 {
 public static async Task SeedAsync(IApplicationBuilder applicationBuilder)
 {
 var context = (CatalogContext)applicationBuilder
 .ApplicationServices.GetService(typeof(CatalogContext));
 using (context)
 {
 context.Database.Migrate();

 if (!context.CatalogBrands.Any())
 {
 context.CatalogBrands.AddRange(
 GetPreconfiguredCatalogBrands());

 await context.SaveChangesAsync();
 }
 if (!context.CatalogTypes.Any())
 {
 context.CatalogTypes.AddRange(
 GetPreconfiguredCatalogTypes());

 await context.SaveChangesAsync();
 }
 }
 }
 static IEnumerable<CatalogBrand> GetPreconfiguredCatalogBrands()
 {
 return new List<CatalogBrand>()
 {
 new CatalogBrand() { Brand = "Azure"},
 new CatalogBrand() { Brand = ".NET" },
 new CatalogBrand() { Brand = "Visual Studio" },
 new CatalogBrand() { Brand = "SQL Server" }
 };
 }

 static IEnumerable<CatalogType> GetPreconfiguredCatalogTypes()
 {
 return new List<CatalogType>()

91 Architecting and developing Docker applications

 {
 new CatalogType() { Type = "Mug"},
 new CatalogType() { Type = "T-Shirt" },
 new CatalogType() { Type = "Backpack" },
 new CatalogType() { Type = "USB Memory Stick" }
 };
 }

 }

When running integration Tests, having a similar way to generate data consistent with your

integration tests is something very useful, but being able to create everything from scratch, including

a SQL Server running on a container is something great for test environments.

EF Core In-Memory-Database vs. SQL Server running as a container

Another good choice when running tests is to use the Entity Framework Core In-Memory-Database

provider. You can do so by specifying that configuration at the Startup:ConfigureServices() method in

your Web API project.

public class Startup
{
 //Other Startup code…
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IConfiguration>(Configuration);

 //DbContext using an In-Memory-Database provider
 services.AddDbContext<CatalogContext>(opt => opt.UseInMemoryDatabase());

 //(Versus commented DbContext using a SQL Server provider
 //services.AddDbContext<CatalogContext>(c =>
 //{
 // c.UseSqlServer(Configuration["ConnectionString"]);
 //
 //});
 }
 //Other Startup code…
}

There is an important catch, though. The in-memory database doesn't hold any constraints that would

be specific to any particular DB. For instance, you could add a unique index on a column and write a

test against your in-memory DB to check that it does not let you to add a duplicate value, but when

using the in-memory-database, you cannot handle that. So, the in-memory-database does not behave

100% the same way than a real SQL Database. It doesn't emulate any DB-specific constraints.

However, it's still useful for testing and prototyping scenarios, but if you want to create accurate

integration tests being able to take into account the behavior of a specific database implementation,

then you would need to use a real database, like SQL Server. For that purpose, running SQL Server as

a container is a great choice and more accurate than the in-memory-database provider from EF.

Redis cache service running in a container

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

92 Architecting and developing Docker applications

Implementing event based communication between

microservices: Integration Events

As introduced in the initial architecture section in this guide, when using this type of communication,

a microservice publishes an event when something notable happens, for example when it updates a

business entity. Other microservices subscribe to those events. When a microservice receives an event,

it can update its own business entities, which might lead to more events being published. This

subscription/publication system is usually performed by using an implementation of an Event Bus. The

Event Bus will be designed as an abstraction/interface with the API needed to subscribe/unsubscribe

to events and to publish events, plus one or more implementations based on any inter-process or

messaging communication, such as a messaging queue or a Service Bus supporting asynchronous

communication and a subs/pubs model.

You can use events to implement business transactions that span multiple services, and you will have

eventual consistency between those services. An Eventual-Consistent transaction consists of a series

of distributed steps. Each step consists of a microservice updating a business entity and publishing an

event that triggers the next step.

As shown in the image X-XX, this section tackles how you can implement this type of communication

with .NET by using a generic Event Bus abstraction/interface. There are multiple potential

implementations, each using a different technology or infrastructuresuch as RabbitMQ, Azure Service

Bus or any other third party Open Source or Commercial Service Bus.

Note on messaging technologies for production systems: As introduced in the architecture

section, notice that among the multiple messaging technologies you can choose for implementing

your abstract Event Bus, some of them can be at a different level than others. For instance, RabbitMQ

(messaging broker transport) sits on a lower level than other commercial products like Azure Service

Bus, NServiceBus or MassTranssit. Both NServiceBus and MassTranssit can work on top of either

Figure X-XX. Event driven communication based on an Event Bus

93 Architecting and developing Docker applications

RabbitMQ or Azure Service Bus). It really depends on how many features and how much out-of-the-

box scalability you need for your application. For implementing just an Event Bus proof of concept for

your development environment, as in the eShopOnContainers sample, a simple implementation on

top of RabbitMQ running as a container might be enough. For mission critical and production systems

needing hyper-scalability, you might want to evaluate and use Azure Service Fabric. If you require

high level abstractions and features that make distributed development easier, other commercial and

Open Source service buses like NServiceBus, MassTransit, or others like Rebus and Rhino ESB are

worth evaluating. Of course, you could always build more service bus features on top of lower level

technologies like RabbitMQ and Docker, but the plumbing work might be too costly for a custom

enterprise application.

Integration Events

Integration events are usually used for bringing certain domain state in sync across multiple

microservices or even external systems. This is done by publishing integration events to outside the

microservice. When an event is published to multiple receptor microservices (as many as microservices

are subscribed to the integration event) then the appropriate Event Handler (from each microservice

subscribed to that event) handles the event.

The Event Bus

An Event Bus allows publish and subscribe-style communication between microservices without

requiring the components to explicitly register to be aware of each other.

The Event Bus is related to the Observer pattern and the Pub-sub pattern.

Observer pattern: This is a pattern of development in which your primary object (known as the

Observable) notifies other interested objects (known as Observers) with relevant information (events).

Pub-sub pattern: The objective of the pub-sub pattern is the same as the Observer pattern. You want

to notify other classes when certain events take place. There’s an important semantic difference

between the Observer and Pub-sub patterns: in the pub-sub pattern the focus is on broadcasting

messages. The Observable doesn’t want to know who the events are going out to, just that they’ve

gone out. In other words, the Observable (a.k.a. Publisher) doesn’t want to know who the Observers

(a.k.a. Subscribers) are.

The middle-man or Event Bus: How do you achieve that anonymity between publisher and

subscriber? An easy way is let a middleman take care of all the communication. An event bus is one

such middleman.

An Event Bus is typically composed of two main parts:

- The abstraction or interface.

- One or more implementations.

In the figure X-XX you can see how, from an application point of view, the Event Bus is nothing more

than a pub-sub channel. The way you implement that asynchronous communication can vary and

could have multiple implementations so you can swap between them depending on the environment

requirements (production vs. development environments, for instance).

94 Architecting and developing Docker applications

In figure X-XX you can see an abstraction of an Event Bus with multiple implementations based on

infrastructure messaging technologies like RabbitMQ, Azure Service Bus or other service buses like

NServiceBus, MassTransit, etc.

Let’s start with some implementation code for the interface and possible implementations.

Defining an Event Bus interface

The abstraction or interface should be generic and straightforward, like the following interface.

public interface IEventBus
{
 // Attempts to register the subscriber to the specified Event
 // return true if successful and false if not (because it was already
 // subscribed to that Event, or otherwise)

 public bool Subscribe(Subscriber subscriber, Event event);

 // Attempts to deregister the subscriber from the specified Classifier
 // return true if successfully subscribed or false if not

 public bool Unsubscribe(Subscriber subscriber, Event event);

 // Attempts to deregister the subscriber from all Events it may be subscribed to

 public void Unsubscribe(Subscriber subscriber);

 // Publishes the specified Event to this bus

 public void Publish(Event event);
}

Implementing an Event Bus with Azure Service Bus

To use the Service Bus namespace, an application must reference the Service Bus assembly

Microsoft.ServiceBus.dll. The easiest way to reference Service Bus dependencies is to install the Service

Bus Nuget package. You can also find the assembly as part of the Azure SDK. The download is

available at the Azure SDK download page.

Service Bus topics and subscriptions support a publish/subscribe messaging communication model

which is ideal for an Event Bus implementation. When using topics and subscriptions, components of

Figure X-XX. Multiple implementations of an Event Bus

https://www.nuget.org/packages/WindowsAzure.ServiceBus/
https://www.nuget.org/packages/WindowsAzure.ServiceBus/
https://azure.microsoft.com/downloads/

95 Architecting and developing Docker applications

a distributed application do not communicate directly with each other; instead they exchange

messages via a topic which acts as an intermediary, as shown in image X-XX.

An implementation of an Event Bus based on Azure Service bus requires the elements explained in the

following sections. First, the initial implementation class should implement a generic abstraction
IEventBus:

public class EventBusOnAzureServiceBus : IEventBus { }

Azure Service Bus Topic Creation

Management operations for Service Bus messaging entities (publish/subscribe topics) are performed

via the NamespaceManager class. Appropriate credentials are required to create a

NamespaceManager instance for a namespace. Service Bus uses a Shared Access Signature (SAS)

based security model. The TokenProvider class represents a security token provider with built-in

factory methods returning some well-known token providers. The following example uses a

CreateSharedAccessSignatureTokenProvider method to hold the SAS credentials. The

NamespaceManager instance is then constructed with the base address of the Service Bus namespace

and the token provider.

The NamespaceManager class provides methods to create, enumerate and delete messaging entities.

The following code shows how the NamespaceManager instance is created and used to create a

hypothetical ProductUpdatesTopic topic in the eShopOnContainers sample. It could be created as

part of the EventBusOnAzureServiceBus() constructor or any other initialization area. This code is

very much simplified with no pre-existence detection or validation, and it doesn’t show how to ontain

the secrets/keys from an external source instead of hard-coding them.

public class EventBusOnAzureServiceBus : IEventBus
{
 private NamespaceManager _namespaceManager;
 public EventBusOnAzureServiceBus()
 {
 // Create the SB-Topic in Azure
 // The topic will be used to publish events after Entities are updated
 // like when publishing “Product updates” integration events

Figure X-XX. Topics and Subscriptions in Azure Service

Bus

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.namespacemanager#microsoft_servicebus_namespacemanager
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas-overview
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.tokenprovider#microsoft_servicebus_tokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.tokenprovider#Microsoft_ServiceBus_TokenProvider_CreateSharedAccessSignatureTokenProvider_System_String_

96 Architecting and developing Docker applications

 Uri uri = ServiceBusEnvironment.CreateServiceUri("sb", "eShopOnContainers", string.Empty);
 string name = "RootManageSharedAccessKey";
 string key = "abcdefghijklmopqrstuvwxyz";
 TokenProvider tokenProvider = TokenProvider.CreateSharedAccessSignatureTokenProvider(name,
 key);
 _namespaceManager = new NamespaceManager(uri, tokenProvider);

 //Actual Topic creation ("ProductUpdatesTopic")
 if (!namespaceManager.TopicExists("ProductUpdatesTopic"))
 {
 namespaceManager.CreateTopic("ProductUpdatesTopic");
 }
 // Could have additional SB Topics creation here...
 }

 //... Other Event Bus implementation methods
}

A topic could have further explicit characteristics beyond a simple description, as in the following

definition:

TopicDescription td = new TopicDescription("ProductUpdatesTopic");
td.EnablePartitioning = true; //Partitioning Topics is critical for HA
td.MaxSizeInMegabytes = 5120;
td.DefaultMessageTimeToLive = new TimeSpan(0, 1, 0);
var namespaceManager=NamespaceManager.CreateFromConnectionString(connectionString);
if (!namespaceManager.TopicExists(td.Description))
{
 namespaceManager.CreateTopic(td);
}

Register to events through Azure Service Bus Topics and Subscriptions

Finally, once a topic is available, you need to create the actual subscriptions, as in the following code.

namespaceManager.CreateSubscription("ProductUpdatesTopic", "OrderingMicroservice");
namespaceManager.CreateSubscription("ProductUpdatesTopic", "BasketMicroservice");

However, that code is dependent from the client microservices, so it should be exposed as the

Subscribe() method of the Event Bus like the following code:

public class EventBusOnAzureServiceBus : IEventBus
{
 private NamespaceManager _namespaceManager;
 public EventBusOnAzureServiceBus()
 {
 // SB-Topics creation and other initializations
 //...
 }

 public bool Subscribe(Subscriber subscriber, Event event)
 {
 // Create Subscription
 _namespaceManager.CreateSubscription(event.AzureServiceBusTopicName, subscriber.Name);

 //Would be similar to this hard-code line:
 //_namespaceManager.CreateSubscription("ProductUpdatesTopic", " BasketMicroservice");
 }
}

97 Architecting and developing Docker applications

Publish events through the Azure Service Bus Topics

Another important implementation method for the Event Bus is the .Publish() method.

public class EventBusOnAzureServiceBus : IEventBus
{
 private NamespaceManager _namespaceManager;
 public EventBusOnAzureServiceBus()
 {
 // SB-Topics creation and other initializations
 //...
 }
 public bool Subscribe(Subscriber subscriber, Event event)
 {
 // Azure Service Bus Subscription creation code...
 }
 public bool Unsubscribe(Subscriber subscriber, Event event)
 {
 // Unsubscribe implementation...
 }

 public bool Publish(Subscriber subscriber, Event event)
 {
 // Other initializations
 // ...

 // Publish and event to a concrete topic
 BrokeredMessage bm = new BrokeredMessage(event);
 bm.Label = "ProductUpdated";
 bm.Properties["TenantId"] = "0025";
 bm.Properties["OtherFilter"] = "XXX";

 MessagingFactory factory = MessagingFactory.Create(uri, tokenProvider);
 MessageSender sender = factory.CreateMessageSender(event.AzureServiceBusTopicName);

 sender.Send(bm);
 }

}

For run-time operations in Service Bus entities such as sending and receiving messages, an application

must first create a MessagingFactory object. Like the NamespaceManager class, the MessagingFactory

instance is created from the base address of the service namespace and the token provider.

Messages sent to and received from Service Bus topics are instances of the BrokeredMessage class.

This class consists of a set of standard properties (such as Label and TimeToLive), a dictionary that is

used to hold application properties, and a body of arbitrary application data. An application can set

the body by passing in any serializable object which will use the DataContractSerializer to serialize the

object. Alternatively, a Stream object can be provided.

Finally, the easiest way to send messages to a topic is to use CreateMessageSender to create a

MessageSender object directly from the MessagingFactory instance.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagingfactory#microsoft_servicebus_messaging_messagingfactory
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.brokeredmessage
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.brokeredmessage#Microsoft_ServiceBus_Messaging_BrokeredMessage_Label
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.brokeredmessage#Microsoft_ServiceBus_Messaging_BrokeredMessage_TimeToLive
https://msdn.microsoft.com/library/system.runtime.serialization.datacontractserializer.aspx
https://msdn.microsoft.com/library/system.io.stream.aspx
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagingfactory#Microsoft_ServiceBus_Messaging_MessagingFactory_CreateMessageSender_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagesender
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagingfactory

98 Architecting and developing Docker applications

Implementing an Event Bus with RabbitMQ

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

--

Using the Event Bus

Subscribing to events from the receptor microservices

The first step for using the Event Bus is to subscribe the microservices or even external applications to

the events they want to receive. That should be done from the receiver microservices by using the

simple client API previously explained, as in the following code:

// Somewhere during the initialization of the “Basket microservice” (Or any other service)

eventBus.Subscribe(basketMicroservice, productPriceUpdatedEvent);

Receiving messages from subscriptions: Event Handlers in each microservice

Once the receiver microservices are subscribed, you must implement the Event Handlers where you

will receive the event messages and process them.

An Event handler first receives an Event instance from the Event Bus. Then, it locates the component

to be processed because of that Integration Event, propagating and persisting the event as a change

in state in the receptor microservice. For example, if a ProductPriceUpdated event originated in the

Catalog microservice and is handled in the Basket microservice by an Event Handler, the Event

Handler might need to verify whether the product exists in any of the basket instances. It might also

update the product price for the related Basket line item and create an alert to be display a warning

message about the price change.

Implementing client Event Handlers with Azure Service Bus API

Azure Service Fabric client apps work with this is by using the SubscriptionClient client class. The

following code should be implemented in the client API for the custom event bus by using an

automatic callback function:

SubscriptionClient subscription = SubscriptionClient.CreateFromConnectionString(
 connectionString,
 topicName,
 subscriptionName);
// Configure the callback function options
OnMessageOptions options = new OnMessageOptions();
options.AutoComplete = false;
options.AutoRenewTimeout = TimeSpan.FromSeconds(30);

subscription.OnMessage((eventMessage) =>
{
 try
 {

99 Architecting and developing Docker applications

 // Process message from subscription
 // …
 // Remove message from subscription
 eventMessage.Complete();
 }
 catch (Exception)
 {
 // Indicates a problem, unlock message in subscription
 eventMessage.Abandon();
 }
}, options);

Instead of an automatic callback function, another possible implementation is to implement a Polling

approach, continually querying the topics to receive messages from the Service Bus subscription. This

can be done by using a MessageReceiver object, which you create directly from the MessagingFactory

using the CreateMessageReceiver method. You can use one of two different receive modes:

ReceiveAndDelete or PeekLock.

For example, when you create a MessageReceiver for subscriptions, the entityPath parameter is of the

form topicPath/subscriptions/subscriptionName. Therefore, to create a MessageReceiver for a

BasketMicroservice subscription of the ProductUpdatesTopic topic, entityPath must be set to

something like ProductUpdatesTopic /subscriptions/BasketMicroservice. The code appears as follows:

MessageReceiver receiver =
factory.CreateMessageReceiver("DataCollectionTopic/subscriptions/Inventory");
BrokeredMessage receivedMessage = receiver.Receive();
try
{
 ProcessMessage(receivedMessage);
 receivedMessage.Complete();
}
catch (Exception e)
{
 receivedMessage.Abandon();
}

You usually would need to have the previous code within a loop so it is polling the topics repeatedly,

at predefined intervals.

References – Event Bus implementation with Azure Service Bus

Sample Commands/Events messaging implementation with Azure Service Bus

https://github.com/CESARDELATORRE/ServiceFabricPoCs/tree/master/ServiceFabricServiceBusPoC

Service Bus queues, topics, and subscriptions

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions

Create applications that use Service Bus topics and subscriptions

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-create-topics-subscriptions

How to use Service Bus topics and subscriptions

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

Filters and Rules in Azure Service Bus Topic Subscriptions

In many scenarios, messages that have specific characteristics must be processed in different ways. To

enable this, you can configure subscriptions to find messages that have desired properties and then

perform certain modifications to those properties. While Service Bus subscriptions see all messages

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagereceiver
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagingfactory
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagingfactory#Microsoft_ServiceBus_Messaging_MessagingFactory_CreateMessageReceiver_System_String_
https://github.com/CESARDELATORRE/ServiceFabricPoCs/tree/master/ServiceFabricServiceBusPoC
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions

100 Architecting and developing Docker applications

sent to the topic, you only need to copy a subset of those messages to the virtual subscription queue.

This is accomplished using subscription filters. Such modifications are called filter actions. When a

subscription is created, you can supply a filter expression that operates on the properties of the

message, both system properties (for example, Label) and custom application properties (for example,

TenantId.) The SQL filter expression is optional in this case; without a SQL filter expression, any filter

action defined on a subscription will be performed on all the messages for that subscription.

For example, let’s suppose that the eShopOnContainers sample is a multitenant system. To filter

messages coming only from TenantId = "0025", you would create a Basket subscription as follows:

namespaceManager.CreateSubscription("ProductUpdatesTopic", "BasketMicroservice", new
SqlFilter("TenantId = '0025'"));

Implementing client Event Handlers with RabbitMQ API

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

--

Publishing the events from the origin microservice

Typically your application layer (i.e. your Command Handlers classes) are responsible for publishing

the integration events. When using the Entity Framework, publishing should be done right after saving

the context changes (i.e. after calling efContext.SaveChanges().

// somewhere from the original microservice (like the “Catalog microservice”)
public async Task<bool> Handle(ChangeProductPriceCommand message)
{
 //1. Infrastructure code updating product’s price and starting a transaction
 //2. Infrastructure code saving the Integration Event as part of the same transaction
 //..
 ProductPriceUpdated event = ProductPriceUpdated(productid, NewProductPrice);
 eventBus.Publish(event);
}

Resilient publish to the event bus

As introduced in the architecture section, a challenge when implementing an event-driven

architecture across multiple microservices is how to atomically update state in the original

microservice while resiliently publishing its related integration event to the event bus, somehow based

on transactions. The following are some of the possible ways to accomplish this:

1. Using a transactional (DTC based) queue such as MSMQ (Note, however, this is a legacy

approach).

2. Using transaction log mining.

3. Using the full event sourcing pattern.

4. Using a transactional database table as a message queue that is the basis for an event-creator

component creates and publishes events.

http://www.scoop.it/t/sql-server-transaction-log-mining
https://msdn.microsoft.com/en-us/library/dn589792.aspx

101 Architecting and developing Docker applications

The first approach is based on Microsoft Message Queue Server, which is a legacy technology that

allows you to publish/submit messages to a queue as part of a distributed transaction based on the

DTC (Distributed Transaction Coordinator in Windows), so the same distributed transaction could

span operations in SQL Server, other relational databases, and MSMQ queues. However, this approach

is a legacy approach and therefore not encouraged. Two Phase Commit (2PC) shouldn't be considered

in modern and scalable microservice applications.

Using transaction log mining might look neat and transparent, but it couples the implementation to

the underlying infrastructure, the database log. You might want to use it depending on your

environment and application context.

Using the full event sourcing pattern (ES) is one of the best approaches if not the best, however, in

many application scenarios you might not be able to implement a full event sourcing system. This

means that you’d be storing only domain events in your transactional database instead of current

state data. Storing only domain events in your transactional database can have great benefits such as

having the history of your system available and being able to know state of your system at any

moment in the past. However, implementing a full event source system requires you to re-architect

most of your system and introduces many other complexities and requirements. For example, you

probably would want to use a database specifically made for event-sourcing, such as Event Store, or

aa document-oriented database such as Azure Document DB, MongoDB, Cassandra, CouchDB, or

RavenDB. ES is a great approach for this problem, but not the most straightforward unless you are

already familiar with Event Sourcing.

A simpler good and balanced approach would be a mix of a transactional database table and the

event sourcing pattern. You would use states such as a “ready to publish the event” state that you set

in the original event when you commit it into the integration events table, and then you would try to

publish the event to the Event Bus (based on queues or any bus implementation). If the publish event

action succeeds, then you would start another transaction in the source or original service and move

the state from “ready to publish the event” to “event already published”.

If the publish event action in the Event Bus fails, the data still won’t be inconsistent within the original

microservice because it is still marked as “ready to publish the event”, and in regards to the rest of the

services, it will be eventually consistent. You can always have background tasks/jobs checking the

state of the transactions or integration events and if they find a “ready to publish the event” state, they

can try to re-publish that event into the Event Bus.

Notice that with this approach you are persisting just the integration events per origin microservice,

and only the events that you want to communicate to other microservices or external systems. On the

contrary, in a full Event Sourcing system, you store all Domain Events as well.

Therefore, this approach can be considered as a very simplified event-sourcing system. You need a list

of integration-events with their current state (ready to publish vs. published), but you only need to

implement it for the integration events. In this case, you don’t need to store all your domain data as

events in the transactional database as you would in a full event sourcing system.

Implementing resilient event publish through the event bus

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

https://geteventstore.com/

102 Architecting and developing Docker applications

--

References – Publish/subscribe, eventual consistency and Event Sourcing

Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

Publish/Subscribe channel

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

Communicating Between Bounded-Contexts

https://msdn.microsoft.com/en-us/library/jj591572.aspx

Eventual Consistency

https://en.wikipedia.org/wiki/Eventual_consistency

Strategies for Integrating Bounded Contexts

http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

Developing Transactional Microservices Using Aggregates, Event Sourcing and CQRS - Part 2

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson

Event Sourcing pattern

http://microservices.io/patterns/data/event-sourcing.html

Introducing Event Sourcing

https://msdn.microsoft.com/en-us/library/jj591559.aspx

Event Store database

https://geteventstore.com/

Idempotency in update message events

An important aspect of update message events is that a failure at any point in the communication

should cause the message to be retried. Otherwise a background task might try to publish an event

that was already being published before, creating a race condition You need to make sure that the

updates are either idempotent or that they provide enough information to ensure that you can detect

a duplicate, discard it, and send back only one response.

Idempotency. As introduced in the discussion about Commands, idempotency is a characteristic of an

operation which means an operation can be applied multiple times without changing the result. In a

messaging environment, as when communicating events, an event is idempotent if it can be delivered

multiple times without changing the result for the same recipient microservice. This may be necessary

because of the nature of the event itself, or because of the way the system handles the event.

Message idempotency is important in any system that uses messaging, not just in systems that

implement the Event Bus pattern.

In other words, Idempotent means that the operation can be performed multiple times, and beyond

the first time it is performed the result is not changed. An example of an idempotent operation is a

database script that inserts data into a table only if the data isn’t already present. No matter how

many times the script is executed beyond the first time the result will be the same. Idempotency such

as this can also be necessary when working with message processing if the messages could potentially

be processed more than once.

In some scenarios, it would be possible to design idempotent messages. For example, by using an

event that says "set the product price to $25" rather than a message that says "add $5 to the

product’s price". You could safely process the first message multiple times, but not the second. Even

in the first case, you might not want to process the first event, as the system could also have sent a

newer price change event.

https://msdn.microsoft.com/en-us/library/jj591572.aspx
https://en.wikipedia.org/wiki/Eventual_consistency
http://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson
http://microservices.io/patterns/data/event-sourcing.html

103 Architecting and developing Docker applications

Another example would be an OrderCreated event when propagating it to multiple subscribers, such

as other microservices or even external systems like an ERP. It is important that any order created is

propagated or updated to other systems just once even if there are several duplicated message

events for the same original OrderCreate event.

Even when an event will be broadcasted to many subscribers or recipients, in most cases it’s good to

have some kind of identity per event, so each event is processed only once per destination recipient.

Some message-processing will be inherently idempotent. For example, if a system generates image

thumbnails of a larger file stored in BLOB storage it could be that it doesn’t matter how many times

the message is processed; the outcome is that the thumbnails are generated and they are the same

every time. On the other hand, there are operations such as calling a payment gateway to charge a

credit card that may not be idempotent at all. In these cases, you will need to look at your system and

ensure that processing a message multiple times has the effect that you want and expect.

Idempotency in Event Bus and messaging

Honoring message idempotency

https://msdn.microsoft.com/en-us/library/jj591565.aspx

De-duplicating command messages

Making sure that message events are sent and processed just once per destination microservice or

subscriber can be accomplished at different levels. You could make use of de-duplication feature

offered by the messaging infrastructure you are using, or you could also implement custom logic in

your destination event handlers. Having validations at both the transport level and the application

level is probably your best bet.

De-duplicating message events at the EventHandler level

One way to do make sure that an event is processed just once by each destination recipient is by

implementing certain logic when processing the message events at the Event Handlers.

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

--

De-duplicating messages when using RabbitMQ

According to RabbitMQ documentation, “In the event of network failure (or a node crashing),

messages can be duplicated, and consumers must be prepared to handle them. If possible,

the simplest way to handle this is to ensure that your consumers handle messages in an

idempotent way rather than explicitly deal with deduplication.

If a message is delivered to a consumer and then requeued (because it was not

acknowledged before the consumer connection dropped, for example) then RabbitMQ will

set the redelivered flag on it when it is delivered again (whether to the same consumer or

https://www.rabbitmq.com/reliability.html#consumer

104 Architecting and developing Docker applications

a different one). This is a hint that a consumer may have seen this message before (although

that's not guaranteed, the message may have made it out of the broker but not into a

consumer before the connection dropped). Conversely if the redelivered flag is not set

then it is guaranteed that the message has not been seen before. Therefore, if a consumer

finds it more expensive to de-duplicate messages or process them in an idempotent manner,

it can do this only for messages with the redelivered flag set.”

In any case, it is highly recommended to handle message event in an idempotent way at the

event handler’s level.

 De-duplicating messages in Azure Service Bus

Another way to de-duplicate messages is to use a de-duplication feature offered by the messaging

infrastructure you are using. Typically, only high level Service Buses offer this feature. For example,

Azure Service Bus can help you to ensure that it delivers messages only once by configuring it’s de-

duplication feature at the infrastructure level. When you do so, Azure Service Bus will perform

duplicate message detection and remove messages it believes are duplicates of other messages.

The duplicate detection feature in Azure Service Bus looks at the MessageId property of the brokered

message. If you set the MessageId to something that is unique per message, duplicate detection

should catch it. The contents of the message are not compared, so if you have two messages that

have the same actual content but have different MessageId ‘s they won’t be detected as duplicates.

This is logical. as they have different identities.

Note that when using Azure Service Bus, if the application crashes after processing the message but

before the Complete request is issued, the message is redelivered to the application when it restarts.

This is often called At Least Once processing; that is, each message is processed at least once.

However, in certain situations the same message may be redelivered. If the scenario cannot tolerate

duplicate processing, then additional logic is required in the application to detect duplicates. This can

be achieved based upon the MessageId property of the message, which remains constant across

delivery attempts. This is known as Exactly Once processing. Thus, whenever it is critical that an event

should be processed just once per destination recipient, it is recommended to use both approaches:

de-duplication based on the infrastructure and duplicate detection at the application level.

You can enable duplication detection in Azure Service Bus when you create a Topic, as shown in figure

X-XX.

Another way to do it is by codeas in the following code snippet which is creates a Topic in Azure

Service Bus.

Figure X-XX. Duplication Detection in Azure SB

105 Architecting and developing Docker applications

TopicDescription fooTopicDescription = new TopicDescription("FooTopic")
{
 RequiresDuplicateDetection = true,
 DuplicateDetectionHistoryTimeWindow = new TimeSpan(10, 0, 0),
};
namespaceManager.CreateTopic(fooTopicDescription);

Message duplication Detection

De-duplicating command messages with Azure Service Bus

https://msdn.microsoft.com/en-us/library/jj591565.aspx#dedup

Duplicate Detection Sample (Azure Service Bus)

https://github.com/Azure-Samples/azure-servicebus-messaging-samples/tree/master/DuplicateDetection

RabbitMQ Reliability Guide

https://www.rabbitmq.com/reliability.html

Guaranteeing message ordering

Sometimes a system might need to process a sequence of events or commands in a specific. For

example, changing from one order state to the next one might need to have a sequence and it might

not be allowable to change an order to a shipped state before first passing through a paid state. If

messages arrive out of order it might cause issues.

You might have two alternatives for ensuring that messages arrive in the correct order:

 Custom: The first option is to modify the handlers within the application to detect out-of-

order messages using a sequence number or a timestamp, added to the messages when they

are sent. If the receiving handler detects an out-of-order message, it rejects the message and

puts it back onto the queue or topic to be processed later, after it has processed the

messages that were sent before the rejected message. When message ordering is critical, it is

recommended that you implement this application logic to make sure that order will occur.

 Service Bus sessions: The second alternative is to use message sessions, a feature that might

be provided by your messaging infrastructure. For example, Azure Service Bus provides that

capability. If you use message sessions, this guarantees that messages within a session are

delivered in the same order that they were sent. However, sessions can’t guarantee the order

of the messages 100%.

Guaranteeing message ordering references

Azure Service Bus sessions

https://docs.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.messagesession

https://msdn.microsoft.com/en-us/library/jj591565.aspx

https://github.com/Azure-Samples/azure-servicebus-messaging-samples/tree/master/Sessions

Avoiding message ordering issues by not needing message ordering

The best way to avoid message ordering issues is by not needing that message ordering at all.

Trying to guarantee the order in which events are processed undermines the point of asynchronous

messaging, which is in reality incompatible with having to guarantee the order of the messages

received. If you do try, it will create temporal coupling between components and it will start to look

https://msdn.microsoft.com/en-us/library/jj591565.aspx#dedup
https://github.com/Azure-Samples/azure-servicebus-messaging-samples/tree/master/DuplicateDetection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.messagesession
https://msdn.microsoft.com/en-us/library/jj591565.aspx

106 Architecting and developing Docker applications

like a RPC or request/response communication instead of the asynchronous message communication

used by an Event Bus.

The bottom line is that you might want to design your system so message ordering doesn’t really

matter.

A great way to handle out of order messages is a Saga, however, sagas are more related to command

processing than events processing, and they typically handle a business process driven by commands.

Testing ASP.NET Core services and web apps
Controllers are a central part of any ASP.NET Core API service and MVC web app. As such, you should

have confidence they behave as intended for your app. Automated tests can provide you with this

confidence and can detect errors before they reach production.

You need to Test how the controller behaves based on valid or invalid inputs and test controller

responses based on the result of the business operation it performs.

However, there are several main differentiated types of tests you should have for your microservices.

Unit Tests, Integration Tests, Functional Tests (per microservice) and Service Tests.

 Unit Tests - Ensure that individual components/classes of the app work as expected.

Assertions test the component API.

 Integration Tests - Ensure that component collaborations work as expected against external

artifacts like databases. Assertions may test component API, UI, or side-effects (such as

database I/O, logging, etc.)

 Functional Tests (per microservice) - Ensure that the app works as expected from the user’s

perspective, like a use-case.

 Service Tests – Ensure that end-to-end service tests, including testing multiple services at the

same time are tested. For this type of testing you need to prepare the environment first which

in this case means to spin up the services/containers (like using “docker-compose up” first).

Implementing Unit Tests for ASP.NET Core Web APIs

Unit testing involves testing a part of an app in isolation from its infrastructure and dependencies.

When unit testing controller logic, only the contents of a single action is tested, not the behavior of its

dependencies or of the framework itself. As you unit test your controller actions, make sure you focus

only on its behavior. A controller unit test avoids things like filters, routing, or model binding. By

focusing on testing just one thing, unit tests are generally simple to write and quick to run. A well-

written set of unit tests can be run frequently without much overhead. However, unit tests do not

detect issues in the interaction between components, which is the purpose of integration testing.

When writing a unit test of a Web API controller, you directly instance the controller class through the

“new” C# language keyword, so it will run as fast as possible, like in the following example.

 public class ApiIdeasControllerTests
 {
 [Fact]
 public async Task Create_ReturnsBadRequest_GivenInvalidModel()
 {
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);

107 Architecting and developing Docker applications

 controller.ModelState.AddModelError("error","some error");

 // Act
 var result = await controller.Create(model: null);

 // Assert
 Assert.IsType<BadRequestObjectResult>(result);
 }
 }

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------------------- Further implementation details for Unit Tests -------------------------

--

Implementing Integration and Functional Tests per isolated microservice

As introduced, Integration Tests and Functional Tests have different goals and purposes. However, the

way you implement both when testing ASP.NET Core controllers is pretty similar, so below it is only

explained how to implement an Integration Tests.

Integration testing ensures that an application's components function correctly when assembled

together. ASP.NET Core supports integration testing using unit test frameworks and a built-in test

web host that can be used to handle requests without network overhead.

Unlike Unit testing, integration tests frequently involve application infrastructure concerns, such as a

database, file system, network resources, or web requests and responses. Unit tests use fakes or mock

objects in place of these concerns, but the purpose of integration tests is to confirm that the system

works as expected with these systems, so in this case you won’t use fakes or mock objects but

including the infrastructure, like database access or services invocation from the outside.

Integration tests, because they exercise larger segments of code and because they rely on

infrastructure elements, tend to be orders of magnitude slower than unit tests. Thus, it's a good idea

to limit how many integration tests you write.

ASP.NET Core includes a test host available in a NuGet component as Microsoft.AspNetCore.TestHost

that can be added to integration test projects and used to host ASP.NET Core applications, serving

test requests without the need for a real web host.

AS you can see in the following code, when creating integration tests of ASP.NET Core controllers, you

would instanciate the controllers through the Test Host so it is comparable to an HTTP request but

running faster.

public class PrimeWebDefaultRequestShould
{
 private readonly TestServer _server;
 private readonly HttpClient _client;
 public PrimeWebDefaultRequestShould()
 {
 // Arrange
 _server = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
 _client = _server.CreateClient();

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test

108 Architecting and developing Docker applications

 }
 [Fact]
 public async Task ReturnHelloWorld()
 {
 // Act
 var response = await _client.GetAsync("/");
 response.EnsureSuccessStatusCode();

 var responseString = await response.Content.ReadAsStringAsync();

 // Assert
 Assert.Equal("Hello World!",
 responseString);
 }
}

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------- Further implementation details for Integration and Functional Tests -------------

--

For additional details on how to create unit tests and integration tests for ASP.NET Core Web API and

MVC applications, read the following references.

References – Testing ASP.NET Core Web APIs and MVC Apps

Testing Controllers in ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

Integration Tests in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/testing/integration-testing

Unit Testing in .NET Core using dotnet test

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test

Implementing Service Tests on a multi-container application

As introduced before, when testing multi-container applications you need to have running all the

microservices/containers within the Docker host (or container cluster). These end-to-end service tests

which include multiple operations involving several microservices/containers requires you to spin-up

the whole application in the first place deploying it to the Docker host, by running “docker-compose

up” (or comparable mechanism to run the whole application if using an orchestrator/cluster). Once

the whole application and all its services are up and running is when you will be able to execute end-

to-end integration and functional tests for your multi-container or microservice based application.

There are a few of approaches you can use. In the docker-compose.yml that you would use to deploy

the whole application and test afterwards (like one named as docker-compose.ci.build.yml file that

you would use in your CI pipeline), at the solution level, you would expand the entrypoint to use

“dotnet test”. You could also use another compose file that would run your tests in the same image

you are targeting.

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing
https://docs.microsoft.com/en-us/aspnet/core/testing/integration-testing
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/dotnet-test

109 Architecting and developing Docker applications

By using another compose file for integration tests that includes your microservices, databases on

containers that always resets to its original state, website, and test project you could be getting

breakpoints and exception breaks throughout if running in Visual Studio, or you could run those

integration tests automatically in your CI pipeline in Visual Studio Team Services or any other CI/CD

system that supports Docker containers.

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------- Further implementation details for Services/Containers Tests --------------------

--

110 Architecting and developing Docker applications

Tackling business complexity in microservices’

domains with Domain-Driven Design (DDD) and

Command & Query Responsibility Segregation

(CQRS) patterns
Most of the techniques or practices explained for simple data-driven microservices, such as how to

implement an ASP.NET Core Web API service or how to expose Swagger metadata with Swashbuckle,

are also applicable to the more advanced microservices implemented internally with DDD (Domain-

Driven Design) patterns. This section is an extension of the previous sections, as most of the practices

explained earlier also apply here.

However, this section focuses on more advanced microservices that you might want to implement

when you need to tackle complexity of certain sub-systems, or microservices derived from the

knowledge of domain experts with ever-changing business rules.

In order to set the context, this whole section focuses on the internal architecture, design and

implementation of concrete microservices following more advanced patterns like the once defined in

DDD and CQRS, as illustrated in figure X-XX.

“DDD” vs. “DDD patterns”: Not exactly the same

Make no mistake about it, this guidance is not in-depth coverage of DDD and CQRS. It is much less

ambitious. This section is only covering how you can design with certain DDD and simplified CQRS

architectural approaches and implement them with .NET Core, within a microservice or bounded-

context.

111 Architecting and developing Docker applications

There are many DDD patterns like Domain Entity, Aggregates and Aggregate Root, Value Object,

Repositories, Factories and so on. But merely applying these patterns doesn’t mean you are creating a

DDD application or service. It only means that you are applying DDD patterns.

DDD is first and foremost about a Domain Model expressed as software. That Domain Model is an

attempt to bridge the gap between the software and the real domain and domain experts’ knowledge

by applying patterns that help transfer a domain reality to a domain model. Techniques like the

Ubiquitous Language attempt to help with the fidelity between the real conceptual domain and the

software domain model. But, building a robust Ubiquitous Language requires extensive conversations

with the domain experts so that developers can learn about the domain. That is really DDD: the

process or journey, not the patterns.

Pattern examples are great and it is what this section and the sample application (eShopOnContainers)

show you, but that is not DDD. If you're truly looking for how to do DDD, it's not in any code

repository, nor in this short guidance section. This is not capturing real brainstorming or

whiteboarding sessions with domain experts.

To learn DDD and how to apply it, you can start by reading books like ￼, and many other literature

from people like Vaughn Vernon, Jimmy Nilsson, Greg Young, Udi Dahan, Jimmy Bogard, and many

other DDD/CQRS experts, but most of all, you need to try to learn how to apply DDD techniques from

the conversations, whiteboarding, and domain modeling sessions with the experts of your concrete

business domain., and many other literature from people like Vaughn Vernon, Jimmy Nilsson, Greg

Young, Udi Dahan, Jimmy Bogard, and many other DDD/CQRS experts, but most of all, you need to

try to learn how to apply DDD techniques from the conversations, whiteboarding, and domain

modeling sessions with the experts of your concrete business domain.

References – Domain-Driven Design (DDD)

DDD (Domain-Driven Design)

http://domainlanguage.com/

http://martinfowler.com/tags/domain%20driven%20design.html

https://lostechies.com/jimmybogard/2010/02/04/strengthening-your-domain-a-primer/

DDD Books

Domain-Driven Design: Tackling Complexity in the Heart of Software – Eric Evans

Domain-Driven Design Reference: Definitions and Pattern Summaries - Eric Evans

Implementing Domain-Driven Design - Vaughn Vernon

Domain-Driven Design Distilled - Vaughn Vernon

Applying Domain-Driven Design and Patterns - Jimmy Nilsson

Domain-Driven Design Quickly

Applying simplified CQRS and DDD patterns within a microservice

CQRS does not necesariliy means "Two databases". CQRS is just two objects for read/write where once

there was one. That simplified approach is the one chosen in this guide. There are other reasons why

you would want to have a de-normilized “reads-database” and you can learn about that in more

advanced CQRS literature, but this is not the case for this more simplifed approach where the main

goal is to have higher flexibility in the queries instead of limiting the queries by constraints from DDD

patterns like aggregates.

http://domainlanguage.com/
http://martinfowler.com/tags/domain%20driven%20design.html
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/ref=sr_1_1?ie=UTF8&qid=1485298920&sr=8-1&keywords=Eric+Evans+book
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-2014-09-22/dp/B01N8YB4ZO/ref=sr_1_15?ie=UTF8&qid=1485299985&sr=8-15&keywords=%22Eric+Evans%22
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/ref=sr_1_1?ie=UTF8&qid=1485298971&sr=8-1&keywords=vaughn+vernon+book
https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420/ref=sr_1_2?ie=UTF8&qid=1485298971&sr=8-2&keywords=vaughn+vernon+book
https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202/ref=sr_1_2?ie=UTF8&qid=1485299155&sr=8-2&keywords=Jimmy+Nilsson+book
https://www.amazon.com/Domain-Driven-Design-Quickly-Abel-Avram/dp/1411609255/ref=sr_1_1?ie=UTF8&qid=1485299200&sr=8-1&keywords=Domain-Driven+Design+Quickly

112 Architecting and developing Docker applications

An example of this kind of service is the Ordering microservice from the eShopOnContainers reference

application. This type of service implements a microservice based on a simplified CQRS (using a single

data source or database, but logical two models) plus DDD patterns implementation for the

transactional Domain, as shown in the design diagram in figure X-X.

The Application Layer can be the Web API itself. The important design decision here is that the

microservice has split the Queries and ViewModels (Data models especially made for the client

applications) from the Commands, Domain Model and transactions following a (CQRS or Command

and Query Responsibility Segregation). This approach keeps the queries independent from restrictions

and constraints coming from Domain-Driven Design patterns that only make sense to transactions

and updates, as explained in later sections.

CQRS and CQS approaches in a DDD microservice

The related term CQS (Command Query Separation) was originally defined by Bertrand Meyer in his

book "Object Oriented Software Construction". The basic idea is that you can divide a system’s

operations into two sharply separated categories:

 Queries: Return a result and do not change the state of the system (and are free of side

effects).

 Commands: Change the state of a system.

CQS is a simple concept, it is about methods within the same object being either queries or

commands. Each method either returns state or mutates state but not both. Even a single Repository

pattern object can comply with CQS according with that definition. CQS could be It can be considered

as a foundational principle for CQRS.

Figure X-XX. Simplified CQRS and DDD based microservice design

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://martinfowler.com/bliki/CommandQuerySeparation.html

113 Architecting and developing Docker applications

CQRS (Command and Query Responsibility Segregation) was introduced by Greg Young and also

strongly promoted by Udi Dahan and other advocates. It is based on the CQS principle, although it is

more detailed and can be considered a pattern based on commands and events plus optionally based

on asynchronous messages. In many cases, CQRS is related to more advanced scenarios like having a

different physical database for the Reads/Queries than for the Writes/Updates. Going even further, a

more evolved CQRS system would implement Event-Sourcing (ES) for your Updates/Writes database,

so you would only store events in the Domain Model instead of the current state data. However, and

as mentioned, this is not the case of this approach used in this guidance where we are using the

simplest CQRS approach which is just separating the queries from the commands.

The separation pursued by CQRS is achieved by grouping query operations in one layer and

commands in another layer. Each layer has its own model of data and is built using its own

combination of patterns and technologies. More important, the two layers may be within the same

tier or microservice (like the simplified chosen example approach in this guide) or they could even be

on two distinct tiers/microservices/processes and be optimized separately without affecting each

other.

The present microservice’s design of this guide is based on CQRS principles but using the simplest

approach, which is just separating the queries from the commands/updates and initially using the

same database for both actions (which is also a possible approach in CQRS).

The essence of those patterns and the important point here is that queries are idempotent: no matter

how many times you query a system, the state of that system won’t change because of the querying.

Therefore, you could use a different “reads-data-model” than the transactional logic “writes-domain-

model”.

On the other hand, commands (which will trigger transactions and data updates) are what impact

your system, so the areas related to commands or updates is where you need to be careful when

dealing with complexity and ever-changing business rules. Thus, this is the area where you might want

to apply Domain-Driven Design patterns to have a more solid and better modelled system.

However, as introduced in the following sections, Domain-Driven Design presents many restrictions

and constraints based on patterns like Aggregates, Domain Entities, Repositories, etc. Those patterns

are very beneficial for your system so you can evolve it in the long term with quality, but honestly,

they usually just matter for the transactional/updates area which can be triggered by commands. If

that is the case, why should you limit yourself and use the same constraints, limitations and even

unnecessary complexity when still using those patterns for the queries if that can turn to worse

performance and lack of flexibility in your queries?

For example, when using Aggregates for your model plus Entity Framework Core for your

infrastructure, if you also use that approach for your queries you will have constraints derived from

the fact that an Aggregate might not have info about other additional entities that you’d like to

include in a specific query. That will make your end-to-end query more complex; you might need to

aggregate data from multiple Aggregates and do convoluted operations that you shouldn’t need to

do for a query. Not taking into account that when using Entity Framework Core, you might not get the

best performance possible for your queries for many reasons, compared to plain SQL data access as

when using a Micro ORM.

https://martinfowler.com/bliki/CQRS.html
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/
https://martinfowler.com/bliki/CQRS.html

114 Architecting and developing Docker applications

This is why, as shown in image X-XX, this guide suggests implementing DDD patterns only to the

transactional/updates area of your microservice (triggered by Commands). When dealing with queries,

you can forget about DDD patterns and design those queries separate from the commands/updates,

following a CQRS approach. You can do this by implementing straight queries using a Micro ORM like

Dapper or any other Micro ORM which offers great flexibility for the queries. This is because you can

implement any query based on SQL sentences while getting the best performance, thanks to a very

light framework with very little overhead.

CQRS and DDD patterns are not top-level architectures

It’s important to highlight that CQRS and most DDD patterns (like DDD Layers or a Domain Model

with Aggregates) are not architectural styles but only architectural patterns and therefore should not

usually be used as top-level architectures.

Microservices, SOA, Event Driven Architecture are examples of architectural styles. They describe a

system of many components (like an architecture composed by many microservices).

CQRS and DDD patterns describe something inside a single system or component, in this case,

something inside a microservice.

This is very important to understand. Most architectural patterns like CQRS or most DDD patterns are

not good to apply everywhere. If you see architectural patterns applied as a top-level architecture, you

probably have a problem. For example, to say “all microservices must use DDD or CQRS” is wrong and

bad. It will be a large failure if you try to use CQRS and DDD patterns everywhere because many

subsystems, bounded-contexts or microservices are simpler and can be implemented in an easier way

as simple CRUD services or any other approach depending on what you need to create.

There is only one architecture. It is the one of the system or end-to-end application you are designing.

It is its own set of tradeoffs and decisions that have been made per bounded-context, microservice or

any boundary you can have per sub-systems. Do not try to apply the same architectural patterns like

CQRS or DDD everywhere.

References – CQRS

CQRS

https://martinfowler.com/bliki/CQRS.html

CQS vs. CQRS (by Greg Young)

http://codebetter.com/gregyoung/2009/08/13/command-query-separation/

CQRS Documents (Greg Young)

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

CQRS, Task Based UIs and Event Sourcing (Greg Young)

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Clarified CQRS (Udi Dahan)

http://udidahan.com/2009/12/09/clarified-cqrs/

CQRS

http://cqrs.nu/Faq/command-query-responsibility-segregation

Event-Sourcing (ES)

http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/

https://github.com/StackExchange/dapper-dot-net
http://udidahan.com/2009/12/09/clarified-cqrs/

115 Architecting and developing Docker applications

Implementing the Reads/Queries in a CQRS microservice

As the chosen Reads/Queries implementation example, the Ordering microservice from the

eShopOnContainers reference application has implemented the queries independently from the

Domain-Driven Design model and transactional area. Mainly because the demands for each are

drastically different (Reads vs. Writes).

It is a very simple approach as show in figure X-XX where the API interface would be implemented by

the Web API controllers using any infrastructure (like a MicroORM like Dapper) and returning dynamic

ViewModels depending on the needs from the UI applications.

This is the simplest possible approach for queries. The query definitions query the database and

return a dynamic ViewModel built “on-the-fly” per each query. Since the queries are idempotent, you

don’t need to be restricted by any DDD pattern used in the transactional side (like Aggregates and

other patterns) but simply query the database for the data the UI needs and return that as a dynamic

ViewModel that doesn’t need to be statically defined anywhere (no classes for the ViewModels) but in

the SQL sentences themselves.

Since it is very simple approach, the required code for the “Queries side” like code using a MicroORM

as Dapper can be implemented within the same Web API project as shown in figure X-XX where the

queries are defined in the Ordering.API microservice project within the eShopOnContainers solution.

Figure X-XX. Queries in the Ordering microservice from eShopOnContainers

Figure X-XX. Simplest approach for queries in a CQRS microservice

https://github.com/StackExchange/Dapper

116 Architecting and developing Docker applications

ViewModels specifically made for client apps, independent from the Domain Model

constraints

Since the queries are performed to obtain the data needed by the client applications, the model to

return data to the client apps can be specifically made for them, and can be based on the data

returned by the queries. Because of that, these specific models or DTOs (Data Transfer Object) can be

called ViewModels, as they are the data models needed by the views from the client apps.

The returned data (ViewModel) can be the result of joining data from multiple entities or tables in the

database even across multiple Aggregates defined in the Domain model for the transactional area. In

this case, because you are creating queries independent of the Domain Model, the Aggregates

boundaries and constraints are completely ignored and you are free to query any table and column

you might need. This approach provides great flexibility and productivity for the developers creating

or updating the queries.

The ViewModels can be pre-defined in classes, or can also be created dynamically based on the

queries performed, which is very agile for developers.

Dapper: Selected Micro ORM as mechanism to query in the eShopOnContainers sample

Ordering microservice

You could use any Micro ORM, Entity Framework Core or even plain ADO.NET for querying.

Dapper was selected for the Ordering microservice in the eShopOnContainers sample as a good

example of a solid and popular Micro ORM. You can use it to run plain and fast SQL queries with great

performance due to it being a very light framework.

Dapper is an open source project (original created by Sam Saffron) and part of the building blocks

used in Stack Overflow.

Using Dapper, you can write a SQL query that could be accessing and joining multiple tables.

To use Dapper, you just need to install it through NuGet.

You will also need to add a using statement so your code has access to Dapper’s extension methods.

When using Dapper in your code, you directly use the SqlClient class available in

theSystem.Data.SqlClient namespace. Through the QueryAsync<>() method and other extension

methods which extend the SqlClient class, you can simply run queries in a very straightforward and

performant way.

Dynamic and static ViewModels

In the Ordering microservice, most of the ViewModels returned by the queries are implemented as

dynamic. That means that the subset of attributes to be returned will be based on the query itself. If

you add a new column to the query or join, that will be dynamically added to the returned

ViewModel.

117 Architecting and developing Docker applications

using Dapper;
using Microsoft.Extensions.Configuration;
using System.Data.SqlClient;
using System.Threading.Tasks;
using System.Dynamic;
using System.Collections.Generic;

public class OrderQueries : IOrderQueries
{
 public async Task<dynamic> GetOrders()
 {
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();

 return await connection.QueryAsync<dynamic>(@"SELECT o.[Id] as
ordernumber,o.[OrderDate] as [date],os.[Name] as [status],SUM(oi.units*oi.unitprice) as total
 FROM [ordering].[Orders] o
 LEFT JOIN[ordering].[orderitems] oi ON o.Id = oi.orderid
 LEFT JOIN[ordering].[orderstatus] os on o.StatusId = os.Id
 GROUP BY o.[Id], o.[OrderDate], os.[Name]");
 }
 }

}

The important point to highlight is how by using a dynamic type, the returned collection of data will

be dynamically assembled as the desired ViewModel.

For most of the queries you don’t need to pre-define any DTO or ViewModel class so it is very

straightforward code and very productive. However, you could also pre-define ViewModels (like pre-

defined DTOs) if you want to have ViewModels with a more restricted definition as contracts.

References – Dapper

Dapper

https://github.com/StackExchange/dapper-dot-net

Data Points - Dapper, Entity Framework and Hybrid Apps (MSDN Mag. article by Julie Lerman)

https://msdn.microsoft.com/en-us/magazine/mt703432.aspx

https://github.com/StackExchange/dapper-dot-net

118 Architecting and developing Docker applications

Designing a Domain-Driven Design oriented microservice

Note that given that the selected approach for a sample microservice is CQS/CQRS, the DDD

implementation will be only related to the transactional/updates area of that microservice.

Domain Driven Design advocates modeling based on the reality of business as relevant to your use

cases. When building applications, DDD talks about problems as domains. It describes independent

steps/areas of problems as bounded contexts (each bounded context correlates to a microservice),

and emphasizes a common language to talk about these problems. It also suggests many technical

concepts and patterns, like Domain Entities with rich-models (no anemic-domain model), Value-

Objects, Aggregate and Aggregate-Root rules to support the internal implementation. The design and

implementation of those internal patterns is precisely what this section is introducing.

It is important to highlight that sometimes these DDD technical rules and patterns are perceived as

hard barriers implementing the DDD, but in the end, people tend to forget that the important part is

to organize code artifacts in alignment with business problems and using the same common,

ubiquitous language. Also, DDD approaches should be applied only when implementing complex

microservices with ever-changing business rules. As described previously, if your microservice is

simple, like a CRUD service, using DDD internal patterns doesn’t make sense and it would be better if

you just implement a simple CRUD service with straightforward code, for example writing Entity

Framework Core code in an ASP.NET Core project.

When designing, and defining a microservice, where do you draw the boundaries? The Domain Driven

Design patterns help you deal with this complexity in the domain. You draw a bounded context

around Entities, Value Objects, and Aggregates that model your domain. You build and refine a model

that represents your domain and that model is contained within a boundary that defines your context.

And that is very explicit in the form of a microservice. The components within those boundaries end

up being your microservices. Microservices are about boundaries and so is DDD.

Keep the microservice’s context boundaries relatively small

In regards to the business functionality to be implemented in a DDD microservice, any microservice

should be reasonably small when implementing a specific Bounded-Context. Do not try to implement

the whole application or the whole Core-Domain within a single DDD microservice or it won’t really be

a microservice oriented application. Try to design a microservice as small as possible if it makes sense.

On the other hand, if you realize that your microservices are having too much chatty communication,

that might be a symptom of a too small microservices design.

Layers in Domain-Driven Design microservices

All sufficiently complex enterprise applications consist of multiple layers. From a user’s perspective,

the layers are abstracted away and they exist solely to assist the programmer in managing all the

emergent complexity. Distinct layers imply that translation must happen between some of the layers

for information to propagate. For example, in a typical enterprise use case, an entity is loaded from

the database, operated upon, persisted back to the database and information regarding the operation

is returned to the user client app through a service/application layer, perhaps via a REST Web API

service. The entity is contained within the domain layer and should not be forced into areas it doesn’t

belong, like in the presentation layer where a specific MVC view may require a user to enter

information in several steps (basket, buying process, etc.). For instance, the user can enter the order’s

product item first, but the order might still have unspecified info about shipping or billing information.

https://martinfowler.com/bliki/AnemicDomainModel.html

119 Architecting and developing Docker applications

If the client application was using the Domain Entity, that target entity could be in invalid state. That is

not good. You need to have Always-valid entities (see the Validations in Domain-Driven Design

section) controlled by Aggregate-Roots, so entities should not be bound to the client Views - this is

what the ViewModel is for. The ViewModel is a building block of the presentation layer and the

domain entity doesn’t belong there. Instead, an appropriate domain layer entity should be created

based on data contained in the view model. This can be done directly or by passing a DTO to a

service. When tackling complexity, it is important to have a Domain Model controlled by Aggregate-

Roots and following Domain-Driven Design patterns.

A service designed based on DDD patterns will usually be composed by several internal layers.

The following figure xx-xx shows how that design is implemented in the eShopOnContainers app.

A layer is simply a set of classes that you can group in a project folder, or you can also put each layer

in a different class library. A layer is something logical, a group of classes; you don’t need to

implement it as a class library if you don’t want to. However, implementing each major layer as a

library provides a better control of dependencies between each layer. For instance, the Domain-Model

Layer should not take any dependency on any other layer (the Domain Model classes should be POCO

classes) as shown in figure x-xx below about the Ordering.Domain layer library which only has

dependencies with the .NET Core libraries.

Figure X-XX. DDD Layers in the Ordering microservice from eShopOnContainers

Figure X-XX. Layers implemented as libraries allow a better control of dependencies

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

120 Architecting and developing Docker applications

Eric Evans's excellent book Domain Driven Design says the following about the Domain Model Layer

and Application Layer.

“Domain Model Layer: Responsible for representing concepts of the business, information about the

business situation, and business rules. State that reflects the business situation is controlled and used

here, even though the technical details of storing it are delegated to the infrastructure. This layer is the

heart of business software.”

The Domain Layer is where the business is expressed. When implementing a microservice’s Domain

Model Layer in .NET, that layer would be coded as a class library with the domain entities that will

capture data plus behavior (methods).

Following the Persistence Ignorance and the Infrastructure Ignorance principles, this layer must

completely ignore the data persistence details. These persistence tasks should be performed by the

infrastructure layer. Therefore, this layer should not take direct dependencies on the infrastructure,

which means that an important rule should be that your Domain Model entity classes should be

POCO (Plain-Old CLR Objects). Domain Entities should not have any direct dependency with any data-

access infrastructure framework like Entity Framework or NHibernate or any other data-access

framework. Ideally, your Domain entities should not derive or implement any type defined in the

infrastructure level.

Luckily, most modern ORM frameworks like Entity Framework Core allow this approach so your

domain model classes are not coupled to the infrastructure. However, having POCO entities is not

always possible when using certain NO-SQL persistence and frameworks like Actors and Reliable

Collections in Azure Service Fabric. However it is a good goal, and certainly possible if using relational

databases and Entity Framework Core.

You could, of course, also implement data access without an ORM, but that can require more custom

code and a larger effort.

“Application Layer: Defines the jobs the software is supposed to do and directs the expressive domain

objects to work out problems. The tasks this layer is responsible for are meaningful to the business or

necessary for interaction with the application layers of other systems. This layer is kept thin. It does not

contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of

domain objects in the next layer down. It does not have state reflecting the business situation, but it can

have state that reflects the progress of a task for the user or the program.”

When implementing a microservice’s Application Layer in .NET, that layer would be coded as an

application project that varies depending on what you are building. For instance, a common

application layer project type can be an ASP.NET Web API project which implements the

microservice’s interaction, remote network access and external Web APIs to be used from the UI or

client apps. It includes queries if using a CQS approach, commands accepted by the microservice, and

even the event-driven communication between microservices. However, the ASP.NET Web API must

not contain business rules or domain knowledge (especially domain rules in regards to transactions or

updates), which should be owned by the Domain Model class library.

The Application Layer (in this case an ASP.NET Web API project) must only coordinate tasks and must

not hold or define any domain state (domain model), but it will delegate the business rules execution

to be run by the domain model classes themselves (Aggregate Roots and Domain Entities), which will

ultimately update the data within those domain entities.

http://domainlanguage.com/ddd/
http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

121 Architecting and developing Docker applications

Basically, the application logic is where you implement all use cases that depend on a given front end,

implementation for instance related to Web API or specific interfaces/contracts for your services front-

end. The domain logic placed in the domain layer, however, is invariant to use cases and entirely

reusable across all flavors of presentation and application layers you might have, and it must not

depend on any infrastructure framework.

Infrastructure Layer: How the data initially held in domain entities in-memory will be persisted in

databases or any other persistent store is a different matter. It will be implemented in the

Infrastructure Layer, as when using Entity Framework Core code to implement the Repository pattern

classes that use DBContext to persist data in a relational database.

In accordance with the previously mentioned Persistence Ignorance and the Infrastructure Ignorance

principles, the Infrastructure Layer must not contaminate the Domain-Model layer. You must keep the

Domain-Model entity classes agnostic from the infrastructure that you use to persist data (EF or any

other framework) by not taking hard dependencies on frameworks. Your Domain-Model layer class

library should have only your domain code, just POCO entity classes implementing the heart of your

software completely decoupled from invasive infrastructure technologies.

Thus, your layers or class libraries and projects should ultimately depend on your Domain Model

layer/library, not vice versa, as shown in the figure X-XX.

That layer’s design should be independent per microservice, and as mentioned previously, you can

implement your most complex microservices following DDD patterns, while implementing them in a

much simpler way (simple CRUD in a single layer) for simpler data-driven microservices.

References – Persistence Ignorance principles

Persistence Ignorance principle

http://deviq.com/persistence-ignorance/

Infrastructure Ignorance principle

https://ayende.com/blog/3137/infrastructure-ignorance

Figure X-XX. Dependencies between Layers in DDD

http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance

122 Architecting and developing Docker applications

Designing a microservice Domain-Model

One rich Domain Model per Microservice

Similar to DDD, each Bounded-Context has to have its own Domain Model, and each microservice has

to have and own its model, as introduced previously in this guide.

However, a Domain Model as defined in DDD is not just a data-model but a model that captures more

than data entities. It also captures an entity’s rules, behavior, business language and constraints of a

specific domain’s problem (Bounded-Context). That special Rich Domain Model is what you should try

to model and implement by following Domain-Driven Design patterns.

The Domain Entity pattern

Entities represent domain objects and are primarily defined by their identity, continuity, and

persistence over time, not only by the attributes that comprise them.

Per Eric Evans’ definition, “An object primarily defined by its identity is called an Entity”. Entities are very

important in the Domain model and they should be carefully identified and designed.

Entities across multiple microservices or bounded-contexts

The same identity might be implemented as a different group of attributes depending on each

microservice’s context and domain model. For instance, the Customer entity might have most of the

person’s attributes in the Profile or Membership microservice. However, the Buyer entity in the

Ordering microservice (which shares its identity with the Customer entity) might have fewer attributes,

because you only care about certain Buyer data related to the order process. The context of each

microservice impacts the microservice’s domain model.

Domain Entities must implement behavior in addition to data attributes

A Domain Entity in DDD must implement the domain logic related to the entity data (the object

accessed in memory). For example, as part of an Order entity class you must have business logic and

operations like adding an order item, data validation, or total calculation implemented as methods

within the same entity class.

Figure X-XX shows a diagram of a Domain Entity which clearly implements not only data attributes

but also operations or methods with related domain logic.

123 Architecting and developing Docker applications

Of course, you could also have entities that do not implement any logic as part of the entity class, but

this should only happen if that entity really doesn’t have related domain logic. If you have a complex

microservice that has a lot of logic implemented in the service classes instead of within the domain

entities, you could be falling into the Anemic Domain Model, explained in the following section.

Rich Domain Model vs. Anemic Domain Model

As Martin Fowler described in Anemic Domain Model, an Anemic Domain Model is basically a data

model implemented as a collection of classes with attributes or properties. There are entity objects,

most of them based on the nouns in the domain space, and these objects related to the domain’s

logic. The catch comes when you look at the behavior of those entity objects, and you realize that

there is hardly any behavior in these objects, making them little more than a DTO data class with

getters and setters. Of course, these data models will be used from a set of service objects (typically

named Business Layer) which capture all the domain or business logic. The Business Layer sits on top

of the data-model and use that data-model just for data.

The anemic domain model is just a procedural style design. Anemic entity objects are not real objects

because they lack behavior (methods). They only hold data properties and thus completely miss the

point of what object-oriented design is all about. By putting all the behavior out into service objects

(Business Layer) you essentially end up with spaghetti code or Transaction Scripts, and therefore you

lose the advantages that a domain model provides.

Regardless, if your microservice (or Bounded-Context) is very simple, data-driven or CRUD, the anemic

domain model (entity objects with just data properties) might be good enough and it might not be

worth implementing more complex DDD patterns.

Some people might say that the Anemic Domain Model is an anti-pattern. It really depends on what

you are implementing. If the microservice you are creating is simple enough and CRUD, probably it is

not an anti-pattern. However, if you need to tackle the complexity of a specific microservice’s Domain

which has a lot of ever-changing business rules, then the Anemic Domain Model might be an anti-

pattern for that particular microservice or bounded-context and designing it as a rich model with

Figure X-XX. Example of Domain Entity Design implementing data plus behavior

https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/eaaCatalog/transactionScript.html

124 Architecting and developing Docker applications

entities containing data plus behavior as well as implementing additional DDD patterns (Aggregates,

Value-Objects, etc.) might have huge benefits for the long-term success of such a microservice.

References – Domain Entity pattern , Domain Model and Anemic Domain Model

Domain Entity

http://deviq.com/entity/

The Domain Model

https://martinfowler.com/eaaCatalog/domainModel.html

The Anemic Domain Model

https://martinfowler.com/bliki/AnemicDomainModel.html

The Value-Object pattern

“Many objects do not have conceptual identity. These objects describe certain characteristics of a thing.”

[Eric Evans]

There are many objects in a system that do not require an identity, whereas an Entity does.

The definition of Value-Object is: An object with no conceptual identity that describes a domain

aspect. In short, these are objects that you instantiate to represent design elements which only

concern you temporarily. You care about what they are, not who they are. Basic examples are

numbers, strings, and such, but they also exist for higher level concepts like groups of attributes.

What may be an Entity in a microservice may not be an Entity in another microservice, because in the

second case, Bounded-Context might have a different meaning. For example, an address in some

systems may not have an identity at all, since it may only represent a set of attributes of a person or

company. That would be a Value-Object. That could be the case in an e-commerce application; the

address may simply be a group of attributes of the customer’s profile. In this case, the address doesn’t

have an identity per se and should be classified as a Value-Object pattern.

However, in other systems such as an application for an electric power utility company, the customer’s

address could be important for the business domain. Therefore, the address must have an identity so

the billing system can be directly linked to the address. In this case, an address should be classified as

a Domain Entity.

References – Value-Object pattern

 https://martinfowler.com/bliki/ValueObject.html

 http://deviq.com/value-object/

 https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects

 Value-Object in ”Domain Driven Design” Book - Eric Evans.

The Aggregate pattern

A Domain-Model contains clusters of different data entities and processes that can control a

significant area of functionality such as order fulfilment or inventory. A more finely grained DDD unit

is the Aggregate which describes a cluster or group of entities and behaviors that can be treated as a

single cohesive unit.

You usually define an Aggregate based on the transactions that you need. A classic example is an

order that also contains a list of order items. An OrderItem will usually be an Entity, but it will be a

https://martinfowler.com/bliki/ValueObject.html
http://deviq.com/value-object/
https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects
http://domainlanguage.com/ddd/

125 Architecting and developing Docker applications

child entity within the Order Aggregate which will also contain the Order entity as its root-entity,

typically called an Aggregate Root.

Identifying Aggregates can be hard. An aggregate is a group of objects that must be consistent

together, but you can’t just pick some objects and say “this is an aggregate”. You start with modelling

a Domain concept and thinking about the entities that need to be used within your most common

transactions, and then you can identify the aggregates in your model. Thinking about transaction

operations is probably the best way to identify aggregates.

Aggregate-Root or Root-Entity Pattern

An aggregate will be composed of at least one entity: the Aggregate Root (AR), also called root-entity

or primary entity. Additionally, it can have multiple child entities and Value-Objects, with all entities

and objects working together to implement required behavior and transactions.

The purpose of an Aggregate Root is to ensure the consistency of the aggregate; it should be the only

entry point for updates to the aggregate through methods or operations placed in the Aggregate

Root class. You should make changes to entities within the aggregate only via the Aggregate-Root. It

is the aggregate’s consistency guardian, taking into account all the invariants and consistency rules

you might need to comply with in your aggregate. If you change a child entity or VO (Value Object)

independently, the Aggregate Root cannot ensure the aggregate is in a valid state. It would be like a

table with a loose leg. Maintaining consistency is the main purpose of the Aggregate Root.

In figure X-XX, you can see sample aggregates like the Buyer aggregate which contains a single entity

(the Aggregate Root “Buyer”); the Order aggregate contains multiple entities and a Value-Object.

Note that the Buyer aggregate could have additional child entities depending on your Domain, as it

has in the sample Ordering microservice in the eShopOnContainers sample reference application. The

Figure X-XX. Aggregate pattern examples

126 Architecting and developing Docker applications

figure X-XX is just a case supposing that it could have a single entity, as an example of aggregate

holding only an aggregate-root.

Identifying and working with aggregates requires research and experience. Below are a few articles

and blog posts which drill down deeply into the subject and are very much recommended.

References – Aggregate related patterns

The Aggregate pattern

http://deviq.com/aggregate-pattern/

Effective Aggregate Design - Part I: Modeling a Single Aggregate

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_1.pdf

Effective Aggregate Design - Part II: Making Aggregates Work Together

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_2.pdf

Effective Aggregate Design - Part III: Gaining Insight Through Discovery

https://vaughnvernon.co/wordpress/wp-content/uploads/2014/10/DDD_COMMUNITY_ESSAY_AGGREGATES_PART_3.pdf

DDD Tactical Design Patterns

https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part

Developing Transactional Microservices Using Aggregates

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

http://deviq.com/aggregate-pattern/
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

127 Architecting and developing Docker applications

Implementing a microservice’s Domain Model with .NET Core and

Entity Framework Core

In the previous section, the fundamental design principles and patterns to design a domain model

were explained. Now it’s time to drill down into possible ways to implement the Domain Model by

using .NET Core (plain C# code) and EF Core. (EF Core model requirements only. You shouldn’t have

hard dependencies or references to EF Core in your Domain Model).

Domain Model structure in a .NET Core Standard Library

The way you structure your model within certain folders is completely up to you. The way it is

implemented in the Ordering microservice from the eShopOnContainers application is designed to try

to show you DDD model concepts in a clear way. Of course, you are free to group your classes

(Aggregate-Roots, Entities, Value-Objects and Repository Interfaces) in a different way.

As you can see in figure X-XX, in the Ordering Domain-Model there are two identified Aggregates, the

Order aggregate and the Buyer aggregate. Each aggregate is a group of domain entities and value-

objects, although you could have an aggregate composed of a single domain entity (the Aggregate-

Root or Root Entity) as well.

Additionally, in the Domain-Model layer you typically include the Repository contracts and interfaces

that are the infrastructure requirements of your model, but not the infrastructure implementation of

those repositories. They should be implemented outside of the domain model layer, in the

infrastructure layer library.

Figure X-XX. Domain Model structure for the Ordering microservice

128 Architecting and developing Docker applications

You can also see a SeedWork folder which contains custom base classes that you can use as a base for

your domain entities and value-objects, so you don’t have to repeat redundant code in each domain’s

object class.

Structuring Aggregates in a .NET Standard Library

The concept of an aggregate refers to a cluster of domain objects grouped together to match

transactional consistency. Those objects could be instances of entities (one of which is the Aggregate-

Root or Root-entity) plus additional Value-Objects, if any.

Transactional consistency simply means that whatever is comprised within an aggregate is guaranteed

to be consistent and up-to-date at the end of a business action.

For example, the Order aggregate is composed of the following elements extracted from the

eShopOnContainers Ordering microservice domain model, as shown in the figure X-XX.

To see what kind of entity or object is contained in each class within an aggregate, you need to open

its code and see how it is marked with your custom base classes or Interfaces implemented in the

SeedWork folder.

Implementing Domain Entities as a POCO classes

As introduced in the previous design section, the way you implement a domain model in .NET is

simply by creating POCO classes that implement your domain entities. In the following code, you can

see that the Order class is defined as an entity and also as an aggregate root. Because the Order class

is deriving from the custom base class Entity, it can re-use common code related to entities. Keep in

mind that these base classes and interfaces are custom, so it is your code, not infrastructure code

from any ORM like EF.

Entity Framework Core 1.0

 public class Order : Entity, IAggregateRoot //Entity is a custom base class with the Id
 {
 public int BuyerId { get; private set; }
 public DateTime OrderDate { get; private set; }
 public int StatusId { get; private set; }
 public ICollection<OrderItem> OrderItems { get; private set; }
 public Address ShippingAddress { get; private set; }
 public int PaymentId { get; private set; }

 protected Order() { } //Needed only by EF Core 1.0

 public Order(int buyerId, int paymentId)
 {

Figure X-XX. The “Order” aggregate in the VS solution

129 Architecting and developing Docker applications

 BuyerId = buyerId;
 PaymentId = paymentId;
 StatusId = OrderStatus.InProcess.Id;
 OrderDate = DateTime.UtcNow;
 OrderItems = new List<OrderItem>();
 }
 public void AddOrderItem(productName,
 pictureUrl,
 unitPrice,
 discount,
 units)
 {
 //...
 // Domain Rules/Logic related to the OrderItem being added to the order
 //...
 OrderItem item = new OrderItem(this.Id, ProductId, ProductName,
 PictureUrl, UnitPrice, Discount, Units);
 OrderItems.Add(item);
 }

 //...
 // Additional methods with Domain Rules/Logic related to the Order Aggregate
 //...

The important fact to highlight about the above code snippet is that this is a Domain Entity

implemented as a POCO class. It doesn’t have any direct dependency to Entity Framework Core or any

other infrastructure framework. It is as it should be, just your C# code implementing your Domain

Model.

In addition to that, it is also decorated with an interface named IAggregateRoot. That interface is an

empty interface which is used just to say that this entity class is also an Aggregate-Root or the root

entity of the aggregate. That means that most of the code related to the consistency and business

rules of the aggregate’s entities should be implemented as methods in the Order Aggregate-Root

class (for example, AddOrderItem() when adding an OrderItem to the Aggregate). You should not

create or update OrderItems independently or directly; the AggregateRoot class must keep the

control and consistency of any update operation against its child entities.

For example, you shouldn’t do the following from any CommandHandler method or application layer

class:

Wrong according to DDD patterns – Code at the application layer or Command Handlers

//My code in CommandHandlers or Web API controllers

//… (WRONG) Some code with business logic out of the Domain classes…

OrderItem myNewOrderItem = new OrderItem(orderId, productId, productName, pictureUrl, unitPrice,

discount, units);

//… (WRONG) Accessing the OrderItems colletion directly from the application layer or command handlers

myOrder.OrderItems.Add(myNewOrderItem);

//…

In this case, the Add() operation is purely an operation to add data, with direct access to the

OrderItems collection. Therefore, most of the domain logic, rules or validations related to that

operation with the child entities will be spread across the application layer (Command-Handlers and

130 Architecting and developing Docker applications

Web API controllers). Eventually you’ll have spaghetti code, or a transactional script code

implementation.

Following DDD patterns entities must not have public setters in any entity’s property.

Going further, collections within the entity (like the order items) should be read-only properties (check

the “.AsReadOnly()” pattern explained later) so you should be only able to update it from within the

Aggregate root class methods.

As you can see in the code implementing the Order Aggregate-Root, all setters should be private, so

any operation against the entity’s data or its child entities will need to be performed through methods

in the Aggregate-Root class. This will keep consistency in a more controlled and object-oriented way

instead of doing a transactional script code implementation.

The following code snippet shows the proper code when adding an OrderItem to the Order

aggregate.

Right according to DDD – Code at the application layer or Command Handlers

//My code in CommandHandlers or WebAPI controllers, only related to application stuff

// NO code here related to OrderItem’s business logic

myOrder.AddOrderItem(productId, productName, pictureUrl, unitPrice, discount, units);

// T

he code related to OrderItem params validations or domain rules should be within AddOrderItem()

//…

The important point here is that most of the validations or logic related to the creation of an

OrderItem will be under the control of the Order aggregate-root, within the AddOrderItem()

method, especially validations and logic related to other elements in the Aggregate. For instance, you

might get the same product item as multiple AddOrderItem(params) invocations. In this method,

you could check that out and consolidate the same product items in a single OrderItem with several

units. Additionally, if there are different discount amounts but the product Id is the same, you would

likely apply the higher discount. This principle applies to any other domain logic for the OrderItem.

In addition, the operation new OrderItem(params) will also be controlled and performed by the

AddOrderItem() method from the Order aggregate-root, so most of the logic or validations related

131 Architecting and developing Docker applications

to that operation (especially if it impacts the consistency between other child entities) will be in a

single place within the aggregate root. That is the ultimate purpose of the Aggregate Root pattern.

When using Entity Framework 1.1, a DDD entity can be better expressed because one of the new

features of Entity Framework Core 1.1 is that it allows mapping to fields in addition to properties. This

is extremely useful when protecting collections of child entities or value objects.

Now, you can use simple fields instead of properties and implement any update to the field collection

through methods and making it read only through the “.AsReadOnly()” pattern.

In DDD you want to update the entity only through methods in the entity (or the constructor) in order

to control any invariant and consistency of the data, so properties with only a get accessor are

defined. The properties are backed by private fields. Private members can only be accessed from

within the class. However, there’s one exception: EF Core needs to set these fields as well.

Entity Framework Core 1.1 or later

public class Order : Entity, IAggregateRoot //Entity is a custom base class with the Id
{
 // DDD Patterns comment
 // Using private fields, allowed since EF Core 1.1, is a much better encapsulation
 // aligned with DDD Aggregates and Domain Entities (Instead of properties and property collections)

 private bool _someOrderInternalState;
 private DateTime _orderDate;

 public Address Address { get; private set; }

 public Buyer Buyer { get; private set; }
 private int _buyerId;

 public OrderStatus OrderStatus { get; private set; }
 private int _orderStatusId;

 // DDD Patterns comment
 // Using a private collection field, better for DDD Aggregate's encapsulation
 // so OrderItems cannot be added from "outside the AggregateRoot" directly to the collection,
 // but only through the method OrderAggrergateRoot.AddOrderItem() which includes behaviour.

 private readonly List<OrderItem> _orderItems;

 public IEnumerable<OrderItem> OrderItems => _orderItems.AsReadOnly();
 // Using List<>.AsReadOnly()
 // This will create a read only wrapper around the private list so is protected against "external updates".
 // It's much cheaper than .ToList() because it will not have to copy all items in a new collection.
 // (Just one heap alloc for the wrapper instance)
 // https://msdn.microsoft.com/en-us/library/e78dcd75(v=vs.110).aspx

 public PaymentMethod PaymentMethod { get; private set; }
 private int _paymentMethodId;

 protected Order() { }

 public Order(int buyerId, int paymentMethodId, Address address)
 {
 _orderItems = new List<OrderItem>();
 _buyerId = buyerId;
 _paymentMethodId = paymentMethodId;
 _orderStatusId = OrderStatus.InProcess.Id;
 _orderDate = DateTime.UtcNow;
 Address = address;
 }

 // DDD Patterns comment

132 Architecting and developing Docker applications

 // This Order AggregateRoot's method "AddOrderitem()" should be the only way to add Items to the Order,
 // so any behavior (discounts, etc.) and validations are controlled by the AggregateRoot
 // in order to maintain consistency between the whole Aggregate.

 public void AddOrderItem(int productId, string productName, decimal unitPrice,
decimal discount, string pictureUrl, int units = 1)
 {
 //...
 // Domain Rules/Logic related to the OrderItem being added to the order
 //...

 OrderItem item = new OrderItem(this.Id, productId, productName,
 pictureUrl, unitPrice, discount, units);
 OrderItems.Add(item);
 }

 //...
 // Additional methods with Domain Rules/Logic related to the Order Aggregate
 //...

}

Mapping properties with only get accessors to the fields in the database table

When using EF 1.0, within the DbContext, you need to map the properties that you defined with only

get accessors to the actual fields in the database table. This is done with the HasField method of the

PropertyBuilder.

Mapping Fields without Properties

With this new feature in EF Core 1.1 to map columns to fields, it’s also possible to not use properties,

and instead just to map columns from a table to fields. A common use for that would be private fields

for any internal state that doesn’t need to be accessed from outside the entity.

For example, the _someOrderInternalState field has no related property for either setter or getter.

That field will also be calculated within the order’s business logic and used from the order’s methods,

but it needs to be persisted in the database as well. So, in EF 1.1 there’s a way to map a field without a

related property to a column in the database. This is also explained in the Infrastructure Layer section

of this guide.

References – Implementing Aggregates and Domain Entities

Modeling Aggregates with DDD and Entity Framework (By Vaughn Vernon)

https://vaughnvernon.co/?p=879 (Note that this is NOT Entity Framework Core)

Coding for Domain-Driven Design: Tips for Data-Focused Devs (Julie Lerman)

https://msdn.microsoft.com/en-us/magazine/dn342868.aspx

How to create fully encapsulated Domain Models (Udi Dahan)

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

The SeedWork or reusable base classes and interfaces for your Domain Model

As mentioned, in the solution folder you can also see a SeedWork folder which contains custom base

classes that you can use as a base for your domain entities and value-objects, so you don’t have to

repeat redundant code in each domain’s object class.

It’s called SeedWork instead of framework because it is just a small subset of reusable classes, but it

cannot be considered a framework. Seedwork is a term introduced by Martin Fowler, but you could

also name that folder “Common” or any other name.

https://vaughnvernon.co/?p=879
https://msdn.microsoft.com/en-us/magazine/dn342868.aspx
https://www.martinfowler.com/bliki/Seedwork.html

133 Architecting and developing Docker applications

Figure X-XX shows the classes that form the SeedWork of the Domain Model in the Ordering

microservice. It is just the custom “Entity” base class plus a few interfaces of the requirements asked to

the implementation layer to have implemented. Those interfaces are also used through Dependency

Injection from the application layer.

This is the type of copy and paste reuse that many developers share between projects, not a formal

framework. You can have SeedWorks within any layer or library, however, when it gets big enough,

you might want to create a single class library just for itself.

The custom Entity base class

The following code is an example of an Entity base class where you can place code that can be used

the same way by any Domain Entity, such as the entity Id, equality operators, etc.:

Entity Framework Core 1.1

 public abstract class Entity
 {

 int? _requestedHashCode;
 int _Id;

 public virtual int Id
 {
 get
 {
 return _Id;
 }
 protected set
 {
 _Id = value;
 }
 }

 public bool IsTransient()
 {
 return this.Id == default(Int32);
 }

 public override bool Equals(object obj)
 {
 if (obj == null || !(obj is Entity))
 return false;

 if (Object.ReferenceEquals(this, obj))
 return true;

 Entity item = (Entity)obj;

 if (item.IsTransient() || this.IsTransient())
 return false;

Figure X-XX. A sample Domain Model “Seedwork” with base classes and interfaces/contracts

https://msdn.microsoft.com/en-us/library/c35t2ffz.aspx

134 Architecting and developing Docker applications

 else
 return item.Id == this.Id;
 }

 public override int GetHashCode()
 {
 if (!IsTransient())
 {
 if (!_requestedHashCode.HasValue)
 _requestedHashCode = this.Id.GetHashCode() ^ 31;
 // XOR for random distribution
 //(http://blogs.msdn.com/b/ericlippert/archive/2011/02/28/guidelines-and-rules-for-gethashcode.aspx)

 return _requestedHashCode.Value;
 }
 else
 return base.GetHashCode();
 }

 public static bool operator ==(Entity left, Entity right)
 {
 if (Object.Equals(left, null))
 return (Object.Equals(right, null)) ? true : false;
 else
 return left.Equals(right);
 }

 public static bool operator !=(Entity left, Entity right)
 {
 return !(left == right);
 }
 }
}

Repository contracts/interfaces placed in the Domain Model Layer

The Repository contracts are simply .NET interfaces that express the contract requirements of the

Repositories to be used per each Aggregate. The Repositories themselves, with EF Core code or any

other infrastructure dependencies and code, must not be implemented within the Domain Model;

only the contracts or interfaces you demand to be implemented.

A pattern related to this practice (placing the Repository Interfaces in the Domain Layer) is the

Separated Interface pattern defined by Martin Fowler as “Use Separated Interface to define an interface

in one package but implement it in another. This way a client that needs the dependency to the interface

can be completely unaware of the implementation”. Doing it that way, from the application layer (in

this case, the Web API project for the microservice) when using Dependency Injection you will have a

dependency on the requirements defined in the Domain Model, but not a direct dependency to the

infrastructure/persistence layer, which is where you are implementing the actual Repositories.

For example, the following code snippet with the IOrderRepository interface defines what

operations need to implement the OrderRepository in the infrastructure layer library. In the current

implementation of the application it just needs to add the order to the database, since queries are

split following the CQS approach and updates to Orders are not implemented in this implementation.

 public interface IOrderRepository : IRepository
 {
 Order Add(Order order);

135 Architecting and developing Docker applications

 }

References – Repository Contracts

Separated Interface pattern (By Martin Fowler)

http://www.martinfowler.com/eaaCatalog/separatedInterface.html

Implementing Value Objects

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------------------- Currently implemented in eShopOnContainers: -------------------------

Base VO class:

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs

VO example

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs

--

--

References – Implementing Value-Objects in C#

Implementing a Value Object compatible with EF Core 1.1

Using Enumeration classes instead or Enums

Regular Enums are just fine in many scenarios, but quite dangerous in others. Specifically, using

regular enums in your domain model can be a poor choice especially if those Enums are used to

control the flow of your domain logic. Basically, poorly handled enums can infect code with fragility

and tight couple the code with sentences of control like “if” or “switch” which are implementing

knowledge about the semantics of each member of the enum that are spread throughout the code.

Enums are just an easy excuse for not creating the right abstractions. They are handy to use, simple to

understand and readily available, but when using enums, pretty soon symptoms become externally

visible. The code will arise many more bugs, unit tests will require a lot more of maintenance when

you make a change because having hard-coded the flow’s control and you will even need too much

comments on every member of the enum to explain its ramifications.

Enums can be considered a code smell in many cases. The root cause of the Enum’s disease is

coupling and semantic diffusion. It forces you to sprinkle switch statements all over your code, thus

violating the DRY Principle.

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs
https://en.wikipedia.org/wiki/Don't_repeat_yourself

136 Architecting and developing Docker applications

Additional problems derived from the usage of enums are:

 New enumeration values require many code changes across the application. Adding a new

enumeration value can sometimes be painful, as there are lots of these switch statements

around you need to modify.

 Behavior related to the enumeration gets scattered around the application

 Enumerations don’t follow the Open-Closed Principle (SOLID)

The way to avoid that disease is by using encapsulation in the domain model like using the state

pattern or a special forms of Value-Objects (VO). A VO lets you implement and vary the logic related

to the same state in the same class. This also increases cohesion and lessens class coupling.

Value Objects and State Pattern advantages are:

 Easier to extend with new states by adding a new object. (Open/Close Principle)

 Easier to assure that all signals are treated by the states, since the base class should define the

signals as abstract functions.

 Easier to extend a particular states' behavior by deriving from the state. The state pattern

should put a particular state's behavior in one object.

When Enums are okay to be used

When you have a fixed list of integer values which are not used to control your flow of instructions,

then an enum could be perfectly valid. Things like gender (Male, Female, Undefined) or any other list

of values as long as they are used just to store data and not as a data controlling the flow of your

domain logic.

Implementing Enumeration classes

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------------------- Currently implemented in eShopOnContainers: -------------------------

Base Enumeration class:

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs

Enumeration class example

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs

--

--

References – Enumeration classes

Why Enums are dangerous for your Domain Model

https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs

137 Architecting and developing Docker applications

http://www.planetgeek.ch/2009/07/01/enums-are-evil/

https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/

DRY principle

https://en.wikipedia.org/wiki/Don't_repeat_yourself

Implementing Enumeration classes in .NET

https://lostechies.com/jimmybogard/2008/08/12/enumeration-classes/

Designing Validations in the Domain Model Layer

From the DDD perspective, validation rules can be viewed as invariants. One of the central

responsibilities of an aggregate is enforcement of invariants across state changes for all the entities

within that aggregate.

Domain Entities should always be valid entities. There are a certain number of invariants for an object

that should always be true. For example, an OrderItem object always has to have a quantity and a

name. From that point of view, invariant enforcement is the responsibility of the domain entity itself

(especially of the Aggregate-Root) and therefore an entity shouldn't be able to exist without being

valid. Invariant rules are simply expressed as contracts, and exceptions or notifications are raised when

they are violated.

The reasoning behind this is many bugs occur because objects are in a state they should never have

been in. The following is a good and practical explanation from Greg Young:

“Let's propose we now have a SendUserCreationEmailService that takes a UserProfile ... how can we

rationalize in that service that Name is not null? Do we check it again? Or more likely ... you just don't

bother to check and "hope for the best" you hope that someone bothered to validate it before sending it

to you. Of course, using TDD one of the first tests we should be writing is that if I send a customer with a

null name that it should raise an error. But once we start writing these kinds of tests over and over again

we realize ... ‘wait if we never allowed name to become null we wouldn't have all of these tests’…”.

Implementing Validations in the Domain Model Layer

Validations are usually implemented in the Domain entities constructors, or within methods that can

update the entity. There are multiple ways to implement validations, such as verifying data and raising

exceptions if the validation fails. There are also more advanced patterns such as using the

Specification pattern for validations, and the Notification pattern to return a collection of errors

instead of returning an exception for each validation as it occurs.

Validating conditions and returning exceptions

The following code example shows the simplest approach to validation in a Domain Entity by raising

an exception. In the references table at the end of this section you can see more advanced

implementations based on the previously mentioned patterns and others.

 public void SetAddress(Address address)
 {
 if (address == null)
 {
 throw new ArgumentNullException(nameof(address));
 }
 ShippingAddress = address;
 }

http://www.planetgeek.ch/2009/07/01/enums-are-evil/
https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/
https://en.wikipedia.org/wiki/Don't_repeat_yourself

138 Architecting and developing Docker applications

A similar approach can be used in the entity’s constructor, raising an exception to make sure that the

entity is valid when you create it.

Using Validation attributes in the model based on Data Annotations

Another approach is to use validation attributes based on Data Annotations. Validation attributes

provide a way to configure model validation, similar conceptually to validation on fields in database

tables. This includes constraints such as assigning data types or required fields. Other types of

validation include applying patterns to data to enforce business rules, such as a credit card number,

phone number, or email address. Validation attributes make it easy to enforce requirements.

However, this approach might be too intrusive in a Domain-Driven Design Model, as it takes a

dependency on ModelState.IsValid() from Microsoft.AspNetCore.Mvc.ModelState, which you must call

from your MVC controllers. The model validation occurs prior to each controller action being invoked,

and it is the controller method’s responsibility to inspect ModelState.IsValid() and react appropriately.

The decision to use it depends on how tightly coupled you’d like your model to be with that

infrastructure:

using System.ComponentModel.DataAnnotations;
//Other usings
public class Product : Entity //Entity is a custom base class which has the Id
{
 [Required]
 [StringLength(100)]
 public string Title { get; private set; }

 [Required]
 [Range(0, 999.99)]
 public decimal Price { get; private set; }

 [Required]
 [VintageProduct(1970)]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; private set; }

 [Required]
 [StringLength(1000)]
 public string Description { get; private set; }

 //Constructor…

 //Additional methods for Entity’s logic and constructor…
}

However, from a DDD point of view, the domain model is best kept lean with the use of exceptions in

your entity’s behavior methods, or by implementing the Specification and Notification patterns to

enforce validation rules. Validation frameworks like Data Annotations in ASP.NET Core or any other

validation frameworks like FluentValidation carry a requirement to invoke the application framework.

For example, when calling the ModelState.IsValid() method in Data Annotations, you need to invoke

ASP.NET controllers.

Validating Entities by implementing the Specification pattern and the Notification pattern

Finally, a more elaborate approach to implementing validations in the domain model is by

implementing the Specification pattern in conjunction with the Notification pattern, as explained in

some of the referenced articles below.

139 Architecting and developing Docker applications

It is worth mentioning that you can also use just one of those patterns, for example validating

manually with sentences of control but using the Notification pattern to be able to stack and return a

list of validation errors.

Dealing with deferred validation in the domain

There are various approaches to deal with deferred validations in the domain, such as the previously

mentioned Specification pattern or the Deferred Validation approach described by Ward Cunningham

in his Checks pattern language. If you have the Implementing Domain-Driven Design book by Vaughn

Vernon, you can also read from pages 208-215.

References – Validations in the Domain Model

Model Validation in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation

Adding Validation in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation

Using the Notification Pattern to replace throwing exceptions with notification in validations

https://martinfowler.com/articles/replaceThrowWithNotification.html

Specification and Notification Patterns

https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns

Validation in Domain-Driven Design (DDD)

http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/

Domain Model Validation

http://colinjack.blogspot.com/2008/03/domain-model-validation.html

Validation in a DDD world

https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

Client side validation (Validation in the Presentation Layers)

Even when the source of truth is the Domain Model and ultimately you must have validation at the

Domain Model level, validation can still be handled at both the domain model level (server side) and

the client side.

Client side validation is a great convenience for users. It saves time they would otherwise spend

waiting for a round-trip to the server that might return validation errors. In business terms, even a few

fractions of seconds multiplied hundreds of times each day adds up to a lot of time, expense, and

frustration. Straightforward and immediate validation enables users to work more efficiently and

produce better quality input and output.

Just as the view model and the domain model are different, view model validation and domain

validation might be similar but serve a different purpose. If you're concerned about being DRY (the

“Don’t Repeat Yourself” principle), consider that in this case code reuse might also mean coupling,

and in enterprise applications it is more important not to couple the server side to the client side than

to follow the DRY principle.

You could also validate your commands or input DTOs in the server side code, especially if your

system doesn’t have a client UI application, for example, if you are only creating a public API. If you

have a client application, from a UX perspective, it is best to be proactive and not allow the user to

type in stuff that makes no sense.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation
https://martinfowler.com/articles/replaceThrowWithNotification.html
https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns
http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/
http://colinjack.blogspot.com/2008/03/domain-model-validation.html
https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

140 Architecting and developing Docker applications

Therefore, in the client side code you will typically be validating the ViewModels in the client app. You

could also validate the client output DTOs or commands to be sent to the server before you send

them to the services.

The implementation of client side validation depends on what kind of client application you are

building. It will be different if you are validating data in a web MVC web application with most of the

code in .NET, or a SPA web app with that validation being coded in JavaScript or TypeScript, or a

mobile app coded with Xamarin and C#.

Below are a few references for various types of client apps and technologies.

References – Validation in the Client side (Presentation Layer apps)

Validation in Xamarin mobile apps

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/

https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/

Validation in ASP.NET Core apps

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation

Validation in SPA web apps (Angular 2 / TypeScript / Javascript)

https://scotch.io/tutorials/angular-2-form-validation

https://angular.io/docs/ts/latest/cookbook/form-validation.html

http://breeze.github.io/doc-js/validation.html

In summary, the following are the most important concepts in regards to validation:

Entities and Aggregates should enforce their own consistency and be “always-valid”. Aggregate-Roots

are responsible for multi-entity consistency within the same aggregate. After all, what is the purpose

of an aggregate if not to enforce its own consistency?

If you think that an entity needs to enter an invalid state, consider using a different object model, for

example, using a temporary DTO until you create the final domain entity.

Validation frameworks are best used in specific layers such as the presentation layer or the

application/service layer, but usually not in the Domain Layer, as you would need to take a strong

dependency on an infrastructure framework.

It is easier to duplicate validation logic than to keep it consistent across application layers, and in

many cases having redundant validation in the client side is good, as you can be proactive.

Domain Events

Domain events are like messaging-style events, with one important difference. With true messaging,

queuing and a service bus, a message is fired and handled asynchronously. This is useful for

integrating multiple bounded-contexts, microservices or even different applications. However, with

domain events, you want to raise an event within the same domain operation you are currently

running. You want any side effects of the domain event to occur within the same logical transaction,

but not necessarily in the same scope of raising the domain event (which is the case when using static

and synchronous domain events).

Independent of the chosen implementation, the domain events and their side effects (the actions

triggered afterwards that are managed by event-handlers) should occur immediately, in-proc and as

part of the same logical transaction.

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/
https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/validation
https://scotch.io/tutorials/angular-2-form-validation
https://angular.io/docs/ts/latest/cookbook/form-validation.html

141 Architecting and developing Docker applications

Domain Events vs. Integration Events

Semantically, domain and integration events are the same thing: notifications about something that

just happened. However, their implementation might be different. Domain Events are just messages

pushed to a Domain Event Dispatcher, which could be implemented as an in-memory mediator based

on an IoC container or any other method).

On the other hand, the purpose of Integration events is to propagate committed transactions and

updates to additional sub-systems, whether they are other microservices, bounded-contexts or even

external applications. Hence, they should occur only if the entity is successfully persisted, since in

many scenarios if this fails, the entire operation effectively never happened.

In addition, Integration events must be based on asynchronous communication between multiple

microservices (other bounded-contexts) or even external systems/applications. Thus, under the Event-

Bus interface it needs some infrastructure that allows inter-process and distributed communication

between potentially remote services. It can be based on a commercial service bus, queues, a shared

database used as a mailbox, or any other distributed and ideally push based messaging system.

ASP.NET SignalR Hubs can also be used; they wouldn’t assure the communication would happen, but

they could be okay for development or test environments.

Implementing Domain Events

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------------- To be written when implemented in eShopOnContainers ---------------------

--

References – Implementing Domain Events

Domain Events

https://www.infoq.com/news/2015/09/domain-events-consistency

A Better Domain Events Pattern

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/

Strengthening your domain: Domain Events

https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/

Domain Events Pattern Example

http://www.tonytruong.net/domain-events-pattern-example/

Domain Events – Take 2

http://udidahan.com/2008/08/25/domain-events-take-2/

Domain Events – Salvation

http://udidahan.com/2009/06/14/domain-events-salvation/

How to create fully encapsulated Domain Models

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

A Pattern for Sharing Data Across Domain-Driven Design Bounded Contexts, Part 2 (Integration Events)

https://msdn.microsoft.com/en-us/magazine/dn857357.aspx

https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
http://www.tonytruong.net/domain-events-pattern-example/
http://udidahan.com/2008/08/25/domain-events-take-2/
https://msdn.microsoft.com/en-us/magazine/dn857357.aspx

142 Architecting and developing Docker applications

143 Architecting and developing Docker applications

Designing the Infrastructure-Persistence Layer

The data persistence components provide access to the data hosted within the boundaries of your

microservice (i.e. your microservice’s database). They contain the actual implementation of

components such as Repositories and Unit of Work patterns that provide functionality to access data

hosted within the boundaries of your microservice.

The Repository pattern

Repositories are classes/components that encapsulate the logic required to access data sources. They

centralize common data access functionality, providing better maintainability and decoupling the

infrastructure or technology used to access databases from the Domain layer. If you use an ORM like

Entity Framework, the code that must be implemented is highly simplified thanks to Linq and strong

typing., This lets you focus on the data persistence logic rather than on data access plumbing.

The Repository pattern is one of the well documented ways of working with a data source. Martin

Fowler in his PoEAA book describes a repository as follows:

“A repository performs the tasks of an intermediary between the domain model layers and data

mapping, acting in a similar way to a set of domain objects in memory. Client objects declaratively build

queries and send them to the repositories for answers. Conceptually, a repository encapsulates a set of

objects stored in the database and operations that can be performed on them, providing a way that is

closer to the persistence layer. Repositories, also, support the purpose of separating, clearly and in one

direction, the dependency between the work domain and the data allocation or mapping”.

Define one Repository per Aggregate

For each aggregate (or Aggregate-Root) you should create one Repository class that allows you to

populate data in-memory, coming from the database in the form of the Domain Entities. This also

allows you to persist updated data in the entities of the aggregate back into the database.

If you are using the CQS/CQRS architectural pattern, then most of the public methods you will have in

a Repository will create/update/delete in the database from your Domain Model. You won’t need any

methods for queries in such a Repository.

It is important to re-emphasize that only one Repository should be defined for each Aggregate-Root.

Following the goals of the aggregate-root to maintain transactional consistency between all the

objects within an aggregate, you should never create a Repository for each table in the database, just

one for each aggregate-root.

In a microservice based on DDD, the only channel you should use to update the database should be

through the Repositories. This is because they have a one-to-one relationship with the Aggregate-

Root, which controls the aggregate’s invariants and transactional consistency. It is okay to query the

database through other channels (as you can do following a CQRS approach), because queries are

idempotent and no matter how many queries you do, the database won’t change. However, the

transactional area, the updates, must always be controlled by the Repositories and the Aggregate-

Roots.

https://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420/ref=sr_1_1?s=books&ie=UTF8&qid=1488684326&sr=1-1&keywords=martin+fowler+patterns+of+enterprise+architecture

144 Architecting and developing Docker applications

The Repository pattern makes it easier to test your application logic

The Repository pattern allows you to easily test your application with unit tests.

As introduced in a previous section, it is recommended to define and place the Repository interfaces

in the domain layer so the application layer (for instance, your Web API microservice) doesn’t directly

depend on the Infrastructure layer where you have implemented the actual Repository classes. By

doing so and using Dependency Injection in the controllers of your Web API you could implement

mock Repositories that would return fake hard-coded data instead of accessing the database. That

decoupled approach allows you to create and run unit tests that can test just the logic of your

application without requiring connectivity to the database.

Connections to databases can fail and more importantly, running hundreds of tests against a database

is a bad thing for two reasons. First, it might take a lot of time because of the large number of tests,

and second, the database’s records might change and impact on the results of your tests, so they

might not be consistent. Testing against the database is not a Unit Tests but an Integration Test. You

should have many Unit Tests running fast but fewer Integration Tests against the databases.

Difference between the Repository pattern and the legacy Data Access class (DAL class)

It is important to differentiate between a Repository class and the legacy Data Access (DAL) class. A

Data Access object directly performs data access and persistence operations against the storage. A

Figure X-XX. Relationship between Repositories, Aggregates and Database Tables

145 Architecting and developing Docker applications

repository marks the data with the operations you want to perform in the memory of a Unit of Work

object (as in EF when using the DbContext), but these updates will not be performed immediately.

A Unit of Work is referred to as a single transaction that involves multiple insert/update/delete

operations. In simple terms, it means that for a specific user action (for example, registration on a

website), all the insert/update/delete transactions are handled in a single transaction. This is more

efficient than handling multiple database transactions in a chattier way.

These multiple persistence operations will be performed later in a single action when your code from

the Application layer commands it. The decision about applying the in-memory changes to the actual

database storage is typically based on the Unit of Work pattern. In EF the Unit of Work is

implemented as the DBContext.

In many cases, this pattern or way of applying operations against the storage can increase the

application performance and reduce the possibility of inconsistencies. Also, it reduces transaction

blocking in the database tables because all the intended operations will be committed as part of one

transaction. This is more efficient in comparison to executing many isolated operations against the

database. Therefore, the selected ORM will be able to optimize the execution against the database by

grouping several update actions, as opposed to many small separate executions.

References – Infrastructure and Persistence patterns

The Repository pattern

http://martinfowler.com/eaaCatalog/repository.html

https://msdn.microsoft.com/en-us/library/ff649690.aspx

http://deviq.com/repository-pattern/

Repository pattern. By Eric Evans in his DDD book.

The Unit of Work pattern

http://martinfowler.com/eaaCatalog/unitOfWork.html

Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-

unit-of-work-patterns-in-an-asp-net-mvc-application

Implementing the Infrastructure-Persistence Layer with Entity

Framework Core

When using relational databases such as SQL Server, Oracle, or PostgreSQL a recommended approach

is to implement the persistence layer based on Entity Framework (EF). EF supports LINQ and provides

strongly typed objects for your model, as well as simplified persistence into your database.

Entity Framework has a long history as part of the .NET Framework. When using .NET Core, you should

also use Entity Framework Core, which runs on Windows or Linux in the same way as .NET Core. EF

Core is a complete rewrite of Entity Framework, implemented with a much smaller footprint and

important improvements in performance.

Entity Framework Core introduction

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology.

http://martinfowler.com/eaaCatalog/repository.html
http://deviq.com/repository-pattern/
http://martinfowler.com/eaaCatalog/unitOfWork.html

146 Architecting and developing Docker applications

Since an introduction to EF Core is already available in Microsoft’s documentation, this guidance is

simply pointing to it with no further details:

References – Entity Framework Core

EF Core intro

https://docs.microsoft.com/en-us/ef/core/

Getting started with ASP.NET Core and Entity Framework Core

https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/

DbContext

https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.dbcontext

Compare EF Core & EF6.x

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index

Infrastructure in Entity Framework Core from a DDD perspective

From a Domain-Driven Design point of view, an important of EF is the ability to use POCO Domain

Entities, also known as POCO Code-First entities in EF jargon. By using POCO Domain Entities, your

Domain Model classes are persistence ignorant, as the Persistence Ignorance and the Infrastructure

Ignorance principles state.

In addition, in EF Core 1.1 you can have plain fields in your entities instead of properties with

public/private setters. If you don’t want an entity field to be accessible from the outside, you just

create the attribute/field. There is no need to use private setters if you prefer this cleaner approach.

In a similar way, you can now have properly encapsulated collections (like a List<> or HashSet<>) in

your entities that rely on EF for persistence. Previous versions of Entity Framework required collection

properties to support ICollection<T>, which meant any developer using the parent entity class

could add or remove items from its property collections. Per DDD patterns you should encapsulate

domain behavior and rules within the entity class itself, so it can control invariants, validations and

rules when accessing any collection. Therefore, it is not a good practice in DDD to allow public access

to collections of child entities or value-objects. Instead, you want to expose methods that control how

and when your fields and property collections can be updated, and what behavior and actions should

occur when that happens.

You can use a private collection while exposing a read-only IEnumerable, as shown in the following

code example.

public class Order : Entity
{
 // Using private fields, allowed since EF Core 1.1
 private DateTime _orderDate;
 //… Other fields
 private readonly List<OrderItem> _orderItems;
 public IEnumerable<OrderItem> OrderItems => _orderItems.AsReadOnly();

 protected Order() { }
 public Order(int buyerId, int paymentMethodId, Address address)
 {

 //Initializations
 }

 public void AddOrderItem(int productId, string productName, decimal unitPrice,
decimal discount, string pictureUrl, int units = 1)
 {

https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/
https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index
http://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://ayende.com/blog/3137/infrastructure-ignorance

147 Architecting and developing Docker applications

 //Validation logic…

 var orderItem = new OrderItem(productId, productName, unitPrice, discount,
pictureUrl, units);

 _orderItems.Add(orderItem);
 }
 }

}

Note that the property OrderItems can now only be accessed as read-only with

List<>.AsReadOnly(). This will create a read only wrapper around the private list so it’s protected

against external updates. It's much cheaper than using .ToList() because it won’t have to copy all of

the items in a new collection, just one heap alloc for the wrapper instance.

EF Core provides a way to map the domain model to the physical database without contaminating the

domain model. It’s pure .NET POCO code, because the mapping action is implemented in the

persistence layer. In that mapping action, you need to configure the fields to database mapping. In

the OnModelCreating,code shown below, the code in bold tells EF Core to access the OrderItems

property through its field.

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 //...

 modelBuilder.Entity<Order>(ConfigureOrder);

 //... Other entities

}

void ConfigureOrder(EntityTypeBuilder<Order> orderConfiguration)

{

 //.. Other configuration ..

 var navigation = orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));

 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 //.. Other configuration ..

 }

When using fields instead of properties, the OrderItem entity is persisted just as if it had a

List<OrderItem> property, but now it exposes a single interface (the AddOrderItem() method) for

adding new items to the order, so behavior and data are tied together and will be consistent

throughout any application code that uses the Domain Model.

Implementing custom Repositories with Entity Framework Core

At the implementation level, a repository is simply a class with data persistence code coordinated by a

Unit of Work (DBContext in EF Core) when performing updates, as shown in the following class:

//usings…
namespace Microsoft.eShopOnContainers.Services.Ordering.Infrastructure.Repositories
{
 public class BuyerRepository : IBuyerRepository Repository contract implemented

in the Domain Layer

148 Architecting and developing Docker applications

 {
 private readonly OrderingContext _context;

 public IUnitOfWork UnitOfWork
 {
 get
 {
 return _context;
 }
 }
}

 public BuyerRepository(OrderingContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException(
 nameof(context));
 }

 _context = context;
 }

 public Buyer Add(Buyer buyer)
 {
 return _context.Buyers
 .Add(buyer)
 .Entity;
 }

 public async Task<Buyer> FindAsync(string BuyerIdentityGuid)
 {
 var buyer = await _context.Buyers
 .Include(b => b.Payments)
 .Where(b => b.FullName == BuyerIdentityGuid)
 .SingleOrDefaultAsync();

 return buyer;
 }
 }

Methods to implement in a Repository (Updates/Transactions vs. Queries)

Within each Repository class, you should place the persistence methods that update the state of

entities contained by its related Aggregate. Remember there is 1:1 relationship between an Aggregate

and its related Repository. Take into account that an Aggregate-Root entity object might have

embedded child entities within its EF graph, For example, a Buyer might have multiple

PaymentMethods related as child entities.

Since the selected approach for the Ordering microservice in the eShopOnContainers sample

application is also based on CQS/CQRS, most of the queries are not implemented in custom

repositories. Developers have the freedom to create the queries and joins they need for the

presentation layer without the restrictions imposed by Aggregates, custom Repositories per

aggregate, and DDD in general. Most of the custom repositories suggested by this guidance might

only have update/transactional methods but not query methods, unless you need a specific query for

the transactional operations, For example, the BuyerRepository repository implements a

FindAsync() method, because the application needs to know if a particular buyer exists before

creating a new buyer related to the order. Therefore, having query methods in these repositories

The EF DbContext comes in the constructor

through Dependency Injection and is shared

between multiple Repositories within the same

HTTP request/scope thanks to its by default

lifetime (ServiceLifetime.Scoped) that can also

be explicitly set at services.AddDbContext<>

Adds a Buyer entity to the

UnitOfWork (DbContext)

Optional query method

149 Architecting and developing Docker applications

would be optional if using CQRS approaches and only used if needed by validations of data required

for the transactions.

Custom repository vs. using EF DbContext directly

The Entity Framework DbContext class is based on the UnitOfWork and Repository pattern and can

be used directly from your code, for example from an ASP.NET Core MVC controller. That is the way

you can create the simplest code, as in the CRUD Catalog microservice in the eShopOnContainers

sample sample. So, in cases where you just want to have the simplest code possible, you might want

to directly use the DbContext class.

However, implementing custom Repositories provides several benefits when implementing more

complex microservices or applications. The repository and unit of work patterns are intended to create

an abstraction layer between the infrastructure persistence layer and the application and domain

layers. Implementing these patterns can help insulate your application from changes in the data store

and can facilitate automated unit testing.

Once you have implemented one repository class and repository interface per Aggregate-Root, when

you get the injected instance (through DI) of the repository implementation in your controller, you are

using the interface so that the controller will accept a reference to any object that implements that

repository interface. When the controller runs under a web server, it receives a repository that works

with the Entity Framework. When the controller runs under a unit test class, it could receive a mock

repository implementation that works with fake data, probably hard-coded so it is predictable and

stored in a way that you can easily manipulate for testing, such as an in-memory collection.

There are multiple alternatives when mocking. You could mock just repositories or you could also

mock a whole unit of work.

Figure X-XX. Using custom Repositories vs. plain DbContext

150 Architecting and developing Docker applications

Later, when focusing on the application layer, you'll see how dependency injection works in ASP.NET

Core and how it is implemented when using Repositories.

In short, custom repositories allow you to test code easier with unit tests that aren’t impacted by the

data tier state. If you run tests that also access the actual database through the Entity Framework, they

are not unit tests but integration tests, which are a lot slower.

If you were using DbContext directly, the only choice you have to run unit tests would be by using an

In-memory SQL Server with predictable data for unit tests. You wouldn’t be able to control mock

objects and fake data in the same way.

EF DbContext and IUnitOfWork instance lifetime in your IoC container

It’s important to highlight that the DbContext object (exposed as an IUnitOfWork) might need to be

shared among multiple repositories within the same HTTP request scope. For example, when the

operation being executed has to deal with multiple aggregates, or simply because you are using

multiple repository instances.

In order to do that, and as shown in the code below, the instance of the DbContext object has to be

ServiceLifetime.Scoped, which is the default lifetime when registering your DbContext with

services.AddDbContext<> in your IoC container, from the ConfigureServices() method of your

Startup.cs file in your ASP.NET Core Web API project.

 public IServiceProvider ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc(options =>
 {
 options.Filters.Add(typeof(HttpGlobalExceptionFilter));
 }).AddControllersAsServices();

 services.AddEntityFrameworkSqlServer()
 .AddDbContext<OrderingContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlop => sqlop.MigrationsAssembly(typeof(Startup).GetTypeInfo().
 Assembly.GetName().Name));
 },
 ServiceLifetime.Scoped
);

 }

The DbContext instantiation mode shouldn’t be configured as ServiceLifetime.Transient or

ServiceLifetime.Singleton.

References – Implementing Repositories with EF

Implementing Repositories with Entity Framework Core

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-

unit-of-work-patterns-in-an-asp-net-mvc-application

https://www.infoq.com/articles/repository-implementation-strategies

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.infoq.com/articles/repository-implementation-strategies

151 Architecting and developing Docker applications

Table Mapping

Table mapping identifies the table data to be queried from and saved to in the database.

Previously you saw how your domain entities (i.e. Product or Order) can be used to generate a related

database schema. In EF, most of it is based on the concept of conventions. Conventions are topics like

“What will be the name of a table?” or “What property is going to be the primary key?”, and they are

typically based on conventionional names, for example “a property ending with the prefix ‘Id’ will be

the primary key‟.

By convention, each entity will be set up to map to a table with the same name as the

DbSet<TEntity> property that exposes the entity on the derived context. If no DbSet<TEntity> is

provided for the given entity, the class name is used.

Data Annotations vs. Fluent API

There are many additional EF Core conventions and most of them can be changed by using either

Data Annotations or Fluent API, implemented within the OnModelCreating() method.

Data Annotations must be used on the entity model classes themselves, which is a more intrusive way

from a DDD point of view. This is because you are contaminating your model with data annotations

related to the infrastructure database. On the other hand, Fluent API is a convenient way to change

most conventions and mappings within your Data Persistence Infrastructure Layer, so the Entity Model

will be clean and decoupled from the persistence infrastructure.

Fluent API and OnModelCreating()

As mentioned, in order to change conventions and mappings, you can use the method

OnModelCreating() from the DbContext class, as shown in the code below from the Ordering

microservice, part of the eShopOnContainers application.

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 //Other entities
 modelBuilder.Entity<OrderStatus>(ConfigureOrderStatus);
 //Other entities
 }

 void ConfigureOrder(EntityTypeBuilder<Order> orderConfiguration)
 {
 orderConfiguration.ToTable("orders", DEFAULT_SCHEMA);

 orderConfiguration.HasKey(o => o.Id);

 orderConfiguration.Property(o => o.Id)
 .ForSqlServerUseSequenceHiLo("orderseq", DEFAULT_SCHEMA);

 orderConfiguration.Property<DateTime>("OrderDate").IsRequired();
 orderConfiguration.Property<string>("Street").IsRequired();
 orderConfiguration.Property<string>("State").IsRequired();
 orderConfiguration.Property<string>("City").IsRequired();
 orderConfiguration.Property<string>("ZipCode").IsRequired();
 orderConfiguration.Property<string>("Country").IsRequired();
 orderConfiguration.Property<int>("BuyerId").IsRequired();
 orderConfiguration.Property<int>("OrderStatusId").IsRequired();

152 Architecting and developing Docker applications

 orderConfiguration.Property<int>("PaymentMethodId").IsRequired();

 var navigation = orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));
 // DDD Patterns comment:
 //Set as Field (New since EF 1.1) to access the OrderItem collection property as a field
 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 orderConfiguration.HasOne(o => o.PaymentMethod)
 .WithMany()
 .HasForeignKey("PaymentMethodId")
 .OnDelete(DeleteBehavior.Restrict);

 orderConfiguration.HasOne(o => o.Buyer)
 .WithMany()
 .HasForeignKey("BuyerId");

 orderConfiguration.HasOne(o => o.OrderStatus)
 .WithMany()
 .HasForeignKey("OrderStatusId");
 }

}

You could set all the Fluent API mappings within the same OnModelCreating() method, but it is

advisable to partition that code and have multiple sub-methods, one per entity, as shown in the code

above. Going further, for particularly large models, it can even be advisable to have separate source

files/static classes for configuring different entity types.

The Hi/Lo pattern in EF Core

An interesting configuration in that code is that it is using HiLo as the key generation strategy, based

on the Hi/Lo pattern. EF Core supports HiLo with the ForSqlServerUseSequenceHiLo method.

The Hi/Lo pattern describes a mechanism for generating safe-ids on the client side rather than in the

database. Safe in this context means without collisions. This pattern is interesting for three reasons:

- It doesn’t break the Unit of Work pattern

- It doesn’t need many round-trips as the Sequence generators in other DBMS.

- It generates a human readable identifier, unlike GUID techniques.

Mapping Fields instead of Properties

With the new feature in EF Core 1.1 to map columns to fields, it is possible to not use any properties

in the entity class, and just to map columns from a table to fields. A common use for that would be

private fields for any internal state that needs not be accessed from outside the entity.

For example, the _someOrderInternalState field can’t have a property for either setter or getter.

That field could be calculated within the order’s business logic and also used by the order’s methods,

so it shouldn’t be a property. However, it needs to be persisted in the database. In EF 1.1 there’s a way

to map a field (without a related property) to a column in the database.

You can do this with single fields or also with collections, like a List<> field.

This point was mentioned when modeling the Domain Model classes, but here you can see how that

mapping is performed with the PropertyAccessMode.Field configuration highlighted in the

previous code.

153 Architecting and developing Docker applications

Shadow Properties and Value-Objects

Shadow properties are properties that do not exist in your entity class. The value and state of these

properties are maintained purely in the Change Tracker.

Shadow property values can be obtained and changed through the ChangeTracker API.

From a DDD point of view, shadow properties are a convenient way to implement Value-Objects by

hiding the Id as a shadow property primary key. This is important since a Value-Object shouldn’t have

identity or at least it is not important, as mentioned in the Domain Model Layer when shaping Value-

Objects. The point here is that at the time, EF Core doesn’t have any way to implement Value-Objects

as Complex Types, as it is possible in EF 6.x. That’s why it currently must be implemented as an entity

with a hidden Id (primary key) as a shadow property.

References – Table Mapping

Table Mapping

https://docs.microsoft.com/en-us/ef/core/modeling/relational/tables

Use HiLo to generate keys with Entity Framework Core

http://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/

Backing Fields

https://docs.microsoft.com/en-us/ef/core/modeling/backing-field

Encapsulated Collections in Entity Framework Core

http://ardalis.com/encapsulated-collections-in-entity-framework-core

Shadow Properties

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

No-SQL databases as your persistence infrastructure

When using No-SQL databases for your infrastructure data tier, you wouldn’t typically be using an

ORM like Entity Framework Core. Instead you would use the API provided by the chosen No-SQL

engines such as Azure Document DB, MongoDB, Cassandra, RavenDB, CouchDB, or Azure Storage

Tables.

However, when using a No- SQL database, especially a Document-oriented database like Azure

Document DB, CouchDB, or RavenDb, the way you design your model with DDD Aggregates is similar

in regards to the identification of AggregateRoots, child entity classes, and value-object classes.

Basically, when using a document-oriented database, you would implement an Aggregate (group of

Domain entities and value-objects that must keep consistency) as a single document, serialized in

JSON or any other format.

The difference would be the way you persist that model. Therefore, when implementing a Domain

Model, you want to have a model based on POCO entity classes, agnostic to the infrastructure

persistence, so you could potentially move to a different persistence infrastructure. It wouldn’t be

trivial, as transactions and persistence operations will be very different, but at least you could have a

clean and protected Domain Model, following the Persistence Ignorant principle.

In any case, when using No-Sql databases the entities will be more denormalized, so it’s not a simple

table mapping. Your domain model might have a few impacts, after all.

http://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/
http://ardalis.com/encapsulated-collections-in-entity-framework-core

154 Architecting and developing Docker applications

However, if you were modelling your Domain Model based on Aggregates, moving to No-Sql and

document oriented databases might be easier, because you already defined the aggregate’s

boundaries which are similar to serialized documents in document-oriented databases.

For instance, the following JSON code is a sample implementation of an Order Aggregate, similar to

the order aggregate we implemented in the eShopOnContainers sample but using EF underneath.

JSON example of the Order Aggregate when using a Document oriented DB
{
 "id": "2017001",
 "orderDate": "2/25/2017",
 "buyerId": "1234567",
 "address": [
 {
 "street": "100 One Microsoft Way",
 "city": "Redmond",
 "state": "WA",
 "zip": “98052”,
 "country": “U.S.”
 }
],
 "orderItems": [
 {"id": 20170011, "productId": "123456", "productName": ".NET T-Shirt",
"unitPrice": 25, "units": 2, "discount": 0},
 {"id": 20170012, "productId": "123457", "productName": ".NET Mug", "unitPrice":
15, "units": 1, "discount": 0}
]
}

When using a C# model to implement that aggregate to be used by, for instance, the Azure

Document DB SDK, it would be similar to the C# POCO classes used with EF Core. The difference will

be the way to use them from the application and infrastructure layers, as in the following code.

//C# example of an Order Aggregate being persisted with DocumentDB API

// *** Domain Model Code ***
// Aggregate: Create an Order object with its child entities and/or value-objects.
// Then, use AggregateRoot’s methods to add the nested objects so invariants and
// logic is consistent across the nested properties (Value-Objects and entities).
// This can be saved as JSON as is without converting into rows/columns.

Order orderAggregate = new Order
{
 Id = "2017001",
 OrderDate = new DateTime(2005, 7, 1),

 BuyerId = "1234567",
 PurchaseOrderNumber = "PO18009186470"
}

Address address = new Address
{

 Street = "100 One Microsoft Way",
 City = “Redmond”,
 State = “WA”,
 Zip = “98052”,

155 Architecting and developing Docker applications

 Country = “U.S.”
}

orderAggregate.UpdateAddress(address);

OrderItem orderItem1 = new OrderItem
{

 Id = 20170011,
 ProductId = “123456”,
 ProductName = “.NET T-Shirt”,
 UnitPrice = 25,
 Units = 2,
 Discount = 0;
};

OrderItem orderItem2 = new OrderItem
{

 Id = 20170012,
 ProductId = “123457”,
 ProductName = “.NET Mug”,
 UnitPrice = 15,
 Units = 1,
 Discount = 0;
};
//Using methods with domain logic within the entity. No anemic-domain model
orderAggregate.AddOrderItem(orderItem1);
orderAggregate.AddOrderItem(orderItem2);
// *** End of Domain Model Code ***
//...

// *** Infrastructure Code using Document DB Client API ***
Uri collectionUri = UriFactory.CreateDocumentCollectionUri(databaseName,
 collectionName);
await client.CreateDocumentAsync(collectionUri, order);

// As your app evolves, let's say your object has a new schema. You can insert OrderV2
objects without any changes to the database tier.
Order2 newOrder = GetOrderV2Sample("IdForSalesOrder2");
await client.CreateDocumentAsync(collectionUri, newOrder);

You can see that the way you work with your Domain Model can be similar to the way you are using it

in your Domain Model Layer when the infrastructure was EF underneath. You still use the same

AggregateRoot’s methods to ensure consistency, invariants and validations within the aggregate.

However, when persisting your model into the No-SQL db, implemented in the infrastructure and

persistence layer, this is where the code and API will dramatically change internally.

References – No-SQL Databases

Azure Document DB

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-modeling-data

DDD Aggregate storage

https://vaughnvernon.co/?p=942

Event storage

https://github.com/NEventStore/NEventStore

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-modeling-data
https://vaughnvernon.co/?p=942

156 Architecting and developing Docker applications

Designing the microservice’s Application Layer and Web API

Use S.O.L.I.D. principles and Dependency Injection

The S.O.L.I.D. principles and Dependency Injection (DI) are critical techniques to be used in any

modern and mission-critical application, such as developing a microservice with DDD patterns.

However, you should also use DI and apply the S.O.L.I.D. principles even when you aren’t using DDD

approaches or patterns.

S.O.L.I.D. is an acronym that groups five fundamental principles:

- Single Responsibility Principle

- Open/close principle

- Liskov substitution principle

- Inversion Segregation principle

- Dependency Inversion principle

S.O.L.I.D. and DI tackle more about how you design your application/microservice internal layers and

decoupled dependencies between them, so this is not related to the Domain but related to the

application’s technical design. But, DI allows you to decouple the infrastructure layer from the rest of

the layers allowing a better decoupled implementation of the DDD layers.

Dependency injection (DI) is a technique for achieving loose coupling between objects and their

dependencies. Rather than directly instantiating collaborators, or using static references, the objects a

class needs to perform its actions are provided to or injected into the class. Most often, classes will

declare their dependencies via their constructor, allowing them to follow the Explicit Dependencies

Principle. DI is usually based on specific Inversion of Control (IoC) containers. ASP.NET Core provides a

simple built-in IoC container, but you can also use your favorite IoC container, like Autofac or Ninject.

By following the S.O.L.I.D. Principles, your classes will naturally tend to be small, well-factored, and

easily tested. What if you find that your classes tend to have way too many dependencies being

injected? Using DI through the constructor it will be easy to detect by just taking a look at the number

of parameters of your constructor. If there are too many dependencies, this is generally a sign that

your class is trying to do too much, and is probably violating SRP - the Single Responsibility Principle.

There is much to be said about S.O.L.I.D. and DI. It would really take another guide/book to cover it in

detail, so this guide requires the reader to have a minimum knowledge or skills with these topics.

References – S.O.L.I.D. principles and Dependency Injection

S.O.L.I.D. principles

http://deviq.com/solid/

Dependency Injection

https://martinfowler.com/articles/injection.html

New is Glue

htthttp://ardalis.com/new-is-glue

http://ardalis.com/new-is-glue
http://ardalis.com/new-is-glue

157 Architecting and developing Docker applications

Implementing the microservice’s Application Layer and Web API

Using Dependency Injection to inject infrastructure objects into your application layer

The application layer, as mentioned previously, is whatever artifact you are building. In the case of a

microservice built with ASP.NET Core, the application layer will usually be your Web API library. If

you’d like to separate what is coming from ASP.NET Core (its infrastructure plus your controllers) from

your custom application layer code, that could also be placed in a separate library.

ASP.NET Core includes a simple built-in IoC container (represented by the IServiceProvider

interface) that supports constructor injection by default, and ASP.NET makes certain services available

through DI. ASP.NET's container refers to the types it manages as services. You configure the built-in

container's services in the ConfigureServices method in your application's Startup class.

Typically you’d want to inject dependencies that implement infrastructure objects. The most typical

dependencies to inject are Repositories, or for simpler implementations you could directly inject your

Unit of Work pattern object (the EF DbContext object), as they are the implementation of your

infrastructure persistence objects.

In the following example, you can see how .NET Core is injecting the needed Repository objects.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IBuyerRepository _buyerRepository;
 private readonly IOrderRepository _orderRepository;

 public CreateOrderCommandHandler(IBuyerRepository buyerRepository,
 IOrderRepository orderRepository)
 {
 if (buyerRepository == null)
 {
 throw new ArgumentNullException(nameof(buyerRepository));
 }

 if (orderRepository == null)
 {
 throw new ArgumentNullException(nameof(orderRepository));
 }

 _buyerRepository = buyerRepository;
 _orderRepository = orderRepository;
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 //
 // ... Additional code
 //

 // Create the Order AggregateRoot
 // Add child entities and value-objects through the Order Aggregate-Root
 // methods and constructor so validations, invariants and business logic
 // make sure that consistency is preserved across the whole aggregate

 var order = new Order(buyer.Id, payment.Id,

158 Architecting and developing Docker applications

 new Address(message.Street,
 message.City, message.State,
 message.Country, message.ZipCode));

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 //Persist the Order through the Repository
 _orderRepository.Add(order);

 var result = await _orderRepository.UnitOfWork
 .SaveChangesAsync();

 return result > 0;
 }
}

Finally, it is using the injected repositories to execute the transaction and persist the state changes.

Registering the Dependency implementation types and interfaces/abstractions

You also need to know where to register the Interfaces and classes that will be injected to your

objects through DI based on the constructors.

Using the built-in IoC container provided by ASP.NET Core

When using the built-in IoC container provided by ASP.NET Core (as in the simple Catalog

microservice in the eShopOncontainers sample), you register the types in the ConfigureServices()

method in the MVC Startup.cs file.

// Registration of types into ASP.NET Core built-in container
public void ConfigureServices(IServiceCollection services)
{
 // Register out-of-the-box framework services.
 services.AddDbContext<CatalogContext>(c =>
 {
 c.UseSqlServer(Configuration["ConnectionString"]);
 },
 ServiceLifetime.Scoped
);

 services.AddMvc();

 // Register custom application dependencies.

 services.AddTransient<IEmailSender, AuthMessageSender>();

 services.AddTransient<IMyCustomRepository, MyCustomSQLServerRepository>();

}

In this example, the last line of code states that when any of your constructors have a dependency on

IMyCustomRepository (interface or abstraction), the IoC container will inject an instance of the

MyCustomSQLServerRepository implementation class.

159 Architecting and developing Docker applications

Using Autofac as IoC container

You can also use additional IoC containers and plug them to the ASP.NET Core pipeline, as in the

Ordering microservice in the eShopOncontainers sample which uses Autofac. When using Autofac you

typically register the types via modules, which allow you to split the registration types between

multiple files depending on where your types are, just as you could have the application types

distributed across multiple class libraries.

For example, the following is the application module for one class library with the implemented

custom types.

public class ApplicationModule
 :Autofac.Module
{
 public string QueriesConnectionString { get; }

 public ApplicationModule(string qconstr)
 {
 QueriesConnectionString = qconstr;
 }

 protected override void Load(ContainerBuilder builder)
 {

 builder.Register(c => new OrderQueries(QueriesConnectionString))
 .As<IOrderQueries>()
 .InstancePerLifetimeScope();

 builder.RegisterType<BuyerRepository>()
 .As<IBuyerRepository>()
 .InstancePerLifetimeScope();

 builder.RegisterType<OrderRepository>()
 .As<IOrderRepository>()
 .InstancePerLifetimeScope();
 }
}

In the code above, the abstraction IOrderRepository is registered along with the implementation

class OrderRepository, which means that whenever a constructor is declaring a dependency through

the abstraction or interface IOrderRepository, the IoC container will inject an instance of the

OrderRepository class.

The instance scope type determines how an instance is shared between requests for the same service

or dependency. When a request is made for a dependency, the IoC container can return a single

instance per LifetimeScope (referred to in ASP.NET Core as “scoped”), a new instance per dependency

(referred to in ASP.NET Core as “transient”), or a single instance shared across all objects using the IoC

container (referred to in ASP.NET Core as “singleton”).

For additional information about DI, lifetime scopes and usage in ASP.NET Core, read the following

references.

160 Architecting and developing Docker applications

References – ASP.NET Core DI and Autofac

Using Dependency Injection in ASP.NET Core and .NET Core

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

Autofac

http://docs.autofac.org/en/latest/getting-started/index.html

http://docs.autofac.org/en/latest/lifetime/instance-scope.html

Comparing lifetime scopes between ASP.NET Core built-in container and Autofac

https://blogs.msdn.microsoft.com/cesardelatorre/2017/01/26/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-

instance-scopes/

Implementing the Command and Command-Handlers patterns

In the DI through constructor example shown in the previous section, the IoC container was injecting

Repositories through a constructor, but exactly where were they injected? In a very simple Web API

(for example, the Catalog microservice in the eShopOnContainers sample), you would injecting them

at the MVC Controllers level, in a Controller constructor. However, in the previous example it is done

at a CommandHandler level, so let’s explain what a ComamndHandler is and why you would want to

use it.

The Command pattern is intrinsically related to the CQRS pattern that was previously introduced in

this guide. CQRS has two sides. The queries (previously explained using in this approach for simplified

queries with Dapper Micro ORM) and the Commands as the starting point for the transactions/writes.

Remember, CQRS is not an architecture, it’s a pattern which you can use in some microservices of

your application architecture, or in all of them. You decide if you implement CQRS per bounded-

context or microservice. not as the top-level architecture for your whole application.

As shown in the high-level diagram below, the pattern is based on accepting commands from the

clisnt side and process those commands based on the Domain Model rules and finally persisting the

states with transactions.

Figure X-XX. High level “Writes side” in a CQRS pattern

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://docs.autofac.org/en/latest/getting-started/index.html
http://docs.autofac.org/en/latest/lifetime/instance-scope.html
https://github.com/StackExchange/dapper-dot-net

161 Architecting and developing Docker applications

The Command

What is a command? – A command is a request for the system to perform an action that changes the

state of the system. Since Commands are imperatives, they are typically named with a verb in the

imperative tense and may include the aggregate type, for example CreateOrderCommand. Unlike an

event, a command is not a fact from the past; it's only a request, and thus may be refused.

Commands can originat from either the user interface (UI) as a result of a user initiating a request, or

from a process manager when the process manager is directing an aggregate to perform an action.

Another very important characteristic of a command is that a command must be processed just once by

a single recipient. This is because commands might not be idempotent, therefore it’s important that

they be processed only once. For example, the same Order creation request shouldn’t be processed

more than once. This is a very important difference when comparing commands versus events. Usually

you will want to process an event (something that happened in the past) multiple times, as many

systems might be interested in that event.

Idempotency. Idempotency is a characteristic of an operation that means the operation can be applied

multiple times without changing the result. For example, the operation "set the value x to ten" is

idempotent, while the operation "add one to the value of x" is not. A Command is idempotent if it can

be executed multiple times without changing the result, either because of the nature of the Command

itself, or because of the way the system handles the Command.

Therefore, it is a good practice to make your commands and updates idempotent. If for any reason

(retry logic, hacking, etc.) the same CreateOrder command reaches your system multiple times, you

should be able to identify it, insuring that you don’t create multiple orders based on the same original

CreateOrder command. To do so, you need to attach some kind of identity in the operations and

identify whether that same command or update was already processed.

You send a command, you don’t publish a command. Publishing is reserved for events which state a

fact – that something has happened, and that the publisher has no concern about what receivers of

that event do with it. But events are a different story related to Domain events and Integration events.

How then do you implement a Command? It’s quite simple; a Command is implemented with a class

that contains data fields or collections with all the information you need to execute that command. So,

yes, a command is like a special kind of DTO (Data Transfer Object) used to request changes or

transactions. The command itself is based on exactly what information is needed to process the

command, and nothing more.

The following is an example of the simplified CreateOrderCommand, which is an immutable

command, used in the Ordering microservice in the eShopOnContainers sample.

// DDD and CQRS patterns comment: Note that it is recommended to implement immutable Commands
// In this case, its immutability is achieved by having all the setters as private
// plus only being able to update the data just once, when creating the object through its
constructor.
// References on Immutable Commands:
// http://cqrs.nu/Faq

162 Architecting and developing Docker applications

// https://docs.spine3.org/motivation/immutability.html
// http://blog.gauffin.org/2012/06/griffin-container-introducing-command-support/
// https://msdn.microsoft.com/en-us/library/bb383979.aspx

[DataContract]
public class CreateOrderCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 private readonly List<OrderItemDTO> _orderItems;
 [DataMember]
 public string City { get; private set; }
 [DataMember]
 public string Street { get; private set; }
 [DataMember]
 public string State { get; private set; }
 [DataMember]
 public string Country { get; private set; }
 [DataMember]
 public string ZipCode { get; private set; }
 [DataMember]
 public string CardNumber { get; private set; }
 [DataMember]
 public string CardHolderName { get; private set; }
 [DataMember]
 public DateTime CardExpiration { get; private set; }
 [DataMember]
 public string CardSecurityNumber { get; private set; }
 [DataMember]
 public int CardTypeId { get; private set; }
 [DataMember]
 public IEnumerable<OrderItemDTO> OrderItems => _orderItems;

 public void AddOrderItem(OrderItemDTO item)
 {
 _orderItems.Add(item);
 }
 public CreateOrderCommand()
 {
 _orderItems = new List<OrderItemDTO>();
 }

 public CreateOrderCommand(string city, string street, string state, string country, string
zipcode,
 string cardNumber, string cardHolderName, DateTime cardExpiration,
 string cardSecurityNumber, int cardTypeId) : this()
 {
 City = city;
 Street = street;
 State = state;
 Country = country;
 ZipCode = zipcode;
 CardNumber = cardNumber;
 CardHolderName = cardHolderName;
 CardSecurityNumber = cardSecurityNumber;
 CardTypeId = cardTypeId;
 CardExpiration = cardExpiration;
 }
 public class OrderItemDTO
 {
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public decimal UnitPrice { get; set; }
 public decimal Discount { get; set; }
 public int Units { get; set; }
 public string PictureUrl { get; set; }
 }
}

163 Architecting and developing Docker applications

Basically, the Command class contains all the data you will need to perform a business transaction by

using the Domain Model objects. Thus, Commands are simply data structures that contain read-only

data, and no behavior. The Command’s name indicates it’s purpose. In many languages like C#,

Commands are represented as classes, but they are not true classes in the real OO sense.

As an additional characteristic, commands are immutable because their expected usage is to be

processed directly by the domain model. Usually, they do not need to change during their

projected lifetime. The same happens with Events, but that is a different story.

In a C# class, immutability can be achieved by not having any setters, or other methods which

change internal state. This immutability and lack of setters is an improvement in the Command’s

design, but it is not critical.

An example is a “Create an order” command. In this case, the Command class might be similar in

terms of data to the Order you want to create, but you probably don’t need the same attributes. For

instance, the CreateOrderCommand doesn’t have an Order Id because it hasn’t been created yet.

Many other Command classes can be very simple, requiring only a few fields about some state that

needs to be changed. For example, that would be the case if you are just changing the status of an

Order from “InProcess” to “Paid” or “Shipped” status by using a command similar to the following:

[DataContract]
public class UpdateOrderStatusCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 public string Status { get; private set; }
 [DataMember]
 public string OrderId { get; private set; }
 [DataMember]
 public string BuyerIdentityGuid { get; private set; }
}

The Command-Handler class

The Command class example is pretty obvious. But where do you actually use that command object

and provide the needed data to the Domain objects? In a Web API controller? In an Application Layer

Service?

It turns out that it is pretty convenient to have a specific Command Handler class per Command. That

is how the pattern works and it is precisely where you will use the Command object, the Domain

objects and the infrastructure repository objects. The Command-Handler is in fact the heart of the

Application Layer in terms of DDD.

A command handler receives a command and brokers a result from the appropriate aggregate. A

result is either a successful application of the command, or an exception.

The command handler usually performs the following tasks:

 It receives the Command instance (from the mediator or any other infrastructure).

 It validates that the Command is a valid Command (if not validated by the mediator).

 It locates the aggregate instance that is the target of the Command.

164 Architecting and developing Docker applications

 It invokes the appropriate method on the aggregate instance passing in any parameter from

the command.

 It persists the new state of the aggregate to storage, which is the actual transaction.

The important point here is that all the domain logic in processing the command should be inside the

domain model (the aggregates), fully encapsulated and unit-testable. The command-handler just acts

as a way to get the domain model out of the persistent store and tell the infrastructure layer

(Repositories) to persist the changes when the model is ready. The advantage of this approach is that

you can now refactor the domain logic in a fully encapsulated, behavioral domain model without

changing anything else in the application plumbing level (Web API, etc.).

When command handlers get complex with too much logic, review them and just push the behavior

down to the domain objects (aggregate-root’s and child entity’s) methods as needed by refactoring

them.

As an example of a Command-Handler class, the following code shows the same

CreateOrderCommandHandler class that uou saw earlier. In this case you can see highlighted the

actual Handle() method and the operations with the Domain model objects/aggregates.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IBuyerRepository _buyerRepository;
 private readonly IOrderRepository _orderRepository;

 public CreateOrderCommandHandler(IBuyerRepository buyerRepository,
 IOrderRepository orderRepository)
 {
 if (buyerRepository == null)
 {
 throw new ArgumentNullException(nameof(buyerRepository));
 }

 if (orderRepository == null)
 {
 throw new ArgumentNullException(nameof(orderRepository));
 }

 _buyerRepository = buyerRepository;
 _orderRepository = orderRepository;
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 //
 // ... Additional code
 //

 // Create the Order AggregateRoot
 // Add child entities and value-objects through the Order Aggregate-Root
 // methods and constructor so validations, invariants and business logic
 // make sure that consistency is preserved across the whole aggregate

 var order = new Order(buyer.Id, payment.Id,
 new Address(message.Street,
 message.City, message.State,
 message.Country, message.ZipCode));

165 Architecting and developing Docker applications

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 //Persist the Order through the Aggregate’s Repository
 _orderRepository.Add(order);

 var result = await _orderRepository.UnitOfWork
 .SaveChangesAsync();

 return result > 0;
 }
}

This is the common sequence of steps a command handler might follow:

- Validate the command’s incoming data.

- Use the command’s data to operate with the aggregate root’s methods and behavior.

- Internally within the Domain objects, Domain events could be raised while the transaction is

executed, but that is transparent from a Command Handler point of view.

- If the aggregate’s operation result is successful, integration events can be raised either from

the infrastructure classes like Repositories or from the Command-Handler itself, after the

transaction is finished.

References – Command and Command-Handler

At the Boundaries, Applications are Not Object-Oriented (by Mark Seemann)

http://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/

The Command pattern

http://cqrs.nu/Faq/commands-and-events

The Command-Handler pattern

http://cqrs.nu/Faq/command-handlers

The Command’s process pipeline – How to trigger a Command Handler

The next question is, where do I call a Command-Handler? – You could manually call it from each

related ASP.NET Core controller, however, that approach would be too coupled and not ideal.

The other two main options, which are the recommended options, are:

- Through an in-memory Mediator pattern artifact.

- With an asynchronous queue, in between controllers and handlers.

Using the mediator pattern (in-memory) in the Command’s pipeline

As shown in figure X-XX, in a CQRS approach you use an intelligent mediator, similar to an in-memory

bus, which is smart enough to redirect to the right Command-Handler based on the type of the

Command/DTO being received. The small single black arrows between components mean the

dependencies between objects (in many cases, injected through DI) with their related interactions.

http://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/
http://cqrs.nu/Faq/commands-and-events
http://cqrs.nu/Faq/command-handlers

166 Architecting and developing Docker applications

The reason that using a mediator pattern makes sense is because in enterprise applications the

processing requests can get increasingly complicated. You will want to be able to add an open

number of cross-cutting concerns like logging, validations, transactions, audit, and security. In these

cases, you can rely on a mediator pipeline (see mediator pattern) to provide a means for these extra

behaviors or cross-cutting concerns.

A mediator is an object that encapsulates the “how” and coordinates execution based on state, the

way it’s invoked, or the payload you provide to it.

Basically, with a Mediator component you can apply those mentioned cross-cutting concerns in a

centralized and transparent way by just applying decorators. See the decorator pattern.

Decorators are similar to Aspect Oriented Programming – AOP , only applied to a specific process-

pipeline managed by the mediator component. Aspects in AOP implementing cross-cutting concerns

are magically applied based on aspect weavers injected in compilation time or based on object call

interception. Both typical AOP approaches are like magic and when dealing with serious issues or

bugs can be difficult to debug. On the other hand, these decorators are explicit and applied only in

the context of the mediator, so debugging is much more predictable and easy to do for any

developer.

Using message queues (out-of-proc) in the Command’s pipeline

Another choice is to use message queues, as shown in the image X-XX. That option could also be

combined with the mediator component right before the command-handlers.

Figure X-XX. Using the Mediator pattern in CQRS microservice

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Aspect-oriented_programming

167 Architecting and developing Docker applications

Using message queues to accept the commands can further complicate your command’s pipeline, as

you will probably need to split the pipeline in two processes connected through the external message

queue. Still it should be used if you need to have better resiliency when submitting the command

messages, plus providing better scalability and better performance because you can implement

asynchronous messaging. Consider that in this case the controller just posts the command message

into the queue and returns. Then, the command-handlers will be processing the messages at their

own pace. That is a great benefit typical of queues, as the message queue can act as a buffer in cases

when hyper scalability is needed for ingress data, for example for stocks or any other scenario with a

high volume of ingress data.

However, because of the asynchronous nature of message queues, you will need to figure out how to

communicate with the client application about the success or failure of the command’s process. As a

rule, you should never use “fire and forget” commands. Every business application needs to know if a

command was processed successfully, or at least validated and accepted.

Thus, being able to respond to the client after validating a command message that was submitted to

an asynchronous queue adds complexity to your system as compared to an in-process command

process that returns the operation’s result after running the transaction. Using queues, you might

need to return the result of the command process through other operation result messages, which will

require additional components and custom communication in your system.

Additionally, async commands are one way commands, which in many cases might not be needed as

explained by Greg Young in the following extracts:

I find lots of code where people use “async command handling” or “one way command” messaging

without any reason to do so (they are not doing some long operation, they are not executing external

async code, they do not even cross application boundary to be using message bus). Why do they

Figure X-XX. Using Message Queues with CQRS Commands

168 Architecting and developing Docker applications

introduce this unnecessary complexity? And actually, I haven't seen a CQRS code example with

blocking command handlers so far, though it will work just fine in most cases.

An asynchronous command doesn't exist; it's actually another event. If I must accept what you send

me and raise an event if I disagree, it's no longer you telling me to do something, it's you telling me

something has been done. This seems like a slight difference at first, but it has many implications.

- Greg Young -

In the eShopOnContainers implementation it was chosen to use synchronous command processing

driven by the Mediator pattern, as that easily allows you to return the success or failure of the process.

In any case, this should be a decision based on your application’s or microservice’s business

requirements. Sometimes a command might not need any confirmation and then it would be a lot

simpler to implement it as a asynchronous command.

Implementing the Command’s process pipeline with a mediator pattern (MediatR)

As a sample implementation, this guidance is proposing the in-process pipeline based on the

mediator pattern driving the commands ingestion and routing them, in memory, to the right

command-handlers, plus applying decorators to separate cross-cutting concerns.

For implementation in .NET Core, there are multiple open source libraries available implementing the

mediator pattern The chosen library used in this guidance is the MediatR open source library (created

by Jimmy Bogard), but you could use any other approach. MediatR is a small, simple in-process

messaging library that allows you to process messages like a Command, while applying decorators.

MediatR is also capable of using synchronous or asynchronous execution which is important

depending on your desired application behavior.

Basically, using the mediator pattern helps you to reduce coupling and isolate the concerns of the

requested work to be done while automatically connecting to the handler that performs that work

(the Command-Handler, in this case).

First, let’s take a look to the controller’s code where you actually would use the mediator object.

The constructor of your controller can be a lot simpler with just a few dependencies instead of many

dependencies that you would have if you had one per cross-cutting operation.

For instance, instead of a messy constructor with many cross-cutting dependencies, you can have a

clean constructor like this:

public class OrdersController : Controller
{
 public OrdersController(IMediator mediator,
 IOrderQueries orderQueries)

You can see that it provides a very clean and lean Web API controller. Within the controller’s methods,

the code is also pretty simple, basically just one line sending a Command to the mediator object:

[Route("new")]
[HttpPost]
public async Task<IActionResult> CreateOrder([FromBody]CreateOrderCommand

169 Architecting and developing Docker applications

 createOrderCommand)
{
 var result = await _mediator.SendAsync(createOrderCommand);
 if (result)
 {
 return Ok();
 }
 return BadRequest();

}

In order for Mediator to be aware of your command-handler classes, you need first to wire it up by

registering the mediator classes and the command-handler classes in your IoC container.

By default, Mediator uses Autofac as the IoC container, but you can also use the built-in ASP.NET Core

IoC container or any other container supported by MediatR.

The following code shows how to register those types, Mediator’s types and Commands when using

Autofac modules.

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {
 builder.RegisterAssemblyTypes(typeof(IMediator).GetTypeInfo().Assembly)
 .AsImplementedInterfaces();

 builder.RegisterAssemblyTypes(typeof(CreateOrderCommand).GetTypeInfo().Assembly)
 .As(o => o.GetInterfaces()
 .Where(i => i.IsClosedTypeOf(typeof(IAsyncRequestHandler<,>)))
 .Select(i => new KeyedService("IAsyncRequestHandler", i)));

 builder.RegisterGenericDecorator(typeof(LogDecorator<,>),
 typeof(IAsyncRequestHandler<,>),
 "IAsyncRequestHandler");
 //Other types registration
 }

}

Because each Command Handler is implementing the interface with generics

IAsyncRequestHandler<T>, then by inspecting the RegisteredAssemblyTypes it is able to relate

each Command with its Command-Handler, because that relationship is stated in the

CommandHandler class, as in the following example:

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>

{

This is the code that closes the loop and correlates Commands with CommandHandlers. The handler

is just a simple class, but it inherits from RequestHandler<T> and MediatR makes sure it gets invoked

with the correct payload.

170 Architecting and developing Docker applications

Applying cross-cutting concerns when processing commands with the Mediator and

Decorator patterns

There’s one more thing:, the capability of being able to apply cross-cutting concerns to the mediator

pipeline. In the Autofac registration module code you can also see at the end of that code how it is

registering a decorator type, specifically, a custom Log Decorator.

That LogDecorator class can be implemented as the following simple code which is simply logging

info about the command handler being executed and whether it was successful or not.

public class LogDecorator<TRequest, TResponse>
 : IAsyncRequestHandler<TRequest, TResponse>
 where TRequest : IAsyncRequest<TResponse>
{
 private readonly IAsyncRequestHandler<TRequest, TResponse> _inner;
 private readonly ILogger<LogDecorator<TRequest, TResponse>> _logger;

 public LogDecorator(
 IAsyncRequestHandler<TRequest, TResponse> inner,
 ILogger<LogDecorator<TRequest, TResponse>> logger)
 {
 _inner = inner;
 _logger = logger;
 }

 public async Task<TResponse> Handle(TRequest message)
 {
 _logger.LogInformation($"Executing command {_inner.GetType().FullName}");

 var response = await _inner.Handle(message);

 _logger.LogInformation($"Succeeded executed command {_inner.GetType().FullName}");

 return response;
 }

}

Just by implementing this decorator class and by decorating my pipeline with it, all the commands

processed through MediatR will be logging information about it.

In a similar way, you could implement other decorators like a validator decorator, transaction

decorator, or any other aspect or cross-cutting concern you would like to apply to commands when

handling them.

For additional information on the Mediator pattern and the MediatR library, see the following

references.

References – Mediator

The mediator pattern

https://en.wikipedia.org/wiki/Mediator_pattern

The decorator pattern

https://en.wikipedia.org/wiki/Decorator_pattern

MediatR

https://github.com/jbogard/MediatR

https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/

https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/

https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/jbogard/MediatR
https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/

171 Architecting and developing Docker applications

https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/

https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/

https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/

https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/

https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/

FluentValidation

https://github.com/JeremySkinner/FluentValidation

Sagas

Why Sagas?

A Saga is a technique that can be used to handle out of order messages. It is similar (but not equal) to

a process manager or a workflow, and typically means a long-running business process that could be

implemented either with custom code or based on a service bus.

When designing processes with more than one remote call it is usually recommended to use sagas.

The length of time is not important in many cases. Sometimes “a single second means a lifetime” and

you might need a saga, as well.

Sagas and long running processes

A Saga on Sagas

https://msdn.microsoft.com/en-us/library/jj591569.aspx

Saga implementation patterns – variations

https://lostechies.com/jimmybogard/2013/03/21/saga-implementation-patterns-variations/

Saga definition and implementing a saga with NServiceBus

https://docs.particular.net/nservicebus/sagas/

Implementing a custom Saga

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

------------ To be written when this implementation is made at eShopOnContainers -----------

--

https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/
https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/
https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/
https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/
https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/
https://github.com/JeremySkinner/FluentValidation
https://msdn.microsoft.com/en-us/library/jj591569.aspx

172 Implementing Resilient applications

S E C T I O N

9

Implementing Resilient
applications

Handling Partial Failure
In distributed systems, like in a microservices based application, there is the ever-present risk of partial

failure. Since clients and services are separate processes/containers, a service might not be able to

respond in a timely way to a client’s request. A service might be down because of a failure or for

maintenance, the service might be overloaded and responding extremely slowly to requests or simply

not accessible for a very short time because of network issues.

Consider, for example, the Order page from the eShopOnContainers sample application. Let’s imagine

that the Ordering microservice is unresponsive when the user tries to submit an order. A bad

implementation of the client (if the client code is synchronous RPC and with no time-out) might block

indefinitely waiting for a response. In addition to that bad user experience, every unresponsive wait

will consume or block a thread which is something very valuable in high scalable applications because

in the case of having many issues like the one exposed eventually the runtime would run out of

threads and became globally unresponsive instead of just partially unresponsive, as show in figure X-

XX below.

In a large microservice based application this partial failure can be very much amplified. Think about a

system that receives millions of incoming calls per day which in turn fans out to many more millions of

173 Implementing Resilient Applications

outgoing calls (let’s suppose a ratio of 1:5) to tens of underlying or internal microservices as

dependencies, as shown in figure X-XX.

Intermittent failure is guaranteed that will happen in a distributed and cloud based system, even if

every dependency itself has excellent availability and uptime.

Without taking steps to ensure fault tolerance, 50 dependencies each with 99.99% uptime would

result in several hours of downtime/month because of the ripple effect.

When a single API dependency fails at high volume of requests with increased latency (causing

blocked request threads) it can rapidly saturate all available request threads and take down the entire

API or application.

174 Implementing Resilient Applications

Therefore, it is a requirement of high volume, high availability applications to design and build

resilient microservices and client applications into their architecture.

To prevent this problem, it is essential that you design your microservices and client applications to

handle partial failures, that eventually will happen unavoidably in production systems.

The strategies for dealing with partial failures include:

Circuit breaker pattern – Track the number of failed requests. If the error rate exceeds a configured

limit, trip the circuit breaker so that further attempts fail immediately. If a large number of requests

are failing, that suggests the service is unavailable and that sending requests is pointless. After a

timeout period, the client should try again and, if successful, close the circuit breaker.

Provide fallbacks – Perform fallback logic when a request fails. For example, return cached data or a

default value such as empty set of recommendations. However, this is not viable for

updates/commands but mostly for queries.

Network timeouts – Never block indefinitely and always use timeouts when waiting for a response.

Using timeouts ensures that resources are never tied up indefinitely.

Limiting the number of queued requests – Impose an upper bound on the number of outstanding

requests that a client microservice can have with a particular service. If the limit has been reached, it is

probably pointless to make additional requests, and those attempts need to fail immediately.

References – Implementing Resilient services

Adding Resilience and Optimizing Performance

https://msdn.microsoft.com/en-us/library/jj591574.aspx

Implementing Retries Logic with Exponential Fallbacks

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------------------------- Further implementation details ----------------------------------

--- Implemented here at eShopOnContainers:

https://github.com/dotnet/eShopOnContainers/blob/master/src/Web/WebMVC/Services/Utilities/RetryWithExponentialBackoff.

cs

https://github.com/dotnet/eShopOnContainers/blob/master/src/Web/WebMVC/Services/CatalogService.cs

--

Implementing Circuit Breaker pattern

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------------------------- Further implementation details ----------------------------------

--

https://github.com/dotnet/eShopOnContainers/blob/master/src/Web/WebMVC/Services/Utilities/RetryWithExponentialBackoff.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Web/WebMVC/Services/Utilities/RetryWithExponentialBackoff.cs
https://github.com/dotnet/eShopOnContainers/blob/master/src/Web/WebMVC/Services/CatalogService.cs

175 Implementing Resilient Applications

Implementing Graceful Shutdowns

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------------------------- Further implementation details ----------------------------------

--

176 Securing .NET microservices and web applications

S E C T I O N

11

Securing .NET
microservices and web
applications

Authentication
It’s often necessary for resources and APIs exposed by a service to be made available to certain

trusted users or clients, but not to others. The first step to making these sorts of API-level trust

decisions is authentication. Authentication is the process of reliably ascertaining a user’s identity or

granted permissions.

In microservice scenarios, authentication is typically handled centrally. If using an API gateway, the API

gateway is a good place to authenticate, as shown in figure X-X. Make sure, when using this approach,

that the individual micro-services can’t be reach directly (without the API gateweay) unless additional

security is in place to authenticate messages as coming from the gateway or not.

If different services are accessed directly, an authentication service like Azure Active Directory or a

dedicated authentication micro-service acting as a Security Token Service (STS) can be used to

authenticate users. Trust decisions are shared between services with security tokens or cookies (which

can be shared between applications, if needed, in ASP.NET Core with data protection services). This

pattern is illustrated in figure X-X, below.

Figure X-XX. Centralized authentication with an API gateway

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing#sharing-authentication-cookies-between-applications

177 Implementing Resilient Applications

ASP.NET Core Identity

ASP.NET Core’s primary mechanism for identifying an app’s users is the ASP.NET Core Identity

membership system. ASP.NET Core Identity handles storing user information (including sign-in

information, roles, and claims) in a data store configured by the developer. Typically, the ASP.NET

Core Identity data store will be an EntityFramework store (provided in the

Microsoft.AspNetCore.Identity.EntityFrameworkCore package), though custom stores or other third-

party packages can be used to store Identity information in Azure dtable storage, DocumentDB, or

other locations.

This code (taken from the ASP.NET Core Web Application new project template with individual user

account authentication selected) demonstrates configuring ASP.NET Core Identity (using

EntityFramework.Core) in Startup.ConfigureServices:

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

Once configured, ASP.NET Core Identity is enabled by calling app.UseIdentity in the service’s

Startup.Configure method.

Using ASP.NET Code Identity enables several useful scenarios:

 Local user information can be created and stored using Identity’s UserManager type

(userManager.CreateAsync).

 Users can be authenticated using the SignInManager type (signInManager.SignInAsync to

sign in directly, or signInManager.PasswordSignInAsync to verify the user’s password first).

 Signed-in users will have their user information and claims stored in a cookie for use in

subsequent requests.

Figure X-XX. Authentication by identity microservice; trust shared via authorization token

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

178 Implementing Resilient Applications

 Middleware is registered in the ASP.NET Core application’s pipeline to read user information

from cookies so that subsequent requests from a browser will include a signed-in user’s

identity and claims.

Beyond simple sign-in scenarios, ASP.NET Core Identity also supports two-factor authentication.

For authentication scenarios that make use of a local user data store and that persist identity between

requests via cookies (as is appropriate for typical MVC web applications), ASP.NET Core Identity is a

recommended solution.

External Authentication

ASP.NET Core also supports using external authentication providers to log in users via OAuth 2.0

flows. This means that users can log in using existing authentication processes from external providers

(such as Microsoft, Google, Facebook, or Twitter) and associate those identities with an ASP.NET Core

Identity in your application.

This can be done by including the appropriate authentication middleware in your app’s HTTP request

processing pipeline. This middleware is responsible for handling requests to return URI routes from

the authentication provider, capturing identity information, and making it available via the

SignInManager.GetExternalLoginInfo method.

Common external authentication providers and their associated NuGet pacakges are shown in the

table below. In all cases, the middleware is registered with a call to a registration method similar to

app.Use{ExternalProvider}Authentication in startup.Configure. These registration methods take

an options object containing application ID and secret information, as needed by the specific provider

used. The external authentication providers require app registration (as explained in ASP.NET Core

documentation) for security reasons and so that they can inform the user what application is

requesting access to their identity.

Provider Package

Microsoft Microsoft.AspNetCore.Authentication.MicrosoftAccount

Google Microsoft.AspNetCore.Authentication.Google

Facebook Microsoft.AspNetCore.Authentication.Facebook

Twitter Microsoft.AspNetCore.Authentication.Twitter

Once the necessary middleware is registered in Startup.Configure, users can be prompted to log in

from a controller action by returning a ChallengeResponse with an AuthenticationProperties argument

created from authentication provider’s name and a redirect URL:

var properties = _signInManager.ConfigureExternalAuthenticationProperties(provider,
redirectUrl);
return Challenge(properties, provider);

The redirectUrl represents the URL that the external provider should redirect to once the user has

authenticated. This should be an action that will sign in the user based on external identity

information, as in this simplified sample code sample:

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/

179 Implementing Resilient Applications

// Sign in the user with this external login provider if the user already has a login.
var result = await _signInManager.ExternalLoginSignInAsync(info.LoginProvider,
info.ProviderKey, isPersistent: false);
if (result.Succeeded)
{
 return RedirectToLocal(returnUrl);
}
else
{
 ApplicationUser newUser = new ApplicationUser
 {
 // The user object may be constructed with whatever specific claims are
 // returned by the external authentication provider used, or can
 // be created by gathering input from the user.
 UserName = info.Principal.FindFirstValue(ClaimTypes.Name),
 Email = info.Principal.FindFirstValue(ClaimTypes.Email)
 };

 var identityResult = await _userManager.CreateAsync(newUser);
 if (identityResult.Succeeded)
 {
 identityResult = await _userManager.AddLoginAsync(newUser, info);
 if (identityResult.Succeeded)
 {
 await _signInManager.SignInAsync(newUser, isPersistent: false);
 }

 return RedirectToLocal(returnUrl);
 }
}

Note that all of the code necessary to sign in with an external provider is present in the ASP.NET Core

web application template project if “individual accounts” authentication is chosen at project creation

time (as shown in figure X-X, below), so when starting from that template the only code you should

need to add is the middleware registration for the specific external authentication providers you wish

to use.

180 Implementing Resilient Applications

Other External Authentication Providers

In addition to the external authentication providers listed previously, there are third-party packages

available which provide middleware for using many more external authentication providers. It is also

possible, of course, to create your own external authentication middleware.

Authenticating with Bearer Tokens

Authenticating with ASP.NET Core Identity (or Identity plus external authentication providers) works

well for many web application scenarios in which storing user information in a cookie is appropriate.

In other scenarios, though, cookies are not a natural means of persisting and transmitting data.

For example, an ASP.NET Core web API which exposes RESTful endpoints that may be accessed by

single page applications (SPAs), native clients, or even other web APIs will typically want to use bearer

token authentication instead since these scenarios don’t work with cookies, but can easily retrieve a

bearer token and include it in the authorization header of future requests.

To enable token authentication, ASP.NET Core supports several options for using OAuth 2.0 and

OpenID Connect.

Authenticating Against an OpenID Connect or OAuth 2.0 Identity Provider

If user information is stored in Azure Active Directory or another identity solution that supports

OpenID Connect or OAuth 2.0, the Microsoft.AspNetCore.Authentication.OpenIdConnect package can

be used to authenticate using the OpenID Connect workflow.

To authenticate against Azure Active Directory, for example, an ASP.NET Core web application can use

middleware from that package as follows:

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src
https://oauth.net/2/
http://openid.net/connect/
https://azure.microsoft.com/en-us/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/

181 Implementing Resilient Applications

// Configure the OWIN pipeline to use OpenID Connect auth.
app.UseOpenIdConnectAuthentication(new OpenIdConnectOptions
{
 ClientId = Configuration["AzureAD:ClientId"],
 Authority = String.Format(Configuration["AzureAd:AadInstance"],
Configuration["AzureAd:Tenant"]),
 ResponseType = OpenIdConnectResponseType.IdToken,
 PostLogoutRedirectUri = Configuration["AzureAd:PostLogoutRedirectUri"]
});

Note that the configuration values are Azure Active Directory values which are created when your

application is registered as an Azure AD client. If necessary, a single client ID can be shared between

multiple micro-services in an application which may all need to authenticate users signed on by Azure

Active Directory.

When using this workflow, the ASP.NET Core Identity middleware is not needed as all user information

storage and authentication is handled by Azure Active Directory.

Issuing Security Tokens from an ASP.NET Core Service

If, rather than using an external identity provider, you prefer to issue security tokens for local ASP.NET

Core Identity users, there are a couple good third-party libraries that can help.

IdentityServer4 is an OpenID Connect provider for ASP.NET Core that integrates easily with ASP.NET

Core Identity to enable issuing security tokens from an ASP.NET Core service. The IdentityServer4

documentation has in-depth instructions for using the library, but the basic steps to using

IdentityServer4 to issue tokens are:

1. Call app.UseIdentityServer() in Startup.Configure to add IdentityServer4 to the

application’s HTTP request processing pipeline (so that it can serve requests to OpenID

Connect and OAuth2 endpoints like /connect/token).

2. Configure IdentityServer4 in Startup.ConfigureServices with a call to

services.AddIdentityServer. Further configuration is needed with subsequent calls to

setup the following IdentityServer4 concepts:

a. Credentials used for signing

b. Identity and API resources that users may request access to

i. API resources represent some protected data or functionality which a user

might gain access to with an access token. An example of an API resource

would be a web API (or set of APIs) that require authorization to call.

ii. Identity resources represent information (claims) which are given to a client

to identify a user. This could include their name, email address, or other

claims.

c. Clients that will be connecting to request tokens

d. ASP.NET Core Identity (or an alternative user store)

When specifying clients and resources for IdentityServer4 to use, you can just pass an

IEnumerable<T> of the appropriate type to methods which take in-memory client or resource stores

or, for more complex scenarios, provide client or resource provider types via dependency injection.

A sample configuration of IdentityServer4 using in-memory resources and clients provided by a

custom IClientStore might look like this:

// Add IdentityServer services

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios#basics-of-registering-an-application-in-azure-ad
https://github.com/IdentityServer/IdentityServer4
https://identityserver4.readthedocs.io/en/release/
https://identityserver4.readthedocs.io/en/release/
https://identityserver4.readthedocs.io/en/release/topics/crypto.html
https://identityserver4.readthedocs.io/en/release/configuration/resources.html
https://identityserver4.readthedocs.io/en/release/configuration/clients.html
https://identityserver4.readthedocs.io/en/release/quickstarts/6_aspnet_identity.html

182 Implementing Resilient Applications

services.AddSingleton<IClientStore, CustomClientStore>();

services.AddIdentityServer()
 .AddSigningCredential("CN=sts")
 .AddInMemoryApiResources(MyApiResourceProvider.GetAllResources())
 .AddAspNetIdentity<ApplicationUser>();

Consuming Security Tokens

Authenticating against an OpenID Connect endpoint or issuing your own security tokens covers some

scenarios, but what about a service that simply needs to limit access to users with valid security tokens

(provided by a different service)?

Authentication middleware which handles JWT tokens is available in the

Microsoft.AspNetCore.Authentication.JwtBearer package.

Simple use of the middleware might look like this (make sure this call precedes calls to ASP.NET Core’s

MVC middleware (app.UseMvc)):

app.UseJwtBearerAuthentication(new JwtBearerOptions()
{
 Audience = "http://localhost:5001/",
 Authority = "http://localhost:5000/",
 AutomaticAuthenticate = true
});

The parameters in this usage are:

 Audience represents the intended recipient of the incoming token or the resource that the

token grants access to. If the value specified in this parameter doesn't match the aud

parameter in the token, the token will be rejected because it was meant to be used for

accessing a different resource.

 Authority is the address of the token-issuing authentication server. The JWT bearer

authentication middleware will use this URI to find and retrieve the public key that can be

used to validate the token's signature. It will also confirm that the iss parameter in the token

matches this URI.

 AutomaticAuthenticate is a boolean value indicating whether the user defined by the token

should be automatically logged in.

 RequireHttpsMetadata is not used in the code snippet above, but is useful for testing

purposes. In real-world deployments, JWT bearer tokens should always be passed only over

HTTPS.

With this middleware in place, JWT tokens will automatically be extracted from authorization headers,

deserialized, validated (using the audience and authority parameters specified), and stored as user

information to be referenced later by MVC actions or authorization filters/middleware.

The JwtBearerAuthentication middleware can also support more advanced scenarios (such as using a

local certificate to validate a token if the authority is not available) by specifying a

TokenValidationParameters object in the JwtBearerOptions object.

183 Implementing Resilient Applications

Authorization
After authentication, ASP.NET Core web APIs often need to authorize access. This process allows a

service to make APIs available to some authenticated users, but not to all.

Authorization can be done based on users’ roles or based on custom policy (which may include

inspecting claims or any other heuristics).

Restricting access to an ASP.NET Core MVC route is as easy as applying an [Authorize] attribute to

the action method (or to the controller’s class if all the controller’s actions require authorization), as

shown in the sample code below.

public class AccountController : Controller
{
 public ActionResult Login()
 {
 }

 [Authorize]
 public ActionResult Logout()
 {
 }
}

By default, adding an [Authorize] attribute will limit access to authenticated users. To further restrict

an API to be available for only specific users, the attribute can be expanded to specify required roles

or policies that users must satisfy.

Role-Based Authorization

ASP.NET Core Identity has a built-in concept of roles. In addition to users, ASP.NET Core Identity

stores information about different roles used by the application and keeps track of which users are

assigned to which roles. These assignments may be changed programmatically with the RoleManager

type (which adjusts roles in persisted storage) and UserManager type (which can assign/un-assign

users from roles).

When authenticating with JWT bearer tokens, ASP.NET Core’s JWT bearer authentication middleware

will populate a user’s roles based on ‘role’ claims found in the token.

To limit access to an MVC action (or controller) to users in specific roles, just include a ‘Roles’

parameter in the authorize header:

[Authorize(Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller
{
 public ActionResult SetTime()
 {
 }

 [Authorize(Roles = "Administrator")]
 public ActionResult ShutDown()
 {
 }
}

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/roles

184 Implementing Resilient Applications

In the code snippet above, only users in the Administrator or PowerUser roles can access APIs in the

ControlPanel controller (like the SetTime action). The ShutDown API is further restricted to allow

access only to users in the Administrator role.

To require a user be in multiple roles, use multiple Authorize attributes, as shown in figure X.X below.

Policy-Based Authorization

Custom authorization rules can also be written using authorization policies. An overview is given here,

but more detail is available in the online ASP.NET Authorization Workshop.

Custom authorization policies are registered in the Startup.ConfigureServices method using the

service.AddAuthorization method. This method takes an action method that configures an

AuthorizationOptions argument.

services.AddAuthorization(options =>
{
 options.AddPolicy("AdministratorsOnly", policy => policy.RequireRole("Administrator"));
 options.AddPolicy("EmployeesOnly", policy => policy.RequireClaim("EmployeeNumber"));
 options.AddPolicy("Over21", policy => policy.Requirements.Add(new
MinimumAgeRequirement(21)));
});

As shown above, policies can be associated with different types of requirements. After registering

these policies, they can be applied to an action or controller by passing the policy’s name as the

Policy argument of the Authorize attribute (for example: [Authorize(Policy=EmployeesOnly)]).

Note that policies may have multiple requirements, not just one as in the above samples.

The first AddPolicy call above is just an alternative way of authorizing by role. If

[Authorize(Policy=AdministratorsOnly)] is applied to an API, then only users in the Administrator

role will be able to access it.

The second AddPolicy call demonstrates an easy way of requiring that a particular claim be present

for the user. The RequireClaim method also optionally takes expected values for the claim. If values

are specified, then the requirement is only met if the user both has a claim of the correct type and

with one of the specified values. When using the JWT bearer authentication middleware, all JWT

properties will be available as user claims.

The most interesting policy shown here is the last one because it uses a custom authorization

requirement. By using custom authorization requirements, developers can have a great deal of control

over how authorization is performed. For this to work, the developer must implement a couple types:

 A requirement type deriving from IAuthorizationRequirement which contains fields

specifying the details of the requirement (an age field, for example, for our sample

MinimumAgeRequirement type).

https://docs.asp.net/en/latest/security/authorization/policies.html
https://github.com/blowdart/AspNetAuthorizationWorkshop

185 Implementing Resilient Applications

 A handler implementing AuthorizationHandler<T> where T is the type of

IAuthorizationRequirement that the handler can satisfy. The handler must implement the
HandleRequirementAsync(AuthorizationHandlerContext context, T requirement)

method which checks whether a given context (which contains information about the user)

satisfies the requirement.

o If the user meets the requirement, a call to context.Succeed(requirement) will

indicate that the user is authorized.

o If there are multiple ways that a user might satisfy an authorization requirement,

multiple handlers can be created.

Note that in addition to registering custom policy requirements with AddPolicy calls, custom

requirement handlers also need to be registered via dependency injection

(services.AddTransient<IAuthorizationHandler, MinimumAgeHandler>()).

An example of a custom authorization requirement and handler for checking a user’s age (based on a

DateOfBirth claim) is available in the ASP.NET Core authorization documentation.

References – Securing .NET Applications

ASP.NET Core Authentication

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

ASP.NET Core Authorization

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction

Safe storage of app secrets during development
To connect with protected resources and other services, ASP.NET Core applications will typically need

to use connection strings, passwords, or other credentials containing sensitive information. These

sensitive pieces of information are called ‘secrets’. It is a best practice to not include secrets in source

code and certainly not to store secrets in source control. Instead, ASP.NET Core’s configuration model

should be used to read the secrets from more secure locations.

Be sure to use separate secrets for accessing development and staging resources from those used for

accessing production resources (as different individuals will need access to those different sets of

secrets).

To store secrets used during development, common approaches are to either store secrets as

environment variables or with ASP.NET Core’s Secret Manager tool. For more secure storage in

production environments, micro-services can store secrets in an Azure Key Vault.

Secrets from Environment Variables

One easy way to keep secrets out of source code is for developers to set string-based secrets as

environment variables on their development machines. When using environment variables to store

secrets with hierarchical names (those nested in configuration sections), include the full hierarchy of

the secret’s name in the environment variable name, delimited with colons (:).

For example, setting an environment variable Logging:LogLevel:Default = Debug would be

equivalent to a configuration value read from the following JSON file:

https://docs.asp.net/en/latest/security/authorization/policies.html
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets#environment-variables

186 Implementing Resilient Applications

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

To access these values from environment variables, the application just needs to call

AddEnvironmentVariables on its ConfigurationBuilder when constructing an IConfigurationRoot

object.

Note that environment variables are generally stored as plain text, so if the machine or process with

the environment variables are compromised, the environment variables’ values will be visible.

Secrets using the Secret Manager

ASP.NET Core’s Secret Manager tool provides another method of keeping secrets out of source code.

To use the Secret Manager tool, include a tools reference (<DotNetCliToolReference>) to the

Microsoft.Extensions.SecretManager.Tools package in your project file. Once that reference is present

and has been restored, ‘dotnet user-secrets’ can be used to set the value of secrets from the

command line. These secrets will be stored in a JSON file in the user’s profile directory (details vary by

OS), away from source code.

Note that secrets set by the SecretManager are organized by the UserSecretsId of the project using

the secrets, so be sure to set the UserSecretsId property in your project file. The string used is

unimportant, as long as it’s unique.

<PropertyGroup>
 <UserSecretsId>UniqueIdentifyingString</UserSecretsId>
</PropertyGroup>

Using secrets stored with the Secret Manager in an application is similar to using secrets stored as

environment variables: just call AddUserSecrets<T> on the ConfigurationBuilder to include secrets

for the application in its configuration. The generic parameter T should be a type from the assembly

the UserSecretesId was applied to (usually using <Startup> is fine).

Using Azure Key Vault to protect secrets in

production time
Because secrets stored as environment variables or by the Secret Manager are still stored locally (and

unencrypted) on the machine, a more secure option for storing secrets is Azure Key Vault. Azure Key

Vault provides a secure, central location for storing keys and secrets.

The Microsoft.Extensions.Configuration.AzureKeyVault package allows an ASP.NET Core application to

read configuration information from Azure Key Vault. To start using secrets from an Azure Key Vault,

you will need to follow these steps:

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets#secret-manager
https://azure.microsoft.com/en-us/services/key-vault/

187 Implementing Resilient Applications

1. Register your application as an Azure AD application (access to Key Vaults is managed by

Azure AD). This can be done through the Azure management portal or, if you would like your

application to authenticate with a certificate (instead of a password/client secret), you can use

the New-AzureRmADApplication PowerShell cmdlet.

a. If you use the New-AzureRmADApplication cmdlet to register the application and

wish to authenticate with a certificate, you should pass the raw cert data as a base 64

string as the CertValue parameter. The certificate registered with Key Vault only needs

to contain your public key (your application will use the private key).

2. Give the registered application access to the key vault by creating a new service principal. This

can be done with PowerShell as follows:

a. $sp = New-AzureRmADServicePrincipal -ApplicationId "<Application ID

guid>"

b. Set-AzureRmKeyVaultAccessPolicy -VaultName "<VaultName>" -

ServicePrincipalName $sp.ServicePrincipalNames[0] -PermissionsToSecrets

all -ResourceGroupName "<KeyVault Resource Group>"

3. Include the key vault as a configuration source in your application by calling the

IConfigurationBuilder.AddAzureKeyVault extension method when creating an

IConfigurationRoot.

a. Note that calling AddAzureKeyVault will require the application ID that was

registered and given access to the key vault in steps (1) and (2).

Currently, .NET Standard (and also .NET Core) supports getting configuration information from an

Azure Key Vault using a client ID and client secret. .NET Framework applications may alternatively use

an overload of IConfigurationBuilder.AddAzureKeyVault that takes an X509 certificate in place of

the client secret. Work is in-progress to make that overload available on .NET Standard/.NET Core.

Until the AddAzureKeyVault overload accepting a certificate is available, ASP.NET Core application can

access an Azure Key Vault with certificate-based authentication by explicitly creating a

KeyVaultClient, as shown here:

// Configure Key Vault client
var kvClient = new KeyVaultClient(new KeyVaultClient.AuthenticationCallback(async
(authority, resource, scope) =>
{
 var cert = // Get certificate from local store/file/key vault etc., as needed
 // From the Microsoft.IdentityModel.Clients.ActiveDirectory pacakge
 var authContext = new AuthenticationContext(authority, TokenCache.DefaultShared);
 var result = await authContext.AcquireTokenAsync(resource,
 // From the Microsoft.Rest.ClientRuntime.Azure.Authentication pacakge
 new ClientAssertionCertificate("<Application ID>", cert));
 return result.AccessToken;
}));

// Get configuration values from Key Vault
var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 // Other configuration providers go here.
 .AddAzureKeyVault("<KeyValueUri>", kvClient, new DefaultKeyVaultSecretManager());

Note that the call to AddAzureKeyVault comes at the end of configuration provider registration in this

sample. It is a best practice to register Azure Key Vault as the last configuration provider so that it has

https://docs.microsoft.com/en-us/powershell/resourcemanager/azurerm.resources/v3.3.0/new-azurermadapplication
https://github.com/aspnet/Configuration/issues/605

188 Implementing Resilient Applications

an opportunity to override configuration values from previous providers and so that no configuration

values from other sources override those from the key vault.

Securing the microservices’ communication

--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--------------------------------- Further implementation details ----------------------------------

--

References – Securing .NET Applications

Using Azure Key Vault to protect application secrets

https://docs.microsoft.com/en-us/azure/guidance/guidance-multitenant-identity-keyvault

Safe storage of app secrets during development

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Configuring data protection

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/overview

Key management and lifetime

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-settings#data-

protection-default-settings

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-settings#data-protection-default-settings
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/default-settings#data-protection-default-settings

189 Conclusions

S E C T I O N

12

Conclusions

Key takeaways
--

------------------------------------- TBD SECTION IN DRAFT -------------------------------------

--

