

i

ii

EDITION v2.2.1

DOWNLOAD available at: https://aka.ms/microservicesebook

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2019 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the

written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book,

including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or

should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group

of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

Co-Authors: Editors:

 Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp.

 Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp.

 Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft

Mike Pope

Steve Hoag

Participants and reviewers:

Jeffrey Richter, Partner Software Eng, Azure team, Microsoft

Jimmy Bogard, Chief Architect at Headspring

Udi Dahan, Founder & CEO, Particular Software

Jimmy Nilsson, Co-founder and CEO of Factor10

Glenn Condron, Sr. Program Manager, ASP.NET team

Mark Fussell, Principal PM Lead, Azure Service Fabric team, Microsoft

Diego Vega, PM Lead, Entity Framework team, Microsoft

Barry Dorrans, Sr. Security Program Manager

Rowan Miller, Sr. Program Manager, Microsoft

Ankit Asthana, Principal PM Manager, .NET team, Microsoft

Scott Hunter, Partner Director PM, .NET team, Microsoft

Dylan Reisenberger, Architect and Dev Lead at Polly

Steve Smith, Software Craftsman & Trainer at ASPSmith Ltd.

Ian Cooper, Coding Architect at Brighter

Unai Zorrilla, Architect and Dev Lead at Plain Concepts

Eduard Tomas, Dev Lead at Plain Concepts

Ramon Tomas, Developer at Plain Concepts

David Sanz, Developer at Plain Concepts

Javier Valero, Chief Operating Officer at Grupo Solutio

Pierre Millet, Sr. Consultant, Microsoft

Michael Friis, Product Manager, Docker Inc

Charles Lowell, Software Engineer, VS CAT team, Microsoft

Miguel Veloso, Sr. Consultant at Turing Challenge

Nish Anil, Sr. Program Manager, .NET team, Microsoft

https://aka.ms/microservicesebook

iii

Contents

Introduction ... 1

About this guide .. 1

Version... 1

What this guide does not cover .. 2

Who should use this guide ... 2

Related microservice and container-based reference application: eShopOnContainers 2

Send us your feedback! .. 3

Introduction to Containers and Docker .. 4

What is Docker? ... 5

Comparing Docker containers with virtual machines ... 6

A simple analogy ... 7

Docker terminology .. 8

Docker containers, images, and registries .. 10

Choosing Between .NET Core and .NET Framework for Docker Containers 12

General guidance .. 12

When to choose .NET Core for Docker containers .. 13

Developing and deploying cross platform .. 13

Using containers for new (“green-field”) projects ... 14

Creating and deploying microservices on containers ... 14

Deploying high density in scalable systems .. 14

When to choose .NET Framework for Docker containers ... 15

Migrating existing applications directly to a Windows Server container .. 15

Using third-party .NET libraries or NuGet packages not available for .NET Core 15

Using .NET technologies not available for .NET Core .. 15

Using a platform or API that does not support .NET Core .. 16

Decision table: .NET frameworks to use for Docker .. 16

What OS to target with .NET containers ... 17

Official .NET Docker images ... 19

.NET Core and Docker image optimizations for development versus production 19

Architecting container and microservice-based applications ... 21

iv

Container design principles ... 21

Containerizing monolithic applications ... 22

Deploying a monolithic application as a container .. 24

Publishing a single-container-based application to Azure App Service .. 24

State and data in Docker applications ... 25

Service-oriented architecture... 28

Microservices architecture .. 28

Additional resources ... 30

Data sovereignty per microservice .. 30

The relationship between microservices and the Bounded Context pattern ... 32

Logical architecture versus physical architecture ... 33

Challenges and solutions for distributed data management ... 34

Challenge #1: How to define the boundaries of each microservice .. 34

Challenge #2: How to create queries that retrieve data from several microservices 35

Challenge #3: How to achieve consistency across multiple microservices ... 36

Challenge #4: How to design communication across microservice boundaries 38

Additional resources ... 39

Identify domain-model boundaries for each microservice .. 39

The API gateway pattern versus the Direct client-to-microservice communication 42

Direct client-to-microservice communication .. 43

Why consider API Gateways instead of direct client-to-microservice communication 44

What is the API Gateway pattern? ... 45

Main features in the API Gateway pattern ... 47

Using products with API Gateway features.. 48

Drawbacks of the API Gateway pattern ... 49

Additional resources ... 50

Communication in a microservice architecture .. 50

Communication types .. 51

Asynchronous microservice integration enforces microservice’s autonomy ... 52

Communication styles .. 54

Asynchronous message-based communication... 56

Single-receiver message-based communication .. 56

Multiple-receivers message-based communication .. 57

Asynchronous event-driven communication .. 57

A note about messaging technologies for production systems ... 59

Resiliently publishing to the event bus ... 59

Additional resources ... 59

Creating, evolving, and versioning microservice APIs and contracts ... 60

v

Additional resources ... 61

Microservices addressability and the service registry .. 61

Additional resources ... 61

Creating composite UI based on microservices ... 62

Additional resources ... 63

Resiliency and high availability in microservices .. 64

Health management and diagnostics in microservices .. 64

Additional resources ... 66

Orchestrating microservices and multi-container applications for high scalability and availability ... 67

Software platforms for container clustering, orchestration, and scheduling ... 68

Using container-based orchestrators in Microsoft Azure .. 69

Using Azure Kubernetes Service .. 69

Development environment for Kubernetes ... 70

Getting started with Azure Kubernetes Service (AKS) ... 71

Deploying with Helm charts into Kubernetes clusters .. 71

Use Azure Dev Spaces for your Kubernetes application lifecycle ... 72

Additional resources ... 73

Development Process for Docker-Based Applications ... 74

Development environment for Docker apps .. 74

.NET languages and frameworks for Docker containers .. 75

Development workflow for Docker apps .. 75

Workflow for developing Docker container-based applications .. 75

Step 1. Start coding and create your initial application or service baseline ... 76

Step 2. Create a Dockerfile related to an existing .NET base image .. 77

Step 3. Create your custom Docker images and embed your application or service in them 84

Step 4. Define your services in docker-compose.yml when building a multi-container Docker

application .. 85

Step 5. Build and run your Docker application .. 87

Step 6. Test your Docker application using your local Docker host .. 90

Simplified workflow when developing containers with Visual Studio .. 91

Using PowerShell commands in a Dockerfile to set up Windows Containers ... 92

Designing and Developing Multi-Container and Microservice-Based .NET Applications 94

Designing a microservice-oriented application .. 94

Application specifications ... 94

Development team context ... 95

Choosing an architecture .. 95

Benefits of a microservice-based solution ... 97

Downsides of a microservice-based solution ... 98

vi

External versus internal architecture and design patterns .. 99

The new world: multiple architectural patterns and polyglot microservices.. 100

Creating a simple data-driven CRUD microservice ... 102

Designing a simple CRUD microservice .. 102

Implementing a simple CRUD microservice with ASP.NET Core ... 103

The DB connection string and environment variables used by Docker containers 108

Generating Swagger description metadata from your ASP.NET Core Web API 110

Defining your multi-container application with docker-compose.yml ... 115

Using a database server running as a container .. 126

Implementing event-based communication between microservices (integration events) 130

Using message brokers and services buses for production systems .. 131

Integration events .. 132

The event bus .. 132

Implementing an event bus with RabbitMQ for the development or test environment 135

Implementing a simple publish method with RabbitMQ... 136

Implementing the subscription code with the RabbitMQ API ... 136

Subscribing to events .. 137

Publishing events through the event bus .. 138

Idempotency in update message events .. 145

Deduplicating integration event messages ... 146

Testing ASP.NET Core services and web apps .. 148

Testing in eShopOnContainers ... 151

Implement background tasks in microservices with IHostedService and the BackgroundService class

 ... 153

Registering hosted services in your WebHost or Host ... 154

The IHostedService interface ... 155

Implementing IHostedService with a custom hosted service class deriving from the

BackgroundService base class .. 156

Implement API Gateways with Ocelot .. 159

Architect and design your API Gateways .. 159

Implementing your API Gateways with Ocelot .. 165

Using Kubernetes Ingress plus Ocelot API Gateways .. 176

Additional cross-cutting features in an Ocelot API Gateway ... 178

Tackle Business Complexity in a Microservice with DDD and CQRS Patterns 179

Apply simplified CQRS and DDD patterns in a microservice .. 181

Additional resources ... 182

Apply CQRS and CQS approaches in a DDD microservice in eShopOnContainers 183

CQRS and DDD patterns are not top-level architectures... 183

Implement reads/queries in a CQRS microservice .. 184

vii

Use ViewModels specifically made for client apps, independent from domain model

constraints ... 185

Use Dapper as a micro ORM to perform queries .. 186

Dynamic versus static ViewModels ... 186

Additional resources ... 190

Design a DDD-oriented microservice ... 190

Keep the microservice context boundaries relatively small .. 190

Layers in DDD microservices ... 191

Design a microservice domain model .. 195

The Domain Entity pattern ... 195

Implement a microservice domain model with .NET Core ... 200

Domain model structure in a custom .NET Standard Library ... 200

Structure aggregates in a custom .NET Standard library ... 201

Implement domain entities as POCO classes ... 202

Encapsulate data in the Domain Entities .. 203

Seedwork (reusable base classes and interfaces for your domain model) .. 206

The custom Entity base class ... 206

Repository contracts (interfaces) in the domain model layer .. 208

Additional resources ... 208

Implement value objects ... 209

Important characteristics of value objects ... 210

Value object implementation in C# .. 210

How to persist value objects in the database with EF Core 2.0 ... 212

Persist value objects as owned entity types in EF Core 2.0 ... 213

Additional resources ... 216

Use enumeration classes instead of enum types ... 216

Implement an Enumeration base class .. 217

Additional resources ... 218

Design validations in the domain model layer ... 218

Implement validations in the domain model layer ... 219

Additional resources ... 220

Client-side validation (validation in the presentation layers) .. 221

Additional resources ... 222

Domain events: design and implementation... 222

What is a domain event? ... 223

Domain events versus integration events .. 223

Domain events as a preferred way to trigger side effects across multiple aggregates within the

same domain ... 224

Implement domain events.. 226

viii

Conclusions on domain events... 233

Additional resources ... 233

Design the infrastructure persistence layer .. 234

The Repository pattern .. 234

Additional resources ... 238

Implement the infrastructure persistence layer with Entity Framework Core .. 238

Introduction to Entity Framework Core ... 238

Infrastructure in Entity Framework Core from a DDD perspective ... 239

Implement custom repositories with Entity Framework Core .. 241

EF DbContext and IUnitOfWork instance lifetime in your IoC container ... 243

The repository instance lifetime in your IoC container ... 244

Table mapping .. 244

Implement the Query Specification pattern .. 247

Use NoSQL databases as a persistence infrastructure ... 249

Introduction to Azure Cosmos DB and the native Cosmos DB API ... 250

Implement .NET code targeting MongoDB and Azure Cosmos DB .. 252

Design the microservice application layer and Web API .. 259

Use SOLID principles and Dependency Injection .. 259

Implement the microservice application layer using the Web API ... 260

Use Dependency Injection to inject infrastructure objects into your application layer 260

Implement the Command and Command Handler patterns ... 264

The Command process pipeline: how to trigger a command handler ... 270

Implement the command process pipeline with a mediator pattern (MediatR) 272

Apply cross-cutting concerns when processing commands with the Behaviors in MediatR 277

Implement Resilient Applications .. 281

Handle partial failure ... 281

Strategies to handle partial failure .. 283

Additional resources ... 284

Implement retries with exponential backoff .. 284

Implement resilient Entity Framework Core SQL connections ... 285

Execution strategies and explicit transactions using BeginTransaction and multiple DbContexts285

Additional resources ... 287

Explore custom HTTP call retries with exponential backoff ... 288

Use HttpClientFactory to implement resilient HTTP requests .. 290

Issues with the original HttpClient class available in .NET Core .. 290

What is HttpClientFactory ... 290

Multiple ways to use HttpClientFactory .. 291

How to use Typed Clients with HttpClientFactory .. 291

ix

Additional resources ... 294

Implement HTTP call retries with exponential backoff with HttpClientFactory and Polly policies 294

Add a jitter strategy to the retry policy ... 295

Additional resources ... 295

Implement the Circuit Breaker pattern .. 296

Implement Circuit Breaker pattern with HttpClientFactory and Polly ... 296

Test Http retries and circuit breakers in eShopOnContainers .. 297

Additional resources ... 299

Health monitoring .. 300

Implement health checks in ASP.NET Core services .. 300

Use watchdogs .. 304

Health checks when using orchestrators .. 306

Advanced monitoring: visualization, analysis, and alerts ... 307

Additional resources ... 307

Make secure .NET Microservices and Web Applications .. 308

Implement authentication in .NET microservices and web applications ... 308

Additional resources ... 316

About authorization in .NET microservices and web applications .. 316

Implement role-based authorization ... 317

Implement policy-based authorization ... 318

Additional resources ... 319

Store application secrets safely during development .. 319

Store secrets in environment variables ... 319

Store secrets with the ASP.NET Core Secret Manager .. 320

Use Azure Key Vault to protect secrets at production time .. 320

Additional resources ... 321

Key Takeaways ... 323

1 Introduction

S E C T I O N 1

Introduction

Enterprises are increasingly realizing cost savings, solving deployment problems, and improving

DevOps and production operations by using containers. Microsoft has been releasing container

innovations for Windows and Linux by creating products like Azure Kubernetes Service and Azure

Service Fabric, and by partnering with industry leaders like Docker, Mesosphere, and Kubernetes.

These products deliver container solutions that help companies build and deploy applications at cloud

speed and scale, whatever their choice of platform or tools.

Docker is becoming the de facto standard in the container industry, supported by the most significant

vendors in the Windows and Linux ecosystems. (Microsoft is one of the main cloud vendors

supporting Docker.) In the future, Docker will probably be ubiquitous in any datacenter in the cloud or

on-premises.

In addition, the microservices architecture is emerging as an important approach for distributed

mission-critical applications. In a microservice-based architecture, the application is built on a

collection of services that can be developed, tested, deployed, and versioned independently.

About this guide

This guide is an introduction to developing microservices-based applications and managing them

using containers. It discusses architectural design and implementation approaches using .NET Core

and Docker containers. To make it easier to get started with containers and microservices, the guide

focuses on a reference containerized and microservice-based application that you can explore. The

sample application is available at the eShopOnContainers GitHub repo.

This guide provides foundational development and architectural guidance primarily at a development

environment level with a focus on two technologies: Docker and .NET Core. Our intention is that you

read this guide when thinking about your application design without focusing on the infrastructure

(cloud or on-premises) of your production environment. You will make decisions about your

infrastructure later, when you create your production-ready applications. Therefore, this guide is

intended to be infrastructure agnostic and more development-environment-centric.

After you have studied this guide, your next step would be to learn about production-ready

microservices on Microsoft Azure.

Version

This guide has been revised to cover .NET Core 2.2 version plus many additional updates related to

the same “wave” of technologies (that is. Azure and additional 3rd party technologies) coinciding in

time with .NET Core 2.2. That’s why the book version has also been updated to version 2.2.

https://martinfowler.com/articles/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers

2 Introduction

What this guide does not cover

This guide does not focus on the application lifecycle, DevOps, CI/CD pipelines, or team work. The

complementary guide Containerized Docker Application Lifecycle with Microsoft Platform and Tools

focuses on that subject. The current guide also does not provide implementation details on Azure

infrastructure, such as information on specific orchestrators.

Additional resources

• Containerized Docker Application Lifecycle with Microsoft Platform and Tools

(downloadable e-book)

https://aka.ms/dockerlifecycleebook

Who should use this guide

We wrote this guide for developers and solution architects who are new to Docker-based application

development and to microservices-based architecture. This guide is for you if you want to learn how

to architect, design, and implement proof-of-concept applications with Microsoft development

technologies (with special focus on .NET Core) and with Docker containers.

You will also find this guide useful if you are a technical decision maker, such as an enterprise

architect, who wants an architecture and technology overview before you decide on what approach to

select for new and modern distributed applications.

How to use this guide

The first part of this guide introduces Docker containers, discusses how to choose between .NET Core

and the .NET Framework as a development framework, and provides an overview of microservices.

This content is for architects and technical decision makers who want an overview but don’t need to

focus on code implementation details.

The second part of the guide starts with the Development process for Docker based applications

section. It focuses on development and microservice patterns for implementing applications using

.NET Core and Docker. This section will be of most interest to developers and architects who want to

focus on code and on patterns and implementation details.

Related microservice and container-based reference application:

eShopOnContainers

The eShopOnContainers application is an open-source reference app for .NET Core and microservices

that is designed to be deployed using Docker containers. The application consists of multiple

subsystems, including several e-store UI front ends (a Web MVC app, a Web SPA, and a native mobile

app). It also includes the back-end microservices and containers for all required server-side

operations.

The purpose of the application is to showcase architectural patterns. IT IS NOT A PRODUCTION-

READY TEMPLATE to start real-world applications. In fact, the application is in a permanent beta

state, as it’s also used to test new potentially interesting technologies as they show up.

https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook

3 Introduction

Send us your feedback!

We wrote this guide to help you understand the architecture of containerized applications and

microservices in .NET. The guide and related reference application will be evolving, so we welcome

your feedback! If you have comments about how this guide can be improved, please send them to:

dotnet-architecture-ebooks-feedback@service.microsoft.com

mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com

4 Introduction to Containers and Docker

S E C T I O N 2

Introduction to Containers
and Docker

Containerization is an approach to software development in which an application or service, its

dependencies, and its configuration (abstracted as deployment manifest files) are packaged together

as a container image. The containerized application can be tested as a unit and deployed as a

container image instance to the host operating system (OS).

Just as shipping containers allow goods to be transported by ship, train, or truck regardless of the

cargo inside, software containers act as a standard unit of software deployment that can contain

different code and dependencies. Containerizing software this way enables developers and IT

professionals to deploy them across environments with little or no modification.

Containers also isolate applications from each other on a shared OS. Containerized applications run

on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore have a

significantly smaller footprint than virtual machine (VM) images.

Each container can run a whole web application or a service, as shown in Figure 2-1. In this example,

Docker host is a container host, and App1, App2, Svc 1, and Svc 2 are containerized applications or

services.

5 Introduction to Containers and Docker

Figure 2-1. Multiple containers running on a container host

Another benefit of containerization is scalability. You can scale out quickly by creating new containers

for short-term tasks. From an application point of view, instantiating an image (creating a container) is

similar to instantiating a process like a service or web app. For reliability, however, when you run

multiple instances of the same image across multiple host servers, you typically want each container

(image instance) to run in a different host server or VM in different fault domains.

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the

whole application lifecycle workflow. The most important benefit is the environment’s isolation

provided between Dev and Ops.

What is Docker?
Docker is an open-source project for automating the deployment of applications as portable, self-

sufficient containers that can run on the cloud or on-premises. Docker is also a company that

promotes and evolves this technology, working in collaboration with cloud, Linux, and Windows

vendors, including Microsoft.

Figure 2-2. Docker deploys containers at all layers of the hybrid cloud

Docker image containers can run natively on Linux and Windows. However, Windows images can run

only on Windows hosts and Linux images can run on Linux hosts and Windows hosts (using a Hyper-V

Linux VM, so far), where host means a server or a VM.

Developers can use development environments on Windows, Linux, or macOS. On the development

computer, the developer runs a Docker host where Docker images are deployed, including the app

and its dependencies. Developers who work on Linux or on the Mac use a Docker host that is Linux

based, and they can create images only for Linux containers. (Developers working on the Mac can edit

code or run the Docker CLI from macOS, but as of the time of this writing, containers don’t run

directly on macOS.) Developers who work on Windows can create images for either Linux or Windows

Containers.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/

6 Introduction to Containers and Docker

To host containers in development environments and provide additional developer tools, Docker

ships Docker Community Edition (CE) for Windows or for macOS. These products install the necessary

VM (the Docker host) to host the containers. Docker also makes available Docker Enterprise Edition

(EE), which is designed for enterprise development and is used by IT teams who build, ship, and run

large business-critical applications in production.

To run Windows Containers, there are two types of runtimes:

• Windows Server Containers provide application isolation through process and namespace

isolation technology. A Windows Server Container shares a kernel with the container host and

with all containers running on the host.

• Hyper-V Containers expand on the isolation provided by Windows Server Containers by running

each container in a highly optimized virtual machine. In this configuration, the kernel of the

container host isn’t shared with the Hyper-V Containers, providing better isolation.

The images for these containers are created the same way and function the same. The difference is in

how the container is created from the image running a Hyper-V Container requires an extra

parameter. For details, see Hyper-V Containers.

Comparing Docker containers with virtual machines

Figure 2-3 shows a comparison between VMs and Docker containers.

Virtual Machines Docker Containers

Virtual machines include the application, the

required libraries or binaries, and a full guest

operating system. Full virtualization requires

more resources than containerization.

Containers include the application and all its

dependencies. However, they share the OS kernel

with other containers, running as isolated

processes in user space on the host operating

system. (Except in Hyper-V containers, where each

container runs inside of a special virtual machine

per container.)

Figure 2-3. Comparison of traditional virtual machines to Docker containers

https://www.docker.com/community-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://docs.microsoft.com/virtualization/windowscontainers/manage-containers/hyperv-container

7 Introduction to Containers and Docker

Because containers require far fewer resources (for example, they don’t need a full OS), they’re easy to

deploy and they start fast. This allows you to have higher density, meaning that it allows you to run

more services on the same hardware unit, thereby reducing costs.

As a side effect of running on the same kernel, you get less isolation than VMs.

The main goal of an image is that it makes the environment (dependencies) the same across different

deployments. This means that you can debug it on your machine and then deploy it to another

machine with the same environment guaranteed.

A container image is a way to package an app or service and deploy it in a reliable and reproducible

way. You could say that Docker isn’t only a technology but also a philosophy and a process.

When using Docker, you won’t hear developers say, “It works on my machine, why not in production?”

They can simply say, “It runs on Docker”, because the packaged Docker application can be executed

on any supported Docker environment, and it runs the way it was intended to on all deployment

targets (such as Dev, QA, staging, and production).

A simple analogy

Perhaps a simple analogy can help getting the grasp of the core concept of Docker.

Let’s go back in time to the 1950s for a moment. There were no word processors, and the

photocopiers were used everywhere (kind of).

Imagine you’re responsible for quickly issuing batches of letters as required, to mail them to

customers, using real paper and envelopes, to be delivered physically to each customer’s address

(there was no email back then).

At some point, you realize the letters are just a composition of a large set of paragraphs, which are

picked and arranged as needed, according to the purpose of the letter, so you devise a system to

issue letters quickly, expecting to get a hefty raise.

The system is simple:

1. You begin with a deck of transparent sheets containing one paragraph each.

2. To issue a set of letters, you pick the sheets with the paragraphs you need, then you stack and

align them so they look and read fine.

3. Finally, you place the set in the photocopier and press start to produce as many letters as

required.

So, simplifying, that’s the core idea of Docker.

In Docker, each layer is the resulting set of changes that happen to the filesystem after executing a

command, such as, installing a program.

So, when you “look” at the filesystem after the layer has been copied, you see all the files, included the

layer when the program was installed.

You can think of an image as an auxiliary read-only hard disk ready to be installed in a “computer”

where the operating system is already installed.

8 Introduction to Containers and Docker

Similarly, you can think of a container as the “computer” with the image hard disk installed. The

container, just like a computer, can be powered on or off.

Docker terminology
This section lists terms and definitions you should be familiar with before getting deeper into Docker.

For further definitions, see the extensive glossary provided by Docker .

Container image: A package with all the dependencies and information needed to create a container.

An image includes all the dependencies (such as frameworks) plus deployment and execution

configuration to be used by a container runtime. Usually, an image derives from multiple base images

that are layers stacked on top of each other to form the container’s filesystem. An image is immutable

once it has been created.

Dockerfile: A text file that contains instructions for how to build a Docker image. It’s like a batch

script, the first line states the base image to begin with and then follow the instructions to install

required programs, copy files and so on, until you get the working environment you need.

Build: The action of building a container image based on the information and context provided by its

Dockerfile, plus additional files in the folder where the image is built. You can build images with the

Docker docker build command.

Container: An instance of a Docker image. A container represents the execution of a single

application, process, or service. It consists of the contents of a Docker image, an execution

environment, and a standard set of instructions. When scaling a service, you create multiple instances

of a container from the same image. Or a batch job can create multiple containers from the same

image, passing different parameters to each instance.

Volumes: Offer a writable filesystem that the container can use. Since images are read-only but most

programs need to write to the filesystem, volumes add a writable layer, on top of the container image,

so the programs have access to a writable filesystem. The program doesn’t know it is accessing a

layered filesystem, it is just the filesystem as usual. Volumes live in the host system and are managed

by Docker.

Tag: A mark or label you can apply to images so that different images or versions of the same image

(depending on the version number or the target environment) can be identified.

Multi-stage Build: Is a feature, since Docker 17.05 or higher, that helps to reduce the size of the final

images. In a few sentences, with multi-stage build you can use, for example, a large base image,

containing the SDK, for compiling and publishing the application and then using the publishing folder

with a small runtime-only base image, to produce a much smaller final image

Repository (repo): A collection of related Docker images, labeled with a tag that indicates the image

version. Some repos contain multiple variants of a specific image, such as an image containing SDKs

(heavier), an image containing only runtimes (lighter), etc. Those variants can be marked with tags. A

single repo can contain platform variants, such as a Linux image and a Windows image.

Registry: A service that provides access to repositories. The default registry for most public images is

Docker Hub (owned by Docker as an organization). A registry usually contains repositories from

multiple teams. Companies often have private registries to store and manage images they’ve created.

Azure Container Registry is another example.

https://docs.docker.com/glossary/
https://hub.docker.com/

9 Introduction to Containers and Docker

Multi-arch image: For multi-architecture, is a feature that simplifies the selection of the appropriate

image, according to the platform where Docker is running, e.g. when a Dockerfile requests a base

image FROM mcr.microsoft.com/dotnet/core/sdk:2.2 from the registry it actually gets 2.2-sdk-

nanoserver-1709, 2.2-sdk-nanoserver-1803, 2.2-sdk-nanoserver-1809 or 2.2-sdk-stretch,

depending on the operating system and version where Docker is running.

Docker Hub: A public registry to upload images and work with them. Docker Hub provides Docker

image hosting, public or private registries, build triggers and web hooks, and integration with GitHub

and Bitbucket.

Azure Container Registry: A public resource for working with Docker images and its components in

Azure. This provides a registry that is close to your deployments in Azure and that gives you control

over access, making it possible to use your Azure Active Directory groups and permissions.

Docker Trusted Registry (DTR): A Docker registry service (from Docker) that can be installed on-

premises so it lives within the organization’s datacenter and network. It is convenient for private

images that should be managed within the enterprise. Docker Trusted Registry is included as part of

the Docker Datacenter product. For more information, see Docker Trusted Registry (DTR).

Docker Community Edition (CE): Development tools for Windows and macOS for building, running,

and testing containers locally. Docker CE for Windows provides development environments for both

Linux and Windows Containers. The Linux Docker host on Windows is based on a Hyper-V virtual

machine. The host for Windows Containers is directly based on Windows. Docker CE for Mac is based

on the Apple Hypervisor framework and the xhyve hypervisor, which provides a Linux Docker host

virtual machine on Mac OS X. Docker CE for Windows and for Mac replaces Docker Toolbox, which

was based on Oracle VirtualBox.

Docker Enterprise Edition (EE): An enterprise-scale version of Docker tools for Linux and Windows

development.

Compose: A command-line tool and YAML file format with metadata for defining and running multi-

container applications. You define a single application based on multiple images with one or more

.yml files that can override values depending on the environment. After you have created the

definitions, you can deploy the whole multi-container application with a single command (docker-

compose up) that creates a container per image on the Docker host.

Cluster: A collection of Docker hosts exposed as if it were a single virtual Docker host, so that the

application can scale to multiple instances of the services spread across multiple hosts within the

cluster. Docker clusters can be created with Kubernetes, Azure Service Fabric, Docker Swarm and

Mesosphere DC/OS.

Orchestrator: A tool that simplifies management of clusters and Docker hosts. Orchestrators enable

you to manage their images, containers, and hosts through a command line interface (CLI) or a

graphical UI. You can manage container networking, configurations, load balancing, service discovery,

high availability, Docker host configuration, and more. An orchestrator is responsible for running,

distributing, scaling, and healing workloads across a collection of nodes. Typically, orchestrator

products are the same products that provide cluster infrastructure, like Kubernetes and Azure Service

Fabric, among other offerings in the market.

https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/cloud-platform/server-virtualization
https://github.com/mist64/xhyve

10 Introduction to Containers and Docker

Docker containers, images, and registries
When using Docker, a developer creates an app or service and packages it and its dependencies into

a container image. An image is a static representation of the app or service and its configuration and

dependencies.

To run the app or service, the app’s image is instantiated to create a container, which will be running

on the Docker host. Containers are initially tested in a development environment or PC.

Developers should store images in a registry, which acts as a library of images and is needed when

deploying to production orchestrators. Docker maintains a public registry via Docker Hub; other

vendors provide registries for different collections of images, including Azure Container Registry.

Alternatively, enterprises can have a private registry on-premises for their own Docker images.

Figure 2-4 shows how images and registries in Docker relate to other components. It also shows the

multiple registry offerings from vendors.

Figure 2-4. Taxonomy of Docker terms and concepts

Putting images in a registry lets you store static and immutable application bits, including all their

dependencies at a framework level. Those images can then be versioned and deployed in multiple

environments and therefore provide a consistent deployment unit.

Private image registries, either hosted on-premises or in the cloud, are recommended when:

• Your images must not be shared publicly due to confidentiality.

• You want to have minimum network latency between your images and your chosen deployment

environment. For example, if your production environment is Azure cloud, you probably want to

store your images in Azure Container Registry so that network latency will be minimal. In a

https://hub.docker.com/
https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/container-registry/

11 Introduction to Containers and Docker

similar way, if your production environment is on-premises, you might want to have an on-

premises Docker Trusted Registry available within the same local network.

12 Choosing Between .NET Core and .NET Framework for Docker Containers

S E C T I O N

3

Choosing Between .NET
Core and .NET Framework
for Docker Containers

There are two supported frameworks for building server-side containerized Docker applications with

.NET: .NET Framework and .NET Core. They share many .NET platform components, and you can share

code across the two. However, there are fundamental differences between them, and which

framework you use will depend on what you want to accomplish. This section provides guidance on

when to choose each framework.

General guidance
This section provides a summary of when to choose .NET Core or .NET Framework. We provide more

details about these choices in the sections that follow.

You should use .NET Core, with Linux or Windows Containers, for your containerized Docker server

application when:

• You have cross-platform needs. For example, you want to use both Linux and Windows

Containers.

• Your application architecture is based on microservices.

• You need to start containers fast and want a small footprint per container to achieve better

density or more containers per hardware unit in order to lower your costs.

In short, when you create new containerized .NET applications, you should consider .NET Core as the

default choice. It has many benefits and fits best with the containers philosophy and style of working.

An additional benefit of using .NET Core is that you can run side by side .NET versions for applications

within the same machine. This benefit is more important for servers or VMs that do not use

containers, because containers isolate the versions of .NET that the app needs. (As long as they are

compatible with the underlying OS.)

You should use .NET Framework for your containerized Docker server application when:

• Your application currently uses .NET Framework and has strong dependencies on Windows.

• You need to use Windows APIs that are not supported by .NET Core.

https://www.microsoft.com/net/download

13 Choosing Between .NET Core and .NET Framework for Docker Containers

• You need to use third-party .NET libraries or NuGet packages that are not available for .NET

Core.

Using .NET Framework on Docker can improve your deployment experiences by minimizing

deployment issues. This “lift and shift” scenario is important for containerizing legacy applications that

were originally developed with the traditional .NET Framework, like ASP.NET WebForms, MVC web

apps or WCF (Windows Communication Foundation) services.

Additional resources

• eBook: Modernize existing .NET Framework applications with Azure and Windows

Containers

https://aka.ms/liftandshiftwithcontainersebook

• Sample apps: Modernization of legacy ASP.NET web apps by using Windows Containers

https://aka.ms/eshopmodernizing

When to choose .NET Core for Docker containers
The modularity and lightweight nature of .NET Core makes it perfect for containers. When you deploy

and start a container, its image is far smaller with .NET Core than with .NET Framework. In contrast, to

use .NET Framework for a container, you must base your image on the Windows Server Core image,

which is a lot heavier than the Windows Nano Server or Linux images that you use for .NET Core.

Additionally, .NET Core is cross-platform, so you can deploy server apps with Linux or Windows

container images. However, if you are using the traditional .NET Framework, you can only deploy

images based on Windows Server Core.

The following is a more detailed explanation of why to choose .NET Core.

Developing and deploying cross platform

Clearly, if your goal is to have an application (web app or service) that can run on multiple platforms

supported by Docker (Linux and Windows), the right choice is .NET Core, because .NET Framework

only supports Windows.

.NET Core also supports macOS as a development platform. However, when you deploy containers to

a Docker host, that host must (currently) be based on Linux or Windows. For example, in a

development environment, you could use a Linux VM running on a Mac.

Visual Studio provides an integrated development environment (IDE) for Windows and supports

Docker development.

Visual Studio for Mac is an IDE, evolution of Xamarin Studio, that runs on macOS and supports

Docker-based application development. This should be the preferred choice for developers working in

Mac machines who also want to use a powerful IDE.

You can also use Visual Studio Code (VS Code) on macOS, Linux, and Windows. VS Code fully

supports .NET Core, including IntelliSense and debugging. Because VS Code is a lightweight editor,

you can use it to develop containerized apps on the Mac in conjunction with the Docker CLI and the

.NET Core command-line interface (CLI). You can also target .NET Core with most third-party editors

https://aka.ms/liftandshiftwithcontainersebook
https://www.visualstudio.com/vs/
https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/
https://docs.microsoft.com/dotnet/core/tools/

14 Choosing Between .NET Core and .NET Framework for Docker Containers

like Sublime, Emacs, vi, and the open-source OmniSharp project, which also provides IntelliSense

support.

In addition to the IDEs and editors, you can use the .NET Core CLI tools for all supported platforms.

Using containers for new (“green-field”) projects

Containers are commonly used in conjunction with a microservices architecture, although they can

also be used to containerize web apps or services that follow any architectural pattern. You can use

.NET Framework on Windows Containers, but the modularity and lightweight nature of .NET Core

makes it perfect for containers and microservices architectures. When you create and deploy a

container, its image is far smaller with .NET Core than with .NET Framework.

Creating and deploying microservices on containers

You could use the traditional .NET Framework for building microservices-based applications (without

containers) by using plain processes. That way, because the .NET Framework is already installed and

shared across processes, processes are light and fast to start. However, if you are using containers, the

image for the traditional .NET Framework is also based on Windows Server Core and that makes it too

heavy for a microservices-on-containers approach.

In contrast, .NET Core is the best candidate if you are embracing a microservices-oriented system that

is based on containers, because .NET Core is lightweight. In addition, its related container images,

either the Linux image or the Windows Nano image, are lean and small making containers light and

fast to start.

A microservice is meant to be as small as possible: to be light when spinning up, to have a small

footprint, to have a small Bounded Context (check DDD, Domain-Driven Design), to represent a small

area of concerns, and to be able to start and stop fast. For those requirements, you will want to use

small and fast-to-instantiate container images like the .NET Core container image.

A microservices architecture also allows you to mix technologies across a service boundary. This

enables a gradual migration to .NET Core for new microservices that work in conjunction with other

microservices or with services developed with Node.js, Python, Java, GoLang, or other technologies.

Deploying high density in scalable systems

When your container-based system needs the best possible density, granularity, and performance,

.NET Core and ASP.NET Core are your best options. ASP.NET Core is up to ten times faster than

ASP.NET in the traditional .NET Framework, and it leads other popular industry technologies for

microservices, such as Java servlets, Go, and Node.js.

This is especially relevant for microservices architectures, where you could have hundreds of

microservices (containers) running. With ASP.NET Core images (based on the .NET Core runtime) on

Linux or Windows Nano, you can run your system with a much lower number of servers or VMs,

ultimately saving costs in infrastructure and hosting.

https://docs.microsoft.com/dotnet/core/tools/
https://en.wikipedia.org/wiki/Domain-driven_design

15 Choosing Between .NET Core and .NET Framework for Docker Containers

When to choose .NET Framework for Docker

containers
While .NET Core offers significant benefits for new applications and application patterns, .NET

Framework will continue to be a good choice for many existing scenarios.

Migrating existing applications directly to a Windows Server container

You might want to use Docker containers just to simplify deployment, even if you are not creating

microservices. For example, perhaps you want to improve your DevOps workflow with Docker—

containers can give you better isolated test environments and can also eliminate deployment issues

caused by missing dependencies when you move to a production environment. In cases like these,

even if you are deploying a monolithic application, it makes sense to use Docker and Windows

Containers for your current .NET Framework applications.

In most cases for this scenario, you will not need to migrate your existing applications to .NET Core;

you can use Docker containers that include the traditional .NET Framework. However, a recommended

approach is to use .NET Core as you extend an existing application, such as writing a new service in

ASP.NET Core.

Using third-party .NET libraries or NuGet packages not available for

.NET Core

Third-party libraries are quickly embracing the .NET Standard, which enables code sharing across all

.NET flavors, including .NET Core. With the .NET Standard Library 2.0 and beyond the API surface

compatibility across different frameworks has become significantly larger and in .NET Core 2.x

applications can also directly reference existing .NET Framework libraries (see .NET Framework 4.6.1

supporting .NET Standard 2.0).

In addition, the Windows Compatibility Pack was released on NOV-2017 to extend the API surface

available for .NET Standard 2.0 on Windows. This pack allows recompiling most existing code to .NET

Standard 2.x with little or no modification, to run on Windows.

However, even with that exceptional progression since .NET Standard 2.0 and .NET Core 2.1, there

might be cases where certain NuGet packages need Windows to run and might not support .NET

Core. If those packages are critical for your application, then you will need to use .NET Framework on

Windows Containers.

Using .NET technologies not available for .NET Core

Some .NET Framework technologies are not available in the current version of .NET Core (version 2.2

as of this writing). Some of them will be available in later .NET Core releases (.NET Core 2.x), but others

do not apply to the new application patterns targeted by .NET Core and might never be available.

The following list shows most of the technologies that are not available in .NET Core 2.x:

• ASP.NET Web Forms. This technology is only available on .NET Framework. Currently there are

no plans to bring ASP.NET Web Forms to .NET Core.

https://docs.microsoft.com/dotnet/standard/net-standard
https://github.com/dotnet/standard/blob/master/docs/planning/netstandard-2.0/README.md#net-framework-461-supporting-net-standard-20
https://github.com/dotnet/standard/blob/master/docs/planning/netstandard-2.0/README.md#net-framework-461-supporting-net-standard-20
https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack

16 Choosing Between .NET Core and .NET Framework for Docker Containers

• WCF services. Even when a WCF-Client library is available to consume WCF services from .NET

Core, as of mid-2017, the WCF server implementation is only available on .NET Framework. This

scenario might be considered for future releases of .NET Core, there are even some APIs

considered for inclusion in the Windows Compatibility Pack.

• Workflow-related services. Windows Workflow Foundation (WF), Workflow Services (WCF + WF

in a single service), and WCF Data Services (formerly known as ADO.NET Data Services) are only

available on .NET Framework. There are currently no plans to bring them to .NET Core.

In addition to the technologies listed in the official .NET Core roadmap, other features might be

ported to .NET Core. For a full list, look at the items tagged as port-to-core on the CoreFX GitHub site.

Note that this list does not represent a commitment from Microsoft to bring those components to

.NET Core — the items simply capture requests from the community. If you care about any of the

components listed above, consider participating in the discussions on GitHub so that your voice can

be heard. And if you think something is missing, please file a new issue in the CoreFX repository.

Even though .NET Core 3 (at the time of this writing this is in the works) will include support for a lot

of existing .NET Framework APIs, these are desktop oriented so, currently, they are of no use in the

container world.

Using a platform or API that does not support .NET Core

Some Microsoft or third-party platforms do not support .NET Core. For example, some Azure services

provide an SDK that is not yet available for consumption on .NET Core. This is temporary, because all

Azure services will eventually use .NET Core. For example, the Azure DocumentDB SDK for .NET Core

was released as a preview on November 16, 2016, but it is now generally available (GA) as a stable

version.

In the meantime, if any platform or service in Azure still doesn’t support .NET Core with its client API,

you can use the equivalent REST API from the Azure service or the client SDK on .NET Framework.

Additional resources

• .NET Core Guide

https://docs.microsoft.com/dotnet/core/index

• Porting from .NET Framework to .NET Core

https://docs.microsoft.com/dotnet/core/porting/index

• .NET Core on Docker Guide https://docs.microsoft.com/dotnet/core/docker/intro-net-docker

• .NET Components Overview

https://docs.microsoft.com/dotnet/standard/components

Decision table: .NET frameworks to use for Docker
The following decision table summarizes whether to use .NET Framework or .NET Core. Remember

that for Linux containers, you need Linux-based Docker hosts (VMs or servers) and that for Windows

Containers you need Windows Server based Docker hosts (VMs or servers).

https://github.com/dotnet/wcf
https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack
https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/1.2.1
https://docs.microsoft.com/dotnet/core/
https://docs.microsoft.com/dotnet/core/porting/
https://docs.microsoft.com/dotnet/core/docker/intro-net-docker
https://docs.microsoft.com/dotnet/standard/components

17 Choosing Between .NET Core and .NET Framework for Docker Containers

IMPORTANT: Your development machines will run one Docker host, either Linux or Windows. Related

microservices that you want to run and test together in one solution will all need to run on the same

container platform.

Architecture / App Type Linux Containers Windows Containers

Microservices on containers .NET Core .NET Core

Monolithic app .NET Core .NET Framework

.NET Core

Best-in-class performance

and scalability

.NET Core .NET Core

Windows Server legacy app

(“brown-field”) migration to

containers

- .NET Framework

New container-based

development (“green-field”)

.NET Core .NET Core

ASP.NET Core .NET Core .NET Core (recommended)

.NET Framework

ASP.NET 4 (MVC 5, Web API

2, and Web Forms

- .NET Framework

SignalR Services .NET Core 2.1 or higher .NET Framework

.NET Core 2.1 or higher

WCF, WF, and other legacy

frameworks

WCF in .NET Core (client library

only)

.NET Framework

WCF in .NET Core (client library

only)

Consume Azure Services .NET Core (eventually all Azure

services will provide client

SDKs for .NET Core)

.NET Framework

.NET Core (eventually all Azure

services will provide client

SDKs for .NET Core)

What OS to target with .NET containers
Given the diversity of operating systems supported by Docker and the differences between .NET

Framework and .NET Core, you should target a specific OS and specific versions depending on the

framework you are using.

18 Choosing Between .NET Core and .NET Framework for Docker Containers

For Windows, you can use Windows Server Core or Windows Nano Server. These Windows versions

provide different characteristics (IIS in Windows Server Core versus a self-hosted web server like

Kestrel in Nano Server) that might be needed by .NET Framework or .NET Core, respectively.

For Linux, multiple distros are available and supported in official .NET Docker images (like Debian).

In Figure 3-1 you can see the possible OS version depending on the .NET framework used.

Figure 3-1. Operating systems to target depending on versions of the .NET framework

You can also create your own Docker image in cases where you want to use a different Linux distro or

where you want an image with versions not provided by Microsoft. For example, you might create an

image with ASP.NET Core running on the traditional .NET Framework and Windows Server Core, which

is a not-so-common scenario for Docker.

When you add the image name to your Dockerfile file, you can select the operating system and

version depending on the tag you use, as in the following examples:

Image Comments

mcr.microsoft.com/dotnet/core/runtime:2.2 .NET Core 2.2 multi-architecture: Supports Linux

and Windows Nano Server depending on the

Docker host.

mcr.microsoft.com/dotnet/core/aspnet:2.2

ASP.NET Core 2.2 multi-architecture: Supports

Linux and Windows Nano Server depending on the

Docker host. The aspnetcore image has a few

optimizations for ASP.NET Core.

mcr.microsoft.com/dotnet/core/aspnet:2.2-

alpine

.NET Core 2.2 runtime-only on Linux Alpine distro

mcr.microsoft.com/dotnet/core/aspnet:2.2-

nanoserver-1803

.NET Core 2.2 runtime-only on Windows Nano

Server (Windows Server version 1803)

19 Choosing Between .NET Core and .NET Framework for Docker Containers

Official .NET Docker images
The Official .NET Docker images are Docker images created and optimized by Microsoft. They are

publicly available in the Microsoft repositories on Docker Hub. Each repository can contain multiple

images, depending on .NET versions, and depending on the OS and versions (Linux Debian, Linux

Alpine, Windows Nano Server, Windows Server Core, etc.).

Since .NET Core 2.1, all the .NET Core images, including for ASP.NET Core are available at Docker Hub

at the .NET Core image repo: https://hub.docker.com/_/microsoft-dotnet-core/

Most image repos provide extensive tagging to help you select not just a specific framework version,

but also to choose an OS (Linux distro or Windows version).

.NET Core and Docker image optimizations for development versus

production

When building Docker images for developers, Microsoft focused on the following main scenarios:

• Images used to develop and build .NET Core apps.

• Images used to run .NET Core apps.

Why multiple images? When developing, building, and running containerized applications, you usually

have different priorities. By providing different images for these separate tasks, Microsoft helps

optimize the separate processes of developing, building, and deploying apps.

During development and build

During development, what is important is how fast you can iterate changes, and the ability to debug

the changes. The size of the image is not as important as the ability to make changes to your code

and see the changes quickly. Some tools and “build-agent containers”, use the development .NET

Core image (mcr.microsoft.com/dotnet/core/sdk:2.2) during development and build process. When

building inside a Docker container, the important aspects are the elements that are needed in order to

compile your app. This includes the compiler and any other .NET dependencies.

Why is this type of build image important? You do not deploy this image to production. Instead, it is

an image you use to build the content you place into a production image. This image would be used

in your continuous integration (CI) environment or build environment when using Docker Multi-stage

builds.

In production

What is important in production is how fast you can deploy and start your containers based on a

production .NET Core image. Therefore, the runtime-only image based on

mcr.microsoft.com/dotnet/core/aspnet:2.2 is small so that it can travel quickly across the network from

your Docker registry to your Docker hosts. The contents are ready to run, enabling the fastest time

from starting the container to processing results. In the Docker model, there is no need for

compilation from C# code, as there is when you run dotnet build or dotnet publish when using the

build container.

https://hub.docker.com/u/microsoft/

20 Choosing Between .NET Core and .NET Framework for Docker Containers

In this optimized image you put only the binaries and other content needed to run the application.

For example, the content created by dotnet publish contains only the compiled .NET binaries, images,

.js, and .css files. Over time, you will see images that contain pre-jitted (the compilation from IL to

native that occurs at runtime) packages.

Although there are multiple versions of the .NET Core and ASP.NET Core images, they all share one or

more layers, including the base layer. Therefore, the amount of disk space needed to store an image is

small; it consists only of the delta between your custom image and its base image. The result is that it

is quick to pull the image from your registry.

When you explore the .NET image repositories at Docker Hub, you will find multiple image versions

classified or marked with tags. These tags help to decide which one to use, depending on the version

you need, like those in the following table:

Image Comments

mcr.microsoft.com/dotnet/core/aspnet:2.2 ASP.NET Core, with runtime only and ASP.NET

Core optimizations, on Linux and Windows

(multi-arch)

mcr.microsoft.com/dotnet/core/sdk:2.2 .NET Core, with SDKs included, on Linux and

Windows (multi-arch)

21 Architecting container and microservice-based applications

S E C T I O N

4

Architecting container and
microservice-based
applications

Microservices offer great benefits but also raise huge new challenges. Microservice architecture patterns

are fundamental pillars when creating a microservice-based application.

Earlier in this guide, you learned basic concepts about containers and Docker. That was the minimum

information you needed to get started with containers. Although, even when containers are enablers

and a great fit for microservices, they aren’t mandatory for a microservice architecture and many

architectural concepts in this architecture section could be applied without containers, too. However,

this guidance focuses on the intersection of both due to the already introduced importance of

containers.

Enterprise applications can be complex and are often composed of multiple services instead of a

single service-based application. For those cases, you need to understand additional architectural

approaches, such as the microservices and certain Domain-Driven Design (DDD) patterns plus

container orchestration concepts. Note that this chapter describes not just microservices on

containers, but any containerized application, as well.

Container design principles

In the container model, a container image instance represents a single process. By defining a

container image as a process boundary, you can create primitives that can be used to scale the

process or to batch it.

When you design a container image, you’ll see an ENTRYPOINT definition in the Dockerfile. This

defines the process whose lifetime controls the lifetime of the container. When the process completes,

the container lifecycle ends. Containers might represent long-running processes like web servers, but

can also represent short-lived processes like batch jobs, which formerly might have been

implemented as Azure WebJobs.

If the process fails, the container ends, and the orchestrator takes over. If the orchestrator was

configured to keep five instances running and one fails, the orchestrator will create another container

instance to replace the failed process. In a batch job, the process is started with parameters. When the

process completes, the work is complete. This guidance drills-down on orchestrators, later on.

https://docs.docker.com/engine/reference/builder/#entrypoint
https://github.com/Azure/azure-webjobs-sdk/wiki

22 Architecting container and microservice-based applications

You might find a scenario where you want multiple processes running in a single container. For that

scenario, since there can be only one entry point per container, you could run a script within the

container that launches as many programs as needed. For example, you can use Supervisor or a

similar tool to take care of launching multiple processes inside a single container. However, even

though you can find architectures that hold multiple processes per container, that approach isn’t very

common.

Containerizing monolithic applications
You might want to build a single, monolithically deployed web application or service and deploy it as

a container. The application itself might not be internally monolithic, but structured as several

libraries, components, or even layers (application layer, domain layer, data-access layer, etc.).

Externally, however, it’s a single container—a single process, a single web application, or a single

service.

To manage this model, you deploy a single container to represent the application. To increase

capacity, you scale out, that is, just add more copies with a load balancer in front. The simplicity

comes from managing a single deployment in a single container or VM.

Figure 4-1. Example of the architecture of a containerized monolithic application

You can include multiple components, libraries, or internal layers in each container, as illustrated in

Figure 4-1. However, this monolithic pattern might conflict with the container principle “a container

does one thing, and does it in one process”, but might be ok for some cases.

The downside of this approach becomes evident if the application grows, requiring it to scale. If the

entire application can scale, it isn’t really a problem. However, in most cases, just a few parts of the

application are the choke points that requiring scaling, while other components are used less.

For example, in a typical e-commerce application, you likely need to scale the product information

subsystem, because many more customers browse products than purchase them. More customers use

their basket than use the payment pipeline. Fewer customers add comments or view their purchase

history. And you might have only a handful of employees, that need to manage the content and

http://supervisord.org/

23 Architecting container and microservice-based applications

marketing campaigns. If you scale the monolithic design, all the code for these different tasks is

deployed multiple times and scaled at the same grade.

There are multiple ways to scale an application-horizontal duplication, splitting different areas of the

application, and partitioning similar business concepts or data. But, in addition to the problem of

scaling all components, changes to a single component require complete retesting of the entire

application, and a complete redeployment of all the instances.

However, the monolithic approach is common, because the development of the application is initially

easier than for microservices approaches. Thus, many organizations develop using this architectural

approach. While some organizations have had good enough results, others are hitting limits. Many

organizations designed their applications using this model because tools and infrastructure made it

too difficult to build service-oriented architectures (SOA) years ago, and they did not see the need-

until the application grew.

From an infrastructure perspective, each server can run many applications within the same host and

have an acceptable ratio of efficiency in resources usage, as shown in Figure 4-2.

Figure 4-2. Monolithic approach: Host running multiple apps, each app running as a container

Monolithic applications in Microsoft Azure can be deployed using dedicated VMs for each instance.

Additionally, using Azure virtual machine scale sets, you can easily scale the VMs. Azure App Service

can also run monolithic applications and easily scale instances without requiring you to manage the

VMs. Since 2016, Azure App Services can run single instances of Docker containers as well, simplifying

deployment.

As a QA environment or a limited production environment, you can deploy multiple Docker host VMs

and balance them using the Azure balancer, as shown in Figure 4-3. This lets you manage scaling with

a coarse-grain approach, because the whole application lives within a single container.

https://azure.microsoft.com/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/services/app-service/

24 Architecting container and microservice-based applications

Figure 4-3. Example of multiple hosts scaling up a single container application

Deployment to the various hosts can be managed with traditional deployment techniques. Docker

hosts can be managed with commands like docker run or docker-compose performed manually, or

through automation such as continuous delivery (CD) pipelines.

Deploying a monolithic application as a container

There are benefits to using containers to manage monolithic application deployments. Scaling

container instances is far faster and easier than deploying additional VMs. Even if you use virtual

machine scale sets, VMs take time to start. When deployed as traditional application instances instead

of containers, the configuration of the application is managed as part of the VM, which isn’t ideal.

Deploying updates as Docker images is far faster and network efficient. Docker images typically start

in seconds, which speeds rollouts. Tearing down a Docker image instance is as easy as issuing a

docker stop command, and typically completes in less than a second.

Because containers are immutable by design, you never need to worry about corrupted VMs. In

contrast, update scripts for a VM might forget to account for some specific configuration or file left on

disk.

While monolithic applications can benefit from Docker, we’re touching only on the benefits.

Additional benefits of managing containers come from deploying with container orchestrators, which

manage the various instances and lifecycle of each container instance. Breaking up the monolithic

application into subsystems that can be scaled, developed, and deployed individually is your entry

point into the realm of microservices.

Publishing a single-container-based application to Azure App Service

Whether you want to get validation of a container deployed to Azure or when an application is simply

a single-container application, Azure App Service provides a great way to provide scalable single-

container-based services. Using Azure App Service is simple. It provides great integration with Git to

make it easy to take your code, build it in Visual Studio, and deploy it directly to Azure.

25 Architecting container and microservice-based applications

Figure 4-4. Publishing a single-container application to Azure App Service from Visual Studio

Without Docker, if you needed other capabilities, frameworks, or dependencies that aren’t supported

in Azure App Service, you had to wait until the Azure team updated those dependencies in App

Service. Or you had to switch to other services like Azure Cloud Services or VMs, where you had

further control and you could install a required component or framework for your application.

Container support in Visual Studio 2017 and later gives you the ability to include whatever you want

in your application environment, as shown in Figure 4-4. Since you’re running it in a container, if you

add a dependency to your application, you can include the dependency in your Dockerfile or Docker

image.

As also shown in Figure 4-4, the publish flow pushes an image through a container registry. This can

be the Azure Container Registry (a registry close to your deployments in Azure and secured by Azure

Active Directory groups and accounts), or any other Docker registry, like Docker Hub or an on-

premises registry.

State and data in Docker applications
In most cases, you can think of a container as an instance of a process. A process doesn’t maintain

persistent state. While a container can write to its local storage, assuming that an instance will be

around indefinitely would be like assuming that a single location in memory will be durable. You

should assume that container images, like processes, have multiple instances or will eventually be

killed. If they’re managed with a container orchestrator, you should assume that they might get

moved from one node or VM to another.

The following solutions are used to manage persistent data in Docker applications:

From the Docker host, as Docker Volumes:

• Volumes are stored in an area of the host filesystem that’s managed by Docker.

• Bind mounts can map to any folder in the host filesystem, so access can’t be controlled from

Docker process and can pose a security risk as a container could access sensitive OS folders.

https://docs.docker.com/engine/admin/volumes/

26 Architecting container and microservice-based applications

• tmpfs mounts are like virtual folders that only exist in the host’s memory and are never written

to the filesystem.

From remote storage:

• Azure Storage, which provides geo-distributable storage, providing a good long-term

persistence solution for containers.

• Remote relational databases like Azure SQL Database or NoSQL databases like Azure Cosmos

DB, or cache services like Redis.

From the Docker container:

Docker provides a feature named the overlay file system. This implements a copy-on-write task that

stores updated information to the root file system of the container. That information is in addition to

the original image on which the container is based. If the container is deleted from the system, those

changes are lost. Therefore, while it’s possible to save the state of a container within its local storage,

designing a system around this would conflict with the premise of container design, which by default

is stateless.

However, the previously introduced Docker Volumes is now the preferred way to handling local data

Docker. If you need more information about storage in containers check on Docker storage drivers

and About storage drivers.

The following provides more detail about these options:

Volumes are directories mapped from the host OS to directories in containers. When code in the

container has access to the directory, that access is actually to a directory on the host OS. This

directory is not tied to the lifetime of the container itself, and the directory is managed by Docker and

isolated from the core functionality of the host machine. Thus, data volumes are designed to persist

data independently of the life of the container. If you delete a container or an image from the Docker

host, the data persisted in the data volume isn’t deleted.

Volumes can be named or anonymous (the default). Named volumes are the evolution of Data

Volume Containers and make it easy to share data between containers. Volumes also support

volume drivers, that allow you to store data on remote hosts, among other options.

Bind mounts are available since a long time ago and allow the mapping of any folder to a mount

point in a container. Bind mounts have more limitations than volumes and some important security

issues, so volumes are the recommended option.

tmpfs mounts are basically virtual folders that live only in the host’s memory and are never written to

the filesystem. They are fast and secure but use memory and are only meant for non-persistent data.

As shown in Figure 4-5, regular Docker volumes can be stored outside of the containers themselves

but within the physical boundaries of the host server or VM. However, Docker containers can’t access

a volume from one host server or VM to another. In other words, with these volumes, it isn’t possible

to manage data shared between containers that run on different Docker hosts, although it could be

achieved with a volume driver that supports remote hosts.

https://azure.microsoft.com/documentation/services/storage/
https://azure.microsoft.com/services/sql-database/
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/introduction
https://redis.io/
https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://docs.docker.com/storage/storagedriver/

27 Architecting container and microservice-based applications

Figure 4-5. Volumes and external data sources for container-based applications

In addition, when Docker containers are managed by an orchestrator, containers might “move”

between hosts, depending on the optimizations performed by the cluster. Therefore, it isn’t

recommended that you use data volumes for business data. But they’re a good mechanism to work

with trace files, temporal files, or similar that will not impact business data consistency.

Remote data sources and cache tools like Azure SQL Database, Azure Cosmos DB, or a remote cache

like Redis can be used in containerized applications the same way they are used when developing

without containers. This is a proven way to store business application data.

Azure Storage. Business data usually will need to be placed in external resources or databases, like

Azure Storage. Azure Storage, in concrete, provides the following services in the cloud:

• Blob storage stores unstructured object data. A blob can be any type of text or binary data, such

as document or media files (images, audio, and video files). Blob storage is also referred to as

Object storage.

• File storage offers shared storage for legacy applications using standard SMB protocol. Azure

virtual machines and cloud services can share file data across application components via

mounted shares. On-premises applications can access file data in a share via the File service

REST API.

• Table storage stores structured datasets. Table storage is a NoSQL key-attribute data store,

which allows rapid development and fast access to large quantities of data.

Relational databases and NoSQL databases. There are many choices for external databases, from

relational databases like SQL Server, PostgreSQL, Oracle, or NoSQL databases like Azure Cosmos DB,

MongoDB, etc. These databases are not going to be explained as part of this guide since they are in a

completely different subject.

28 Architecting container and microservice-based applications

Service-oriented architecture
Service-oriented architecture (SOA) was an overused term and has meant different things to different

people. But as a common denominator, SOA means that you structure your application by

decomposing it into multiple services (most commonly as HTTP services) that can be classified as

different types like subsystems or tiers.

Those services can now be deployed as Docker containers, which solves deployment issues, because

all the dependencies are included in the container image. However, when you need to scale up SOA

applications, you might have scalability and availability challenges if you’re deploying based on single

Docker hosts. This is where Docker clustering software or an orchestrator can help you, as explained in

later sections where deployment approaches for microservices are described.

Docker containers are useful (but not required) for both traditional service-oriented architectures and

the more advanced microservices architectures.

Microservices derive from SOA, but SOA is different from microservices architecture. Features like

large central brokers, central orchestrators at the organization level, and the Enterprise Service Bus

(ESB) are typical in SOA. But in most cases, these are anti-patterns in the microservice community. In

fact, some people argue that “The microservice architecture is SOA done right.”

This guide focuses on microservices, because a SOA approach is less prescriptive than the

requirements and techniques used in a microservice architecture. If you know how to build a

microservice-based application, you also know how to build a simpler service-oriented application.

Microservices architecture
As the name implies, a microservices architecture is an approach to building a server application as a

set of small services. That means a microservices architecture is mainly oriented to the back-end,

although the approach is also being used for the front end. Each service runs in its own process and

communicates with other processes using protocols such as HTTP/HTTPS, WebSockets, or AMQP.

Each microservice implements a specific end-to-end domain or business capability within a certain

context boundary, and each must be developed autonomously and be deployable independently.

Finally, each microservice should own its related domain data model and domain logic (sovereignty

and decentralized data management) and could be based on different data storage technologies

(SQL, NoSQL) and different programming languages.

What size should a microservice be? When developing a microservice, size shouldn’t be the important

point. Instead, the important point should be to create loosely coupled services so you have

autonomy of development, deployment, and scale, for each service. Of course, when identifying and

designing microservices, you should try to make them as small as possible as long as you don’t have

too many direct dependencies with other microservices. More important than the size of the

microservice is the internal cohesion it must have and its independence from other services.

Why a microservices architecture? In short, it provides long-term agility. Microservices enable better

maintainability in complex, large, and highly-scalable systems by letting you create applications based

on many independently deployable services that each have granular and autonomous lifecycles.

As an additional benefit, microservices can scale out independently. Instead of having a single

monolithic application that you must scale out as a unit, you can instead scale out specific

https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

29 Architecting container and microservice-based applications

microservices. That way, you can scale just the functional area that needs more processing power or

network bandwidth to support demand, rather than scaling out other areas of the application that

don’t need to be scaled. That means cost savings because you need less hardware.

Figure 4-6. Monolithic deployment versus the microservices approach

As Figure 4-6 shows, the microservices approach allows agile changes and rapid iteration of each

microservice, because you can change specific, small areas of complex, large, and scalable

applications.

Architecting fine-grained microservices-based applications enables continuous integration and

continuous delivery practices. It also accelerates delivery of new functions into the application. Fine-

grained composition of applications also allows you to run and test microservices in isolation, and to

evolve them autonomously while maintaining clear contracts between them. As long as you don’t

change the interfaces or contracts, you can change the internal implementation of any microservice or

add new functionality without breaking other microservices.

The following are important aspects to enable success in going into production with a microservices-

based system:

• Monitoring and health checks of the services and infrastructure.

• Scalable infrastructure for the services (that is, cloud and orchestrators).

• Security design and implementation at multiple levels: authentication, authorization, secrets

management, secure communication, etc.

• Rapid application delivery, usually with different teams focusing on different microservices.

• DevOps and CI/CD practices and infrastructure.

30 Architecting container and microservice-based applications

Of these, only the first three are covered or introduced in this guide. The last two points, which are

related to application lifecycle, are covered in the additional Containerized Docker Application

Lifecycle with Microsoft Platform and Tools e-book.

Additional resources

• Mark Russinovich. Microservices: An application revolution powered by the cloud

https://azure.microsoft.com/blog/microservices-an-application-revolution-powered-by-the-

cloud/

• Martin Fowler. Microservices

https://www.martinfowler.com/articles/microservices.html

• Martin Fowler. Microservice Prerequisites

https://martinfowler.com/bliki/MicroservicePrerequisites.html

• Jimmy Nilsson. Chunk Cloud Computing

https://www.infoq.com/articles/CCC-Jimmy-Nilsson

• Cesar de la Torre. Containerized Docker Application Lifecycle with Microsoft Platform and

Tools (downloadable e-book)

https://aka.ms/dockerlifecycleebook

Data sovereignty per microservice
An important rule for microservices architecture is that each microservice must own its domain data

and logic. Just as a full application owns its logic and data, so must each microservice own its logic

and data under an autonomous lifecycle, with independent deployment per microservice.

This means that the conceptual model of the domain will differ between subsystems or microservices.

Consider enterprise applications, where customer relationship management (CRM) applications,

transactional purchase subsystems, and customer support subsystems each call on unique customer

entity attributes and data, and where each employs a different Bounded Context (BC).

This principle is similar in Domain-driven design (DDD), where each Bounded Context or autonomous

subsystem or service must own its domain model (data plus logic and behavior). Each DDD Bounded

Context correlates to one business microservice (one or several services). This point about the

Bounded Context pattern is expanded in the next section.

On the other hand, the traditional (monolithic data) approach used in many applications is to have a

single centralized database or just a few databases. This is often a normalized SQL database that’s

used for the whole application and all its internal subsystems, as shown in Figure 4-7.

https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook
https://azure.microsoft.com/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://azure.microsoft.com/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://www.martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://www.infoq.com/articles/CCC-Jimmy-Nilsson
https://aka.ms/dockerlifecycleebook
https://en.wikipedia.org/wiki/Domain-driven_design
https://martinfowler.com/bliki/BoundedContext.html

31 Architecting container and microservice-based applications

Figure 4-7. Data sovereignty comparison: monolithic database versus microservices

The centralized database approach initially looks simpler and seems to enable reuse of entities in

different subsystems to make everything consistent. But the reality is you end up with huge tables

that serve many different subsystems, and that include attributes and columns that aren’t needed in

most cases. It’s like trying to use the same physical map for hiking a short trail, taking a day-long car

trip, and learning geography.

A monolithic application with typically a single relational database has two important benefits: ACID

transactions and the SQL language, both working across all the tables and data related to your

application. This approach provides a way to easily write a query that combines data from multiple

tables.

However, data access becomes much more complex when you move to a microservices architecture.

But even when ACID transactions can or should be used within a microservice or Bounded Context,

the data owned by each microservice is private to that microservice and can only be accessed via its

microservice API. Encapsulating the data ensures that the microservices are loosely coupled and can

evolve independently of one another. If multiple services were accessing the same data, schema

updates would require coordinated updates to all the services. This would break the microservice

lifecycle autonomy. But distributed data structures mean that you can’t make a single ACID

transaction across microservices. This in turn means you must use eventual consistency when a

business process spans multiple microservices. This is much harder to implement than simple SQL

joins, because you can’t create integrity constraints or use distributed transactions between separate

databases, as we’ll explain later on. Similarly, many other relational database features aren’t available

across multiple microservices.

Going even further, different microservices often use different kinds of databases. Modern

applications store and process diverse kinds of data, and a relational database isn’t always the best

choice. For some use cases, a NoSQL database such as Azure CosmosDB or MongoDB might have a

more convenient data model and offer better performance and scalability than a SQL database like

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

32 Architecting container and microservice-based applications

SQL Server or Azure SQL Database. In other cases, a relational database is still the best approach.

Therefore, microservices-based applications often use a mixture of SQL and NoSQL databases, which

is sometimes called the polyglot persistence approach.

A partitioned, polyglot-persistent architecture for data storage has many benefits. These include

loosely coupled services and better performance, scalability, costs, and manageability. However, it can

introduce some distributed data management challenges, as explained in “Identifying domain-model

boundaries” later in this chapter.

The relationship between microservices and the Bounded Context

pattern

The concept of microservice derives from the Bounded Context (BC) pattern in domain-driven design

(DDD). DDD deals with large models by dividing them into multiple BCs and being explicit about their

boundaries. Each BC must have its own model and database; likewise, each microservice owns its

related data. In addition, each BC usually has its own ubiquitous language to help communication

between software developers and domain experts.

Those terms (mainly domain entities) in the ubiquitous language can have different names in different

Bounded Contexts, even when different domain entities share the same identity (that is, the unique ID

that’s used to read the entity from storage). For instance, in a user-profile Bounded Context, the User

domain entity might share identity with the Buyer domain entity in the ordering Bounded Context.

A microservice is therefore like a Bounded Context, but it also specifies that it’s a distributed service.

It’s built as a separate process for each Bounded Context, and it must use the distributed protocols

noted earlier, like HTTP/HTTPS, WebSockets, or AMQP. The Bounded Context pattern, however,

doesn’t specify whether the Bounded Context is a distributed service or if it’s simply a logical

boundary (such as a generic subsystem) within a monolithic-deployment application.

It’s important to highlight that defining a service for each Bounded Context is a good place to start.

But you don’t have to constrain your design to it. Sometimes you must design a Bounded Context or

business microservice composed of several physical services. But ultimately, both patterns -Bounded

Context and microservice- are closely related.

DDD benefits from microservices by getting real boundaries in the form of distributed microservices.

But ideas like not sharing the model between microservices are what you also want in a Bounded

Context.

Additional resources

• Chris Richardson. Pattern: Database per service

https://microservices.io/patterns/data/database-per-service.html

• Martin Fowler. BoundedContext

https://martinfowler.com/bliki/BoundedContext.html

• Martin Fowler. PolyglotPersistence

https://martinfowler.com/bliki/PolyglotPersistence.html

• Alberto Brandolini. Strategic Domain Driven Design with Context Mapping

https://www.infoq.com/articles/ddd-contextmapping

https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design
https://martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://microservices.io/patterns/data/database-per-service.html
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://www.infoq.com/articles/ddd-contextmapping

33 Architecting container and microservice-based applications

Logical architecture versus physical architecture
It’s useful at this point to stop and discuss the distinction between logical architecture and physical

architecture, and how this applies to the design of microservice-based applications.

To begin, building microservices doesn’t require the use of any specific technology. For instance,

Docker containers aren’t mandatory to create a microservice-based architecture. Those microservices

could also be run as plain processes. Microservices is a logical architecture.

Moreover, even when a microservice could be physically implemented as a single service, process, or

container (for simplicity’s sake, that’s the approach taken in the initial version of eShopOnContainers),

this parity between business microservice and physical service or container isn’t necessarily required in

all cases when you build a large and complex application composed of many dozens or even

hundreds of services.

This is where there’s a difference between an application’s logical architecture and physical

architecture. The logical architecture and logical boundaries of a system do not necessarily map one-

to-one to the physical or deployment architecture. It can happen, but it often doesn’t.

Although you might have identified certain business microservices or Bounded Contexts, it doesn’t

mean that the best way to implement them is always by creating a single service (such as an ASP.NET

Web API) or single Docker container for each business microservice. Having a rule saying each

business microservice has to be implemented using a single service or container is too rigid.

Therefore, a business microservice or Bounded Context is a logical architecture that might coincide (or

not) with physical architecture. The important point is that a business microservice or Bounded

Context must be autonomous by allowing code and state to be independently versioned, deployed,

and scaled.

As Figure 4-8 shows, the catalog business microservice could be composed of several services or

processes. These could be multiple ASP.NET Web API services or any other kind of services using

HTTP or any other protocol. More importantly, the services could share the same data, as long as

these services are cohesive with respect to the same business domain.

https://aka.ms/MicroservicesArchitecture

34 Architecting container and microservice-based applications

Figure 4-8. Business microservice with several physical services

The services in the example share the same data model because the Web API service targets the same

data as the Search service. So, in the physical implementation of the business microservice, you’re

splitting that functionality so you can scale each of those internal services up or down as needed.

Maybe the Web API service usually needs more instances than the Search service, or vice versa.

In short, the logical architecture of microservices doesn’t always have to coincide with the physical

deployment architecture. In this guide, whenever we mention a microservice, we mean a business or

logical microservice that could map to one or more (physical) services. In most cases, this will be a

single service, but it might be more.

Challenges and solutions for distributed data

management

Challenge #1: How to define the boundaries of each microservice

Defining microservice boundaries is probably the first challenge anyone encounters. Each microservice

has to be a piece of your application and each microservice should be autonomous with all the

benefits and challenges that it conveys. But how do you identify those boundaries?

First, you need to focus on the application’s logical domain models and related data. Try to identify

decoupled islands of data and different contexts within the same application. Each context could have

a different business language (different business terms). The contexts should be defined and managed

independently. The terms and entities that are used in those different contexts might sound similar,

but you might discover that in a particular context, a business concept with one is used for a different

purpose in another context, and might even have a different name. For instance, a user can be

35 Architecting container and microservice-based applications

referred as a user in the identity or membership context, as a customer in a CRM context, as a buyer in

an ordering context, and so forth.

The way you identify boundaries between multiple application contexts with a different domain for

each context is exactly how you can identify the boundaries for each business microservice and its

related domain model and data. You always attempt to minimize the coupling between those

microservices. This guide goes into more detail about this identification and domain model design in

the section Identifying domain-model boundaries for each microservice later.

Challenge #2: How to create queries that retrieve data from several

microservices

A second challenge is how to implement queries that retrieve data from several microservices, while

avoiding chatty communication to the microservices from remote client apps. An example could be a

single screen from a mobile app that needs to show user information that’s owned by the basket,

catalog, and user identity microservices. Another example would be a complex report involving many

tables located in multiple microservices. The right solution depends on the complexity of the queries.

But in any case, you’ll need a way to aggregate information if you want to improve the efficiency in

the communications of your system. The most popular solutions are the following.

API Gateway. For simple data aggregation from multiple microservices that own different databases,

the recommended approach is an aggregation microservice referred to as an API Gateway. However,

you need to be careful about implementing this pattern, because it can be a choke point in your

system, and it can violate the principle of microservice autonomy. To mitigate this possibility, you can

have multiple fined-grained API Gateways each one focusing on a vertical “slice” or business area of

the system. The API Gateway pattern is explained in more detail in the API Gateway section later.

CQRS with query/reads tables. Another solution for aggregating data from multiple microservices is

the Materialized View pattern. In this approach, you generate, in advance (prepare denormalized data

before the actual queries happen), a read-only table with the data that’s owned by multiple

microservices. The table has a format suited to the client app’s needs.

Consider something like the screen for a mobile app. If you have a single database, you might pull

together the data for that screen using a SQL query that performs a complex join involving multiple

tables. However, when you have multiple databases, and each database is owned by a different

microservice, you cannot query those databases and create a SQL join. Your complex query becomes

a challenge. You can address the requirement using a CQRS approach—you create a denormalized

table in a different database that’s used just for queries. The table can be designed specifically for the

data you need for the complex query, with a one-to-one relationship between fields needed by your

application’s screen and the columns in the query table. It could also serve for reporting purposes.

This approach not only solves the original problem (how to query and join across microservices), but it

also improves performance considerably when compared with a complex join, because you already

have the data that the application needs in the query table. Of course, using Command and Query

Responsibility Segregation (CQRS) with query/reads tables means additional development work, and

you’ll need to embrace eventual consistency. Nonetheless, requirements on performance and high

scalability in collaborative scenarios (or competitive scenarios, depending on the point of view) are

where you should apply CQRS with multiple databases.

https://docs.microsoft.com/azure/architecture/patterns/materialized-view
http://udidahan.com/2011/10/02/why-you-should-be-using-cqrs-almost-everywhere/

36 Architecting container and microservice-based applications

“Cold data” in central databases. For complex reports and queries that might not require real-time

data, a common approach is to export your “hot data” (transactional data from the microservices) as

“cold data” into large databases that are used only for reporting. That central database system can be

a Big Data-based system, like Hadoop, a data warehouse like one based on Azure SQL Data

Warehouse, or even a single SQL database that’s used just for reports (if size won’t be an issue).

Keep in mind that this centralized database would be used only for queries and reports that do not

need real-time data. The original updates and transactions, as your source of truth, have to be in your

microservices data. The way you would synchronize data would be either by using event-driven

communication (covered in the next sections) or by using other database infrastructure import/export

tools. If you use event-driven communication, that integration process would be similar to the way

you propagate data as described earlier for CQRS query tables.

However, if your application design involves constantly aggregating information from multiple

microservices for complex queries, it might be a symptom of a bad design -a microservice should be

as isolated as possible from other microservices. (This excludes reports/analytics that always should

use cold-data central databases.) Having this problem often might be a reason to merge

microservices. You need to balance the autonomy of evolution and deployment of each microservice

with strong dependencies, cohesion, and data aggregation.

Challenge #3: How to achieve consistency across multiple

microservices

As stated previously, the data owned by each microservice is private to that microservice and can only

be accessed using its microservice API. Therefore, a challenge presented is how to implement end-to-

end business processes while keeping consistency across multiple microservices.

To analyze this problem, let’s look at an example from the eShopOnContainers reference application.

The Catalog microservice maintains information about all the products, including the product price.

The Basket microservice manages temporal data about product items that users are adding to their

shopping baskets, which includes the price of the items at the time they were added to the basket.

When a product’s price is updated in the catalog, that price should also be updated in the active

baskets that hold that same product, plus the system should probably warn the user saying that a

particular item’s price has changed since they added it to their basket.

In a hypothetical monolithic version of this application, when the price changes in the products table,

the catalog subsystem could simply use an ACID transaction to update the current price in the Basket

table.

However, in a microservices-based application, the Product and Basket tables are owned by their

respective microservices. No microservice should ever include tables/storage owned by another

microservice in its own transactions, not even in direct queries, as shown in Figure 4-9.

https://aka.ms/eshoponcontainers

37 Architecting container and microservice-based applications

Figure 4-9. A microservice can’t directly access a table in another microservice

The Catalog microservice shouldn’t update the Basket table directly, because the Basket table is

owned by the Basket microservice. To make an update to the Basket microservice, the Catalog

microservice should use eventual consistency probably based on asynchronous communication such

as integration events (message and event-based communication). This is how the eShopOnContainers

reference application performs this type of consistency across microservices.

As stated by the CAP theorem, you need to choose between availability and ACID strong consistency.

Most microservice-based scenarios demand availability and high scalability as opposed to strong

consistency. Mission-critical applications must remain up and running, and developers can work

around strong consistency by using techniques for working with weak or eventual consistency. This is

the approach taken by most microservice-based architectures.

Moreover, ACID-style or two-phase commit transactions are not just against microservices principles;

most NoSQL databases (like Azure Cosmos DB, MongoDB, etc.) do not support two-phase commit

transactions, typical in distributed databases scenarios. However, maintaining data consistency across

services and databases is essential. This challenge is also related to the question of how to propagate

changes across multiple microservices when certain data needs to be redundant—for example, when

you need to have the product’s name or description in the Catalog microservice and the Basket

microservice.

A good solution for this problem is to use eventual consistency between microservices articulated

through event-driven communication and a publish-and-subscribe system. These topics are covered

in the section Asynchronous event-driven communication later in this guide.

https://aka.ms/eshoponcontainers
https://en.wikipedia.org/wiki/CAP_theorem

38 Architecting container and microservice-based applications

Challenge #4: How to design communication across microservice

boundaries

Communicating across microservice boundaries is a real challenge. In this context, communication

doesn’t refer to what protocol you should use (HTTP and REST, AMQP, messaging, and so on). Instead,

it addresses what communication style you should use, and especially how coupled your

microservices should be. Depending on the level of coupling, when failure occurs, the impact of that

failure on your system will vary significantly.

In a distributed system like a microservices-based application, with so many artifacts moving around

and with distributed services across many servers or hosts, components will eventually fail. Partial

failure and even larger outages will occur, so you need to design your microservices and the

communication across them considering the common risks in this type of distributed system.

A popular approach is to implement HTTP (REST)-based microservices, due to their simplicity. An

HTTP-based approach is perfectly acceptable; the issue here is related to how you use it. If you use

HTTP requests and responses just to interact with your microservices from client applications or from

API Gateways, that’s fine. But if you create long chains of synchronous HTTP calls across microservices,

communicating across their boundaries as if the microservices were objects in a monolithic

application, your application will eventually run into problems.

For instance, imagine that your client application makes an HTTP API call to an individual microservice

like the Ordering microservice. If the Ordering microservice in turn calls additional microservices using

HTTP within the same request/response cycle, you’re creating a chain of HTTP calls. It might sound

reasonable initially. However, there are important points to consider when going down this path:

• Blocking and low performance. Due to the synchronous nature of HTTP, the original request

doesn’t get a response until all the internal HTTP calls are finished. Imagine if the number of

these calls increases significantly and at the same time one of the intermediate HTTP calls to a

microservice is blocked. The result is that performance is impacted, and the overall scalability will

be exponentially affected as additional HTTP requests increase.

• Coupling microservices with HTTP. Business microservices shouldn’t be coupled with other

business microservices. Ideally, they shouldn’t “know” about the existence of other microservices.

If your application relies on coupling microservices as in the example, achieving autonomy per

microservice will be almost impossible.

• Failure in any one microservice. If you implemented a chain of microservices linked by HTTP

calls, when any of the microservices fails (and eventually they will fail) the whole chain of

microservices will fail. A microservice-based system should be designed to continue to work as

well as possible during partial failures. Even if you implement client logic that uses retries with

exponential backoff or circuit breaker mechanisms, the more complex the HTTP call chains are,

the more complex it is to implement a failure strategy based on HTTP.

In fact, if your internal microservices are communicating by creating chains of HTTP requests as

described, it could be argued that you have a monolithic application, but one based on HTTP between

processes instead of intra-process communication mechanisms.

Therefore, in order to enforce microservice autonomy and have better resiliency, you should minimize

the use of chains of request/response communication across microservices. It’s recommended that

39 Architecting container and microservice-based applications

you use only asynchronous interaction for inter-microservice communication, either by using

asynchronous message- and event-based communication, or by using (asynchronous) HTTP polling

independently of the original HTTP request/response cycle.

The use of asynchronous communication is explained with additional details later in this guide in the

sections Asynchronous microservice integration enforces microservice’s autonomy and Asynchronous

message-based communication.

Additional resources

• CAP theorem

https://en.wikipedia.org/wiki/CAP_theorem

• Eventual consistency

https://en.wikipedia.org/wiki/Eventual_consistency

• Data Consistency Primer

https://docs.microsoft.com/previous-versions/msp-n-p/dn589800(v=pandp.10)

• Martin Fowler. CQRS (Command and Query Responsibility Segregation)

https://martinfowler.com/bliki/CQRS.html

• Materialized View

https://docs.microsoft.com/azure/architecture/patterns/materialized-view

• Charles Row. ACID vs. BASE: The Shifting pH of Database Transaction Processing

https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

• Compensating Transaction

https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction

• Udi Dahan. Service Oriented Composition

http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

Identify domain-model boundaries for each

microservice
The goal when identifying model boundaries and size for each microservice isn’t to get to the most

granular separation possible, although you should tend toward small microservices if possible.

Instead, your goal should be to get to the most meaningful separation guided by your domain

knowledge. The emphasis isn’t on the size, but instead on business capabilities. In addition, if there’s

clear cohesion needed for a certain area of the application based on a high number of dependencies,

that indicates the need for a single microservice, too. Cohesion is a way to identify how to break apart

or group together microservices. Ultimately, while you gain more knowledge about the domain, you

should adapt the size of your microservice, iteratively. Finding the right size isn’t a one-shot process.

Sam Newman, a recognized promoter of microservices and author of the book Building Microservices,

highlights that you should design your microservices based on the Bounded Context (BC) pattern

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.microsoft.com/previous-versions/msp-n-p/dn589800(v=pandp.10)
https://martinfowler.com/bliki/CQRS.html
https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/
https://samnewman.io/
https://samnewman.io/books/building_microservices/

40 Architecting container and microservice-based applications

(part of domain-driven design), as introduced earlier. Sometimes, a BC could be composed of several

physical services, but not vice versa.

A domain model with specific domain entities applies within a concrete BC or microservice. A BC

delimits the applicability of a domain model and gives developer team members a clear and shared

understanding of what must be cohesive and what can be developed independently. These are the

same goals for microservices.

Another tool that informs your design choice is Conway’s law, which states that an application will

reflect the social boundaries of the organization that produced it. But sometimes the opposite is true -

the company’s organization is formed by the software. You might need to reverse Conway’s law and

build the boundaries the way you want the company to be organized, leaning toward business

process consulting.

To identify bounded contexts, you can use a DDD pattern called the Context Mapping pattern. With

Context Mapping, you identify the various contexts in the application and their boundaries. It’s

common to have a different context and boundary for each small subsystem, for instance. The Context

Map is a way to define and make explicit those boundaries between domains. A BC is autonomous

and includes the details of a single domain -details like the domain entities- and defines integration

contracts with other BCs. This is similar to the definition of a microservice: it’s autonomous, it

implements certain domain capability, and it must provide interfaces. This is why Context Mapping

and the Bounded Context pattern are good approaches for identifying the domain model boundaries

of your microservices.

When designing a large application, you’ll see how its domain model can be fragmented - a domain

expert from the catalog domain will name entities differently in the catalog and inventory domains

than a shipping domain expert, for instance. Or the user domain entity might be different in size and

number of attributes when dealing with a CRM expert who wants to store every detail about the

customer than for an ordering domain expert who just needs partial data about the customer. It’s very

hard to disambiguate all domain terms across all the domains related to a large application. But the

most important thing is that you shouldn’t try to unify the terms. Instead, accept the differences and

richness provided by each domain. If you try to have a unified database for the whole application,

attempts at a unified vocabulary will be awkward and won’t sound right to any of the multiple domain

experts. Therefore, BCs (implemented as microservices) will help you to clarify where you can use

certain domain terms and where you’ll need to split the system and create additional BCs with

different domains.

You’ll know that you got the right boundaries and sizes of each BC and domain model if you have few

strong relationships between domain models, and you do not usually need to merge information

from multiple domain models when performing typical application operations.

Perhaps the best answer to the question of how large a domain model for each microservice should

be is the following: it should have an autonomous BC, as isolated as possible, that enables you to

work without having to constantly switch to other contexts (other microservice’s models). In Figure 4-

10, you can see how multiple microservices (multiple BCs) each has their own model and how their

entities can be defined, depending on the specific requirements for each of the identified domains in

your application.

https://en.wikipedia.org/wiki/Conway%27s_law
https://www.infoq.com/articles/ddd-contextmapping

41 Architecting container and microservice-based applications

Figure 4-10. Identifying entities and microservice model boundaries

Figure 4-10 illustrates a sample scenario related to an online conference management system. You’ve

identified several BCs that could be implemented as microservices, based on domains that domain

experts defined for you. As you can see, there are entities that are present just in a single microservice

model, like Payments in the Payment microservice. Those will be easy to implement.

However, you might also have entities that have a different shape but share the same identity across

the multiple domain models from the multiple microservices. For example, the User entity is identified

in the Conferences Management microservice. That same user, with the same identity, is the one

named Buyers in the Ordering microservice, or the one named Payer in the Payment microservice, and

even the one named Customer in the Customer Service microservice. This is because, depending on

the ubiquitous language that each domain expert is using, a user might have a different perspective

even with different attributes. The user entity in the microservice model named Conferences

Management might have most of its personal data attributes. However, that same user in the shape of

Payer in the microservice Payment or in the shape of Customer in the microservice Customer Service

might not need the same list of attributes.

A similar approach is illustrated in Figure 4-11.

https://martinfowler.com/bliki/UbiquitousLanguage.html

42 Architecting container and microservice-based applications

Figure 4-11. Decomposing traditional data models into multiple domain models

You can see how the user is present in the Conferences Management microservice model as the User

entity and is also present in the form of the Buyer entity in the Pricing microservice, with alternate

attributes or details about the user when it’s actually a buyer. Each microservice or BC might not need

all the data related to a User entity, just part of it, depending on the problem to solve or the context.

For instance, in the Pricing microservice model, you do not need the address or the name of the user,

just the ID (as identity) and Status, which will have an impact on discounts when pricing the seats per

buyer.

The Seat entity has the same name but different attributes in each domain model. However, Seat

shares identity based on the same ID, as happens with User and Buyer.

Basically, there’s a shared concept of a user that exists in multiple services (domains), which all share

the identity of that user. But in each domain model there might be additional or different details

about the user entity. Therefore, there needs to be a way to map a user entity from one domain

(microservice) to another.

There are several benefits to not sharing the same user entity with the same number of attributes

across domains. One benefit is to reduce duplication, so that microservice models do not have any

data that they do not need. Another benefit is having a master microservice that owns a certain type

of data per entity so that updates and queries for that type of data are driven only by that

microservice.

The API gateway pattern versus the Direct client-to-

microservice communication
In a microservices architecture, each microservice exposes a set of (typically) fine-grained endpoints.

This fact can impact the client-to-microservice communication, as explained in this section.

43 Architecting container and microservice-based applications

Direct client-to-microservice communication

A possible approach is to use a direct client-to-microservice communication architecture. In this

approach, a client app can make requests directly to some of the microservices, as shown in Figure 4-

12.

Figure 4-12. Using a direct client-to-microservice communication architecture

In this approach, each microservice has a public endpoint, sometimes with a different TCP port for

each microservice. An example of a URL for a particular service could be the following URL in Azure:

http://eshoponcontainers.westus.cloudapp.azure.com:88/

In a production environment based on a cluster, that URL would map to the load balancer used in the

cluster, which in turn distributes the requests across the microservices. In production environments,

you could have an Application Delivery Controller (ADC) like Azure Application Gateway between your

microservices and the Internet. This acts as a transparent tier that not only performs load balancing,

but secures your services by offering SSL termination. This improves the load of your hosts by

offloading CPU-intensive SSL termination and other routing duties to the Azure Application Gateway.

In any case, a load balancer and ADC are transparent from a logical application architecture point of

view.

A direct client-to-microservice communication architecture could be good enough for a small

microservice-based application, especially if the client app is a server-side web application like an

ASP.NET MVC app. However, when you build large and complex microservice-based applications (for

example, when handling dozens of microservice types), and especially when the client apps are

remote mobile apps or SPA web applications, that approach faces a few issues.

Consider the following questions when developing a large application based on microservices:

• How can client apps minimize the number of requests to the back end and reduce chatty

communication to multiple microservices?

Interacting with multiple microservices to build a single UI screen increases the number of round trips

across the Internet. This increases latency and complexity on the UI side. Ideally, responses should be

efficiently aggregated in the server side. This reduces latency, since multiple pieces of data come back

in parallel and some UI can show data as soon as it’s ready.

https://docs.microsoft.com/azure/application-gateway/application-gateway-introduction

44 Architecting container and microservice-based applications

• How can you handle cross-cutting concerns such as authorization, data transformations, and

dynamic request dispatching?

Implementing security and cross-cutting concerns like security and authorization on every

microservice can require significant development effort. A possible approach is to have those services

within the Docker host or internal cluster to restrict direct access to them from the outside, and to

implement those cross-cutting concerns in a centralized place, like an API Gateway.

• How can client apps communicate with services that use non-Internet-friendly protocols?

Protocols used on the server side (like AMQP or binary protocols) are usually not supported in client

apps. Therefore, requests must be performed through protocols like HTTP/HTTPS and translated to

the other protocols afterwards. A man-in-the-middle approach can help in this situation.

• How can you shape a facade especially made for mobile apps?

The API of multiple microservices might not be well designed for the needs of different client

applications. For instance, the needs of a mobile app might be different than the needs of a web app.

For mobile apps, you might need to optimize even further so that data responses can be more

efficient. You might do this by aggregating data from multiple microservices and returning a single

set of data, and sometimes eliminating any data in the response that isn’t needed by the mobile app.

And, of course, you might compress that data. Again, a facade or API in between the mobile app and

the microservices can be convenient for this scenario.

Why consider API Gateways instead of direct client-to-microservice

communication

In a microservices architecture, the client apps usually need to consume functionality from more than

one microservice. If that consumption is performed directly, the client needs to handle multiple calls

to microservice endpoints. What happens when the application evolves and new microservices are

introduced or existing microservices are updated? If your application has many microservices,

handling so many endpoints from the client apps can be a nightmare. Since the client app would be

coupled to those internal endpoints, evolving the microservices in the future can cause high impact

for the client apps.

Therefore, having an intermediate level or tier of indirection (Gateway) can be very convenient for

microservice-based applications. If you don’t have API Gateways, the client apps must send requests

directly to the microservices and that raises problems, such as the following issues:

• Coupling: Without the API Gateway pattern, the client apps are coupled to the internal

microservices. The client apps need to know how the multiple areas of the application are

decomposed in microservices. When evolving and refactoring the internal microservices, those

actions impact maintenance pretty badly because they cause breaking changes to the client

apps due to the direct reference to the internal microservices from the client apps. Client apps

need to be updated frequently, making the solution harder to evolve.

• Too many round trips: A single page/screen in the client app might require several calls to

multiple services. That can result in multiple network round trips between the client and the

server, adding significant latency. Aggregation handled in an intermediate level could improve

the performance and user experience for the client app.

45 Architecting container and microservice-based applications

• Security issues: Without a gateway, all the microservices must be exposed to the “external

world”, making the attack surface larger than if you hide internal microservices that aren’t

directly used by the client apps. The smaller the attack surface is, the more secure your

application can be.

• Cross-cutting concerns: Each publicly published microservice must handle concerns such as

authorization, SSL, etc. In many situations, those concerns could be handled in a single tier so

the internal microservices are simplified.

What is the API Gateway pattern?

When you design and build large or complex microservice-based applications with multiple client

apps, a good approach to consider can be an API Gateway. This is a service that provides a single-

entry point for certain groups of microservices. It’s similar to the Facade pattern from object-oriented

design, but in this case, it’s part of a distributed system. The API Gateway pattern is also sometimes

known as the “backend for frontend” (BFF) because you build it while thinking about the needs of the

client app.

Therefore, the API gateway sits between the client apps and the microservices. It acts as a reverse

proxy, routing requests from clients to services. It can also provide additional cross-cutting features

such as authentication, SSL termination, and cache.

Figure 4-13 shows how a custom API Gateway can fit into a simplified microservice-based architecture

with just a few microservices.

Figure 4-13. Using an API Gateway implemented as a custom service

In this example, the API Gateway would be implemented as a custom ASP.NET Core WebHost service

running as a container.

https://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/Facade_pattern
https://samnewman.io/patterns/architectural/bff/

46 Architecting container and microservice-based applications

It’s important to highlight that in that diagram, you would be using a single custom API Gateway

service facing multiple and different client apps. That fact can be an important risk because your API

Gateway service will be growing and evolving based on many different requirements from the client

apps. Eventually, it will be bloated because of those different needs and effectively it could be pretty

similar to a monolithic application or monolithic service. That’s why it’s very much recommended to

split the API Gateway in multiple services or multiple smaller API Gateways, one per client app form-

factor type, for instance.

You need to be careful when implementing the API Gateway pattern. Usually it isn’t a good idea to

have a single API Gateway aggregating all the internal microservices of your application. If it does, it

acts as a monolithic aggregator or orchestrator and violates microservice autonomy by coupling all

the microservices.

Therefore, the API Gateways should be segregated based on business boundaries and the client apps

and not act as a single aggregator for all the internal microservices.

When splitting the API Gateway tier into multiple API Gateways, if your application has multiple client

apps, that can be a primary pivot when identifying the multiple API Gateways types, so that you can

have a different facade for the needs of each client app. This case is a pattern named “Backend for

Frontend” (BFF) where each API Gateway can provide a different API tailored for each client app type,

possibly even based on the client form factor by implementing specific adapter code which

underneath calls multiple internal microservices, as shown in the following image:

Figure 4-13.1. Using multiple custom API Gateways

The previous image shows a simplified architecture with multiple fine-grained API Gateways. In this

case, the boundaries identified for each API Gateway are based purely on the “Backend for Frontend”

(BFF) pattern, hence based just on the API needed per client app. But in larger applications you should

also go further and create additional API Gateways based on business boundaries as a second design

pivot.

https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/

47 Architecting container and microservice-based applications

Main features in the API Gateway pattern

An API Gateway can offer multiple features. Depending on the product it might offer richer or simpler

features, however, the most important and foundational features for any API Gateway are the

following design patterns:

Reverse proxy or gateway routing. The API Gateway offers a reverse proxy to redirect or route

requests (layer 7 routing, usually HTTP requests) to the endpoints of the internal microservices. The

gateway provides a single endpoint or URL for the client apps and then internally maps the requests

to a group of internal microservices. This routing feature helps to decouple the client apps from the

microservices but it’s also pretty convenient when modernizing a monolithic API by sitting the API

Gateway in between the monolithic API and the client apps, then you can add new APIs as new

microservices while still using the legacy monolithic API until it’s split into many microservices in the

future. Because of the API Gateway, the client apps won’t notice if the APIs being used are

implemented as internal microservices or a monolithic API and more importantly, when evolving and

refactoring the monolithic API into microservices, thanks to the API Gateway routing, client apps won’t

be impacted with any URI change.

For more information, see Gateway routing pattern.

Requests aggregation. As part of the gateway pattern you can aggregate multiple client requests

(usually HTTP requests) targeting multiple internal microservices into a single client request. This

pattern is especially convenient when a client page/screen needs information from several

microservices. With this approach, the client app sends a single request to the API Gateway that

dispatches several requests to the internal microservices and then aggregates the results and sends

everything back to the client app. The main benefit and goal of this design pattern is to reduce

chattiness between the client apps and the backend API, which is especially important for remote

apps out of the datacenter where the microservices live, like mobile apps or requests coming from

SPA apps that come from Javascript in client remote browsers. For regular web apps performing the

requests in the server environment (like an ASP.NET Core MVC web app), this pattern is not so

important as the latency is very much smaller than for remote client apps.

Depending on the API Gateway product you use, it might be able to perform this aggregation.

However, in many cases it’s more flexible to create aggregation microservices under the scope of the

API Gateway, so you define the aggregation in code (that is, C# code):

For more information, see Gateway aggregation pattern.

Cross-cutting concerns or gateway offloading. Depending on the features offered by each API

Gateway product, you can offload functionality from individual microservices to the gateway, which

simplifies the implementation of each microservice by consolidating cross-cutting concerns into one

tier. This is especially convenient for specialized features that can be complex to implement properly

in every internal microservice, such as the following functionality:

• Authentication and authorization

• Service discovery integration

• Response caching

• Retry policies, circuit breaker, and QoS

https://docs.microsoft.com/azure/architecture/patterns/gateway-routing
https://docs.microsoft.com/azure/architecture/patterns/gateway-aggregation

48 Architecting container and microservice-based applications

• Rate limiting and throttling

• Load balancing

• Logging, tracing, correlation

• Headers, query strings, and claims transformation

• IP whitelisting

For more information, see Gateway offloading pattern.

Using products with API Gateway features

There can be many more cross-cutting concerns offered by the API Gateways products depending on

each implementation. We’ll explore here:

• Azure API Management

• Ocelot

Azure API Management

Azure API Management (as shown in Figure 4-14) not only solves your API Gateway needs but

provides features like gathering insights from your APIs. If you’re using an API management solution,

an API Gateway is only a component within that full API management solution.

Figure 4-14. Using Azure API Management for your API Gateway

In this case, when using a product like Azure API Management, the fact that you might have a single

API Gateway is not so risky because these kinds of API Gateways are “thinner”, meaning that you don’t

implement custom C# code that could evolve towards a monolithic component.

https://docs.microsoft.com/azure/architecture/patterns/gateway-offloading
https://azure.microsoft.com/services/api-management/
https://github.com/ThreeMammals/Ocelot
https://azure.microsoft.com/services/api-management/

49 Architecting container and microservice-based applications

The API Gateway products usually act like a reverse proxy for ingress communication, where you can

also filter the APIs from the internal microservices plus apply authorization to the published APIs in

this single tier.

The insights available from an API Management system help you get an understanding of how your

APIs are being used and how they are performing. They do this by letting you view near real-time

analytics reports and identifying trends that might impact your business. Plus, you can have logs

about request and response activity for further online and offline analysis.

With Azure API Management, you can secure your APIs using a key, a token, and IP filtering. These

features let you enforce flexible and fine-grained quotas and rate limits, modify the shape and

behavior of your APIs using policies, and improve performance with response caching.

In this guide and the reference sample application (eShopOnContainers), the architecture is limited to

a simpler and custom-made containerized architecture in order to focus on plain containers without

using PaaS products like Azure API Management. But for large microservice-based applications that

are deployed into Microsoft Azure, we encourage you to evaluate Azure API Management as the base

for your API Gateways in production.

Ocelot

Ocelot is a lightweight API Gateway, recommended for simpler approaches. Ocelot is an Open Source

.NET Core based API Gateway especially made for microservices architecture that need unified points

of entry into their system. It’s lightweight, fast, scalable and provides routing and authentication

among many other features.

The main reason to choose Ocelot for the eShopOnContainers reference application is because Ocelot

is a .NET Core lightweight API Gateway that you can deploy into the same application deployment

environment where you’re deploying your microservices/containers, such as a Docker Host,

Kubernetes, etc. And since it’s based on .NET Core, it’s cross-platform allowing you to deploy on Linux

or Windows.

The previous diagrams showing custom API Gateways running in containers are precisely how you can

also run Ocelot in a container and microservice-based application.

In addition, there are many other products in the market offering API Gateways features, such as

Apigee, Kong, MuleSoft, WSO2, and other products like Linkerd and Istio for service mesh ingress

controller features.

After the initial architecture and patterns explanation sections, the next sections explain how to

implement API Gateways with Ocelot.

Drawbacks of the API Gateway pattern

• The most important drawback is that when you implement an API Gateway, you’re coupling that

tier with the internal microservices. Coupling like this might introduce serious difficulties for your

application. Clemens Vaster, architect at the Azure Service Bus team, refers to this potential

difficulty as “the new ESB” in the “Messaging and Microservices” session at GOTO 2016.

• Using a microservices API Gateway creates an additional possible single point of failure.

https://github.com/ThreeMammals/Ocelot
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/ThreeMammals/Ocelot
https://www.youtube.com/watch?v=rXi5CLjIQ9k

50 Architecting container and microservice-based applications

• An API Gateway can introduce increased response time due to the additional network call.

However, this extra call usually has less impact than having a client interface that’s too chatty

directly calling the internal microservices.

• If not scaled out properly, the API Gateway can become a bottleneck.

• An API Gateway requires additional development cost and future maintenance if it includes

custom logic and data aggregation. Developers must update the API Gateway in order to expose

each microservice’s endpoints. Moreover, implementation changes in the internal microservices

might cause code changes at the API Gateway level. However, if the API Gateway is just applying

security, logging, and versioning (as when using Azure API Management), this additional

development cost might not apply.

• If the API Gateway is developed by a single team, there can be a development bottleneck. This is

another reason why a better approach is to have several fined-grained API Gateways that

respond to different client needs. You could also segregate the API Gateway internally into

multiple areas or layers that are owned by the different teams working on the internal

microservices.

Additional resources

• Charles Richardson. Pattern: API Gateway / Backend for Front-End

https://microservices.io/patterns/apigateway.html

• API Gateway pattern

https://docs.microsoft.com/azure/architecture/microservices/gateway

• Aggregation and composition pattern

https://microservices.io/patterns/data/api-composition.html

• Azure API Management

https://azure.microsoft.com/services/api-management/

• Udi Dahan. Service Oriented Composition

http://udidahan.com/2014/07/30/service-oriented-composition-with-video/

• Clemens Vasters. Messaging and Microservices at GOTO 2016 (video)

https://www.youtube.com/watch?v=rXi5CLjIQ9k

• API Gateway in a Nutshell (ASP.net Core API Gateway Tutorial Series)

https://www.pogsdotnet.com/2018/08/api-gateway-in-nutshell.html

Communication in a microservice architecture
In a monolithic application running on a single process, components invoke one another using

language-level method or function calls. These can be strongly coupled if you’re creating objects with

code (for example, new ClassName()), or can be invoked in a decoupled way if you’re using

Dependency Injection by referencing abstractions rather than concrete object instances. Either way,

the objects are running within the same process. The biggest challenge when changing from a

https://microservices.io/patterns/apigateway.html
https://docs.microsoft.com/azure/architecture/microservices/gateway
https://microservices.io/patterns/data/api-composition.html
https://azure.microsoft.com/services/api-management/
http://udidahan.com/2014/07/30/service-oriented-composition-with-video/
https://www.youtube.com/watch?v=rXi5CLjIQ9k
https://www.pogsdotnet.com/2018/08/api-gateway-in-nutshell.html

51 Architecting container and microservice-based applications

monolithic application to a microservices-based application lies in changing the communication

mechanism. A direct conversion from in-process method calls into RPC calls to services will cause a

chatty and not efficient communication that won’t perform well in distributed environments. The

challenges of designing distributed system properly are well enough known that there’s even a canon

known as the Fallacies of distributed computing that lists assumptions that developers often make

when moving from monolithic to distributed designs.

There isn’t one solution, but several. One solution involves isolating the business microservices as

much as possible. You then use asynchronous communication between the internal microservices and

replace fine-grained communication that’s typical in intra-process communication between objects

with coarser-grained communication. You can do this by grouping calls, and by returning data that

aggregates the results of multiple internal calls, to the client.

A microservices-based application is a distributed system running on multiple processes or services,

usually even across multiple servers or hosts. Each service instance is typically a process. Therefore,

services must interact using an inter-process communication protocol such as HTTP, AMQP, or a

binary protocol like TCP, depending on the nature of each service.

The microservice community promotes the philosophy of “smart endpoints and dumb pipes” This

slogan encourages a design that’s as decoupled as possible between microservices, and as cohesive

as possible within a single microservice. As explained earlier, each microservice owns its own data and

its own domain logic. But the microservices composing an end-to-end application are usually simply

choreographed by using REST communications rather than complex protocols such as WS-* and

flexible event-driven communications instead of centralized business-process-orchestrators.

The two commonly used protocols are HTTP request/response with resource APIs (when querying

most of all), and lightweight asynchronous messaging when communicating updates across multiple

microservices. These are explained in more detail in the following sections.

Communication types

Client and services can communicate through many different types of communication, each one

targeting a different scenario and goals. Initially, those types of communications can be classified in

two axes.

The first axis defines if the protocol is synchronous or asynchronous:

• Synchronous protocol. HTTP is a synchronous protocol. The client sends a request and waits for

a response from the service. That’s independent of the client code execution that could be

synchronous (thread is blocked) or asynchronous (thread isn’t blocked, and the response will

reach a callback eventually). The important point here is that the protocol (HTTP/HTTPS) is

synchronous and the client code can only continue its task when it receives the HTTP server

response.

• Asynchronous protocol. Other protocols like AMQP (a protocol supported by many operating

systems and cloud environments) use asynchronous messages. The client code or message

sender usually doesn’t wait for a response. It just sends the message as when sending a message

to a RabbitMQ queue or any other message broker.

The second axis defines if the communication has a single receiver or multiple receivers:

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://simplicable.com/new/smart-endpoints-and-dumb-pipes

52 Architecting container and microservice-based applications

• Single receiver. Each request must be processed by exactly one receiver or service. An example

of this communication is the Command pattern.

• Multiple receivers. Each request can be processed by zero to multiple receivers. This type of

communication must be asynchronous. An example is the publish/subscribe mechanism used in

patterns like Event-driven architecture. This is based on an event-bus interface or message

broker when propagating data updates between multiple microservices through events; it’s

usually implemented through a service bus or similar artifact like Azure Service Bus by using

topics and subscriptions.

A microservice-based application will often use a combination of these communication styles. The

most common type is single-receiver communication with a synchronous protocol like HTTP/HTTPS

when invoking a regular Web API HTTP service. Microservices also typically use messaging protocols

for asynchronous communication between microservices.

These axes are good to know so you have clarity on the possible communication mechanisms, but

they’re not the important concerns when building microservices. Neither the asynchronous nature of

client thread execution nor the asynchronous nature of the selected protocol are the important points

when integrating microservices. What is important is being able to integrate your microservices

asynchronously while maintaining the independence of microservices, as explained in the following

section.

Asynchronous microservice integration enforces microservice’s

autonomy

As mentioned, the important point when building a microservices-based application is the way you

integrate your microservices. Ideally, you should try to minimize the communication between the

internal microservices. The fewer communications between microservices, the better. But in many

cases, you’ll have to somehow integrate the microservices. When you need to do that, the critical rule

here is that the communication between the microservices should be asynchronous. That doesn’t

mean that you have to use a specific protocol (for example, asynchronous messaging versus

synchronous HTTP). It just means that the communication between microservices should be done only

by propagating data asynchronously, but try not to depend on other internal microservices as part of

the initial service’s HTTP request/response operation.

If possible, never depend on synchronous communication (request/response) between multiple

microservices, not even for queries. The goal of each microservice is to be autonomous and available

to the client consumer, even if the other services that are part of the end-to-end application are down

or unhealthy. If you think you need to make a call from one microservice to other microservices (like

performing an HTTP request for a data query) to be able to provide a response to a client application,

you have an architecture that won’t be resilient when some microservices fail.

Moreover, having HTTP dependencies between microservices, like when creating long

request/response cycles with HTTP request chains, as shown in the first part of the Figure 4-15, not

only makes your microservices not autonomous but also their performance is impacted as soon as

one of the services in that chain isn’t performing well.

The more you add synchronous dependencies between microservices, such as query requests, the

worse the overall response time gets for the client apps.

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://microservices.io/patterns/data/event-driven-architecture.html
https://azure.microsoft.com/services/service-bus/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

53 Architecting container and microservice-based applications

Figure 4-15. Anti-patterns and patterns in communication between microservices

If your microservice needs to raise an additional action in another microservice, if possible, do not

perform that action synchronously and as part of the original microservice request and reply

operation. Instead, do it asynchronously (using asynchronous messaging or integration events,

queues, etc.). But, as much as possible, do not invoke the action synchronously as part of the original

synchronous request and reply operation.

And finally (and this is where most of the issues arise when building microservices), if your initial

microservice needs data that’s originally owned by other microservices, do not rely on making

synchronous requests for that data. Instead, replicate or propagate that data (only the attributes you

need) into the initial service’s database by using eventual consistency (typically by using integration

events, as explained in upcoming sections).

As noted earlier in the section Identifying domain-model boundaries for each microservice,

duplicating some data across several microservices isn’t an incorrect design—on the contrary, when

doing that you can translate the data into the specific language or terms of that additional domain or

Bounded Context. For instance, in the eShopOnContainers application you have a microservice named

identity.api that’s in charge of most of the user’s data with an entity named User. However, when you

need to store data about the user within the Ordering microservice, you store it as a different entity

named Buyer. The Buyer entity shares the same identity with the original User entity, but it might have

only the few attributes needed by the Ordering domain, and not the whole user profile.

You might use any protocol to communicate and propagate data asynchronously across microservices

in order to have eventual consistency. As mentioned, you could use integration events using an event

bus or message broker or you could even use HTTP by polling the other services instead. It doesn’t

matter. The important rule is to not create synchronous dependencies between your microservices.

The following sections explain the multiple communication styles you can consider using in a

microservice-based application.

https://github.com/dotnet-architecture/eShopOnContainers

54 Architecting container and microservice-based applications

Communication styles

There are many protocols and choices you can use for communication, depending on the

communication type you want to use. If you’re using a synchronous request/response-based

communication mechanism, protocols such as HTTP and REST approaches are the most common,

especially if you’re publishing your services outside the Docker host or microservice cluster. If you’re

communicating between services internally (within your Docker host or microservices cluster), you

might also want to use binary format communication mechanisms (like WCF using TCP and binary

format). Alternatively, you can use asynchronous, message-based communication mechanisms such as

AMQP.

There are also multiple message formats like JSON or XML, or even binary formats, which can be more

efficient. If your chosen binary format isn’t a standard, it’s probably not a good idea to publicly

publish your services using that format. You could use a non-standard format for internal

communication between your microservices. You might do this when communicating between

microservices within your Docker host or microservice cluster (for example, Docker orchestrators), or

for proprietary client applications that talk to the microservices.

Request/response communication with HTTP and REST

When a client uses request/response communication, it sends a request to a service, then the service

processes the request and sends back a response. Request/response communication is especially well

suited for querying data for a real-time UI (a live user interface) from client apps. Therefore, in a

microservice architecture you’ll probably use this communication mechanism for most queries, as

shown in Figure 4-16.

Figure 4-16. Using HTTP request/response communication (synchronous or asynchronous)

When a client uses request/response communication, it assumes that the response will arrive in a

short time, typically less than a second, or a few seconds at most. For delayed responses, you need to

implement asynchronous communication based on messaging patterns and messaging technologies,

which is a different approach that we explain in the next section.

A popular architectural style for request/response communication is REST. This approach is based on,

and tightly coupled to, the HTTP protocol, embracing HTTP verbs like GET, POST, and PUT. REST is the

most commonly used architectural communication approach when creating services. You can

implement REST services when you develop ASP.NET Core Web API services.

https://docs.microsoft.com/azure/architecture/patterns/category/messaging
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

55 Architecting container and microservice-based applications

There’s additional value when using HTTP REST services as your interface definition language. For

instance, if you use Swagger metadata to describe your service API, you can use tools that generate

client stubs that can directly discover and consume your services.

Additional resources

• Martin Fowler. Richardson Maturity Model A description of the REST model.

https://martinfowler.com/articles/richardsonMaturityModel.html

• Swagger The official site.

https://swagger.io/

Push and real-time communication based on HTTP

Another possibility (usually for different purposes than REST) is a real-time and one-to-many

communication with higher-level frameworks such as ASP.NET SignalR and protocols such as

WebSockets.

As Figure 4-17 shows, real-time HTTP communication means that you can have server code pushing

content to connected clients as the data becomes available, rather than having the server wait for a

client to request new data.

Figure 4-17. One-to-one real-time asynchronous message communication

Since communication is in real time, client apps show the changes almost instantly. This is usually

handled by a protocol such as WebSockets, using many WebSockets connections (one per client). A

typical example is when a service communicates a change in the score of a sports game to many

client web apps simultaneously.

https://swagger.io/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://swagger.io/
https://www.asp.net/signalr
https://en.wikipedia.org/wiki/WebSocket

56 Architecting container and microservice-based applications

Asynchronous message-based communication
Asynchronous messaging and event-driven communication are critical when propagating changes

across multiple microservices and their related domain models. As mentioned earlier in the discussion

microservices and Bounded Contexts (BCs), models (User, Customer, Product, Account, etc.) can mean

different things to different microservices or BCs. That means that when changes occur, you need

some way to reconcile changes across the different models. A solution is eventual consistency and

event-driven communication based on asynchronous messaging.

When using messaging, processes communicate by exchanging messages asynchronously. A client

makes a command or a request to a service by sending it a message. If the service needs to reply, it

sends a different message back to the client. Since it’s a message-based communication, the client

assumes that the reply won’t be received immediately, and that there might be no response at all.

A message is composed by a header (metadata such as identification or security information) and a

body. Messages are usually sent through asynchronous protocols like AMQP.

The preferred infrastructure for this type of communication in the microservices community is a

lightweight message broker, which is different than the large brokers and orchestrators used in SOA.

In a lightweight message broker, the infrastructure is typically “dumb,” acting only as a message

broker, with simple implementations such as RabbitMQ or a scalable service bus in the cloud like

Azure Service Bus. In this scenario, most of the “smart” thinking still lives in the endpoints that are

producing and consuming messages-that is, in the microservices.

Another rule you should try to follow, as much as possible, is to use only asynchronous messaging

between the internal services, and to use synchronous communication (such as HTTP) only from the

client apps to the front-end services (API Gateways plus the first level of microservices).

There are two kinds of asynchronous messaging communication: single receiver message-based

communication, and multiple receivers message-based communication. The following sections

provide details about them.

Single-receiver message-based communication

Message-based asynchronous communication with a single receiver means there’s point-to-point

communication that delivers a message to exactly one of the consumers that’s reading from the

channel, and that the message is processed just once. However, there are special situations. For

instance, in a cloud system that tries to automatically recover from failures, the same message could

be sent multiple times. Due to network or other failures, the client has to be able to retry sending

messages, and the server has to implement an operation to be idempotent in order to process a

particular message just once.

Single-receiver message-based communication is especially well suited for sending asynchronous

commands from one microservice to another as shown in Figure 4-18 that illustrates this approach.

Once you start sending message-based communication (either with commands or events), you should

avoid mixing message-based communication with synchronous HTTP communication.

57 Architecting container and microservice-based applications

Figure 4-18. A single microservice receiving an asynchronous message

Note that when the commands come from client applications, they can be implemented as HTTP

synchronous commands. You should use message-based commands when you need higher scalability

or when you’re already in a message-based business process.

Multiple-receivers message-based communication

As a more flexible approach, you might also want to use a publish/subscribe mechanism so that your

communication from the sender will be available to additional subscriber microservices or to external

applications. Thus, it helps you to follow the open/closed principle in the sending service. That way,

additional subscribers can be added in the future without the need to modify the sender service.

When you use a publish/subscribe communication, you might be using an event bus interface to

publish events to any subscriber.

Asynchronous event-driven communication

When using asynchronous event-driven communication, a microservice publishes an integration event

when something happens within its domain and another microservice needs to be aware of it, like a

price change in a product catalog microservice. Additional microservices subscribe to the events so

they can receive them asynchronously. When that happens, the receivers might update their own

domain entities, which can cause more integration events to be published. This publish/subscribe

system is usually performed by using an implementation of an event bus. The event bus can be

designed as an abstraction or interface, with the API that’s needed to subscribe or unsubscribe to

events and to publish events. The event bus can also have one or more implementations based on any

inter-process and messaging broker, like a messaging queue or service bus that supports

asynchronous communication and a publish/subscribe model.

https://en.wikipedia.org/wiki/Open/closed_principle

58 Architecting container and microservice-based applications

If a system uses eventual consistency driven by integration events, it’s recommended that this

approach is made completely clear to the end user. The system shouldn’t use an approach that

mimics integration events, like SignalR or polling systems from the client. The end user and the

business owner have to explicitly embrace eventual consistency in the system and realize that in many

cases the business doesn’t have any problem with this approach, as long as it’s explicit. This is

important because users might expect to see some results immediately and this might not happen

with eventual consistency.

As noted earlier in the Challenges and solutions for distributed data management section, you can use

integration events to implement business tasks that span multiple microservices. Thus, you’ll have

eventual consistency between those services. An eventually consistent transaction is made up of a

collection of distributed actions. At each action, the related microservice updates a domain entity and

publishes another integration event that raises the next action within the same end-to-end business

task.

An important point is that you might want to communicate to multiple microservices that are

subscribed to the same event. To do so, you can use publish/subscribe messaging based on event-

driven communication, as shown in Figure 4-19. This publish/subscribe mechanism isn’t exclusive to

the microservice architecture. It’s similar to the way Bounded Contexts in DDD should communicate,

or to the way you propagate updates from the write database to the read database in the Command

and Query Responsibility Segregation (CQRS) architecture pattern. The goal is to have eventual

consistency between multiple data sources across your distributed system.

Figure 4-19. Asynchronous event-driven message communication

Your implementation will determine what protocol to use for event-driven, message-based

communications. AMQP can help achieve reliable queued communication.

When you use an event bus, you might want to use an abstraction level (like an event bus interface)

based on a related implementation in classes with code using the API from a message broker like

RabbitMQ or a service bus like Azure Service Bus with Topics. Alternatively, you might want to use a

higher-level service bus like NServiceBus, MassTransit, or Brighter to articulate your event bus and

publish/subscribe system.

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://www.rabbitmq.com/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

59 Architecting container and microservice-based applications

A note about messaging technologies for production systems

The messaging technologies available for implementing your abstract event bus are at different levels.

For instance, products like RabbitMQ (a messaging broker transport) and Azure Service Bus sit at a

lower level than other products like, NServiceBus, MassTransit, or Brighter, which can work on top of

RabbitMQ and Azure Service Bus. Your choice depends on how many rich features at the application

level and out-of-the-box scalability you need for your application. For implementing just a proof-of-

concept event bus for your development environment, as it was done in the eShopOnContainers

sample, a simple implementation on top of RabbitMQ running on a Docker container might be

enough.

However, for mission-critical and production systems that need hyper-scalability, you might want to

evaluate Azure Service Bus. For high-level abstractions and features that make the development of

distributed applications easier, we recommend that you evaluate other commercial and open-source

service buses, such as NServiceBus, MassTransit, and Brighter. Of course, you can build your own

service-bus features on top of lower-level technologies like RabbitMQ and Docker. But that plumbing

work might cost too much for a custom enterprise application.

Resiliently publishing to the event bus

A challenge when implementing an event-driven architecture across multiple microservices is how to

atomically update state in the original microservice while resiliently publishing its related integration

event into the event bus, somehow based on transactions. The following are a few ways to accomplish

this, although there could be additional approaches as well.

• Using a transactional (DTC-based) queue like MSMQ. (However, this is a legacy approach.)

• Using transaction log mining.

• Using full Event Sourcing pattern.

• Using the Outbox pattern: a transactional database table as a message queue that will be the

base for an event-creator component that would create the event and publish it.

Additional topics to consider when using asynchronous communication are message idempotence

and message deduplication. These topics are covered in the section Implementing event-based

communication between microservices (integration events) later in this guide.

Additional resources

• Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

• Publish/Subscribe Channel

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.ht

ml

• Udi Dahan. Clarified CQRS

http://udidahan.com/2009/12/09/clarified-cqrs/

https://www.scoop.it/t/sql-server-transaction-log-mining
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
http://gistlabs.com/2014/05/the-outbox/
http://soapatterns.org/design_patterns/event_driven_messaging
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://udidahan.com/2009/12/09/clarified-cqrs/

60 Architecting container and microservice-based applications

• Command and Query Responsibility Segregation (CQRS)

https://docs.microsoft.com/azure/architecture/patterns/cqrs

• Communicating Between Bounded Contexts

https://docs.microsoft.com/previous-versions/msp-n-p/jj591572(v=pandp.10)

• Eventual consistency

https://en.wikipedia.org/wiki/Eventual_consistency

• Jimmy Bogard. Refactoring Towards Resilience: Evaluating Coupling

https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

Creating, evolving, and versioning microservice APIs

and contracts
A microservice API is a contract between the service and its clients. You’ll be able to evolve a

microservice independently only if you do not break its API contract, which is why the contract is so

important. If you change the contract, it will impact your client applications or your API Gateway.

The nature of the API definition depends on which protocol you’re using. For instance, if you’re using

messaging (like AMQP), the API consists of the message types. If you’re using HTTP and RESTful

services, the API consists of the URLs and the request and response JSON formats.

However, even if you’re thoughtful about your initial contract, a service API will need to change over

time. When that happens—and especially if your API is a public API consumed by multiple client

applications — you typically can’t force all clients to upgrade to your new API contract. You usually

need to incrementally deploy new versions of a service in a way that both old and new versions of a

service contract are running simultaneously. Therefore, it’s important to have a strategy for your

service versioning.

When the API changes are small, like if you add attributes or parameters to your API, clients that use

an older API should switch and work with the new version of the service. You might be able to provide

default values for any missing attributes that are required, and the clients might be able to ignore any

extra response attributes.

However, sometimes you need to make major and incompatible changes to a service API. Because

you might not be able to force client applications or services to upgrade immediately to the new

version, a service must support older versions of the API for some period. If you’re using an HTTP-

based mechanism such as REST, one approach is to embed the API version number in the URL or into

an HTTP header. Then you can decide between implementing both versions of the service

simultaneously within the same service instance, or deploying different instances that each handle a

version of the API. A good approach for this is the Mediator pattern (for example, MediatR library) to

decouple the different implementation versions into independent handlers.

Finally, if you’re using a REST architecture, Hypermedia is the best solution for versioning your services

and allowing evolvable APIs.

https://docs.microsoft.com/azure/architecture/patterns/cqrs
https://docs.microsoft.com/previous-versions/msp-n-p/jj591572(v=pandp.10)
https://en.wikipedia.org/wiki/Eventual_consistency
https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/
https://www.amqp.org/
https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/jbogard/MediatR
https://www.infoq.com/articles/mark-baker-hypermedia

61 Architecting container and microservice-based applications

Additional resources

• Scott Hanselman. ASP.NET Core RESTful Web API versioning made easy

https://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

• Versioning a RESTful web API

https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-

web-api

• Roy Fielding. Versioning, Hypermedia, and REST

https://www.infoq.com/articles/roy-fielding-on-versioning

Microservices addressability and the service registry
Each microservice has a unique name (URL) that’s used to resolve its location. Your microservice needs

to be addressable wherever it’s running. If you have to think about which computer is running a

particular microservice, things can go bad quickly. In the same way that DNS resolves a URL to a

particular computer, your microservice needs to have a unique name so that its current location is

discoverable. Microservices need addressable names that make them independent from the

infrastructure that they’re running on. This implies that there’s an interaction between how your

service is deployed and how it’s discovered, because there needs to be a service registry. In the same

vein, when a computer fails, the registry service must be able to indicate where the service is now

running.

The service registry pattern is a key part of service discovery. The registry is a database containing the

network locations of service instances. A service registry needs to be highly available and up-to-date.

Clients could cache network locations obtained from the service registry. However, that information

eventually goes out of date and clients can no longer discover service instances. Consequently, a

service registry consists of a cluster of servers that use a replication protocol to maintain consistency.

In some microservice deployment environments (called clusters, to be covered in a later section),

service discovery is built-in. For example, an Azure Container Service with Kubernetes (AKS)

environment can handle service instance registration and deregistration. It also runs a proxy on each

cluster host that plays the role of server-side discovery router.

Additional resources

• Chris Richardson. Pattern: Service registry

https://microservices.io/patterns/service-registry.html

• Auth0. The Service Registry

https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

• Gabriel Schenker. Service discovery

https://lostechies.com/gabrielschenker/2016/01/27/service-discovery/

https://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx
https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://www.infoq.com/articles/roy-fielding-on-versioning
https://microservices.io/patterns/service-registry.html
https://microservices.io/patterns/service-registry.html
https://microservices.io/patterns/service-registry.html
https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/
https://lostechies.com/gabrielschenker/2016/01/27/service-discovery/

62 Architecting container and microservice-based applications

Creating composite UI based on microservices
Microservices architecture often starts with the server-side handling data and logic. However, a more

advanced approach is to design your application UI based on microservices as well. That means

having a composite UI produced by the microservices, instead of having microservices on the server

and just a monolithic client app consuming the microservices. With this approach, the microservices

you build can be complete with both logic and visual representation.

Figure 4-20 shows the simpler approach of just consuming microservices from a monolithic client

application. Of course, you could have an ASP.NET MVC service in between producing the HTML and

JavaScript. The figure is a simplification that highlights that you have a single (monolithic) client UI

consuming the microservices, which just focus on logic and data and not on the UI shape (HTML and

JavaScript).

Figure 4-20. A monolithic UI application consuming back-end microservices

In contrast, a composite UI is precisely generated and composed by the microservices themselves.

Some of the microservices drive the visual shape of specific areas of the UI. The key difference is that

you have client UI components (TypeScript classes, for example) based on templates, and the data-

shaping-UI ViewModel for those templates comes from each microservice.

At client application start-up time, each of the client UI components (TypeScript classes, for example)

registers itself with an infrastructure microservice capable of providing ViewModels for a given

scenario. If the microservice changes the shape, the UI changes also.

Figure 4-21 shows a version of this composite UI approach. This is simplified because you might have

other microservices that are aggregating granular parts that are based on different techniques. It

depends on whether you’re building a traditional web approach (ASP.NET MVC) or an SPA (Single

Page Application).

63 Architecting container and microservice-based applications

Figure 4-21. Example of a composite UI application shaped by back-end microservices

Each of those UI composition microservices would be similar to a small API Gateway. But in this case

each one is responsible for a small UI area.

A composite UI approach that’s driven by microservices can be more challenging or less so,

depending on what UI technologies you’re using. For instance, you won’t use the same techniques for

building a traditional web application that you use for building an SPA or for native mobile app (as

when developing Xamarin apps, which can be more challenging for this approach).

The eShopOnContainers sample application uses the monolithic UI approach for multiple reasons.

First, it’s an introduction to microservices and containers. A composite UI is more advanced but also

requires further complexity when designing and developing the UI. Second, eShopOnContainers also

provides a native mobile app based on Xamarin, which would make it more complex on the client C#

side.

However, we encourage you to use the following references to learn more about composite UI based

on microservices.

Additional resources

• Composite UI using ASP.NET (Particular’s Workshop)

https://github.com/Particular/Workshop/tree/master/demos/asp-net-core

• Ruben Oostinga. The Monolithic Frontend in the Microservices Architecture

https://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/

• Mauro Servienti. The secret of better UI composition

https://particular.net/blog/secret-of-better-ui-composition

• Viktor Farcic. Including Front-End Web Components Into Microservices

https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-

microservices/

https://aka.ms/MicroservicesArchitecture
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://blog.xebia.com/the-monolithic-frontend-in-the-microservices-architecture/
https://particular.net/blog/secret-of-better-ui-composition
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/

64 Architecting container and microservice-based applications

• Managing Frontend in the Microservices Architecture

https://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

Resiliency and high availability in microservices
Dealing with unexpected failures is one of the hardest problems to solve, especially in a distributed

system. Much of the code that developers write involves handling exceptions, and this is also where

the most time is spent in testing. The problem is more involved than writing code to handle failures.

What happens when the machine where the microservice is running fails? Not only do you need to

detect this microservice failure (a hard problem on its own), but you also need something to restart

your microservice.

A microservice needs to be resilient to failures and to be able to restart often on another machine for

availability. This resiliency also comes down to the state that was saved on behalf of the microservice,

where the microservice can recover this state from, and whether the microservice can restart

successfully. In other words, there needs to be resiliency in the compute capability (the process can

restart at any time) as well as resilience in the state or data (no data loss, and the data remains

consistent).

The problems of resiliency are compounded during other scenarios, such as when failures occur

during an application upgrade. The microservice, working with the deployment system, needs to

determine whether it can continue to move forward to the newer version or instead roll back to a

previous version to maintain a consistent state. Questions such as whether enough machines are

available to keep moving forward and how to recover previous versions of the microservice need to

be considered. This requires the microservice to emit health information so that the overall application

and orchestrator can make these decisions.

In addition, resiliency is related to how cloud-based systems must behave. As mentioned, a cloud-

based system must embrace failures and must try to automatically recover from them. For instance, in

case of network or container failures, client apps or client services must have a strategy to retry

sending messages or to retry requests, since in many cases failures in the cloud are partial. The

Implementing Resilient Applications section in this guide addresses how to handle partial failure. It

describes techniques like retries with exponential backoff or the Circuit Breaker pattern in .NET Core

by using libraries like Polly, which offers a large variety of policies to handle this subject.

Health management and diagnostics in microservices

It may seem obvious, and it’s often overlooked, but a microservice must report its health and

diagnostics. Otherwise, there’s little insight from an operations perspective. Correlating diagnostic

events across a set of independent services and dealing with machine clock skews to make sense of

the event order is challenging. In the same way that you interact with a microservice over agreed-

upon protocols and data formats, there’s a need for standardization in how to log health and

diagnostic events that ultimately end up in an event store for querying and viewing. In a microservices

approach, it’s key that different teams agree on a single logging format. There needs to be a

consistent approach to viewing diagnostic events in the application.

https://allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html
https://github.com/App-vNext/Polly

65 Architecting container and microservice-based applications

Health checks

Health is different from diagnostics. Health is about the microservice reporting its current state to take

appropriate actions. A good example is working with upgrade and deployment mechanisms to

maintain availability. Although a service might currently be unhealthy due to a process crash or

machine reboot, the service might still be operational. The last thing you need is to make this worse

by performing an upgrade. The best approach is to do an investigation first or allow time for the

microservice to recover. Health events from a microservice help us make informed decisions and, in

effect, help create self-healing services.

In the Implementing health checks in ASP.NET Core services section of this guide, we explain how to

use a new ASP.NET HealthChecks library in your microservices so they can report their state to a

monitoring service to take appropriate actions.

You also have the option of using an excellent open-source library called Beat Pulse, available on

GitHub and as a NuGet package. This library also does health checks, with a twist, it handles two types

of checks:

• Liveness: Checks if the microservice is alive, that is, if it’s able to accept requests and respond.

• Readiness: Checks if the microservice’s dependencies (Database, queue services, etc.) are

themselves ready, so the microservice can do what it’s supposed to do.

Using diagnostics and logs event streams

Logs provide information about how an application or service is running, including exceptions,

warnings, and simple informational messages. Usually, each log is in a text format with one line per

event, although exceptions also often show the stack trace across multiple lines.

In monolithic server-based applications, you can simply write logs to a file on disk (a logfile) and then

analyze it with any tool. Since application execution is limited to a fixed server or VM, it generally isn’t

too complex to analyze the flow of events. However, in a distributed application where multiple

services are executed across many nodes in an orchestrator cluster, being able to correlate distributed

events is a challenge.

A microservice-based application should not try to store the output stream of events or logfiles by

itself, and not even try to manage the routing of the events to a central place. It should be

transparent, meaning that each process should just write its event stream to a standard output that

underneath will be collected by the execution environment infrastructure where it’s running. An

example of these event stream routers is Microsoft.Diagnostic.EventFlow, which collects event streams

from multiple sources and publishes it to output systems. These can include simple standard output

for a development environment or cloud systems like Azure Monitor and Azure Diagnostics. There are

also good third-party log analysis platforms and tools that can search, alert, report, and monitor logs,

even in real time, like Splunk.

Orchestrators managing health and diagnostics information

When you create a microservice-based application, you need to deal with complexity. Of course, a

single microservice is simple to deal with, but dozens or hundreds of types and thousands of

instances of microservices is a complex problem. It isn’t just about building your microservice

architecture—you also need high availability, addressability, resiliency, health, and diagnostics if you

intend to have a stable and cohesive system.

https://github.com/Xabaril/BeatPulse
https://www.nuget.org/packages/BeatPulse/
https://github.com/Azure/diagnostics-eventflow
https://azure.microsoft.com/services/monitor/
https://docs.microsoft.com/azure/azure-monitor/platform/diagnostics-extension-overview
https://www.splunk.com/goto/Splunk_Log_Management?ac=ga_usa_log_analysis_phrase_Mar17&_kk=logs%20analysis&gclid=CNzkzIrex9MCFYGHfgodW5YOtA

66 Architecting container and microservice-based applications

Figure 4-22. A Microservice Platform is fundamental for an application’s health management

The complex problems shown in Figure 4-22 are very hard to solve by yourself. Development teams

should focus on solving business problems and building custom applications with microservice-based

approaches. They should not focus on solving complex infrastructure problems; if they did, the cost of

any microservice-based application would be huge. Therefore, there are microservice-oriented

platforms, referred to as orchestrators or microservice clusters, that try to solve the hard problems of

building and running a service and using infrastructure resources efficiently. This reduces the

complexities of building applications that use a microservices approach.

Different orchestrators might sound similar, but the diagnostics and health checks offered by each of

them differ in features and state of maturity, sometimes depending on the OS platform, as explained

in the next section.

Additional resources

• The Twelve-Factor App. XI. Logs: Treat logs as event streams

https://12factor.net/logs

• Microsoft Diagnostic EventFlow Library GitHub repo.

https://github.com/Azure/diagnostics-eventflow

• What is Azure Diagnostics

https://docs.microsoft.com/azure/azure-diagnostics

• Connect Windows computers to the Azure Monitor service

https://docs.microsoft.com/azure/azure-monitor/platform/agent-windows

• Logging What You Mean: Using the Semantic Logging Application Block

https://docs.microsoft.com/previous-versions/msp-n-p/dn440729(v=pandp.60)

• Splunk Official site.

https://www.splunk.com/

https://12factor.net/logs
https://github.com/Azure/diagnostics-eventflow
https://docs.microsoft.com/azure/azure-diagnostics
https://docs.microsoft.com/azure/azure-monitor/platform/agent-windows
https://docs.microsoft.com/previous-versions/msp-n-p/dn440729(v=pandp.60)
https://www.splunk.com/

67 Architecting container and microservice-based applications

• EventSource Class API for events tracing for Windows (ETW)

https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource

Orchestrating microservices and multi-container

applications for high scalability and availability
Using orchestrators for production-ready applications is essential if your application is based on

microservices or simply split across multiple containers. As introduced previously, in a microservice-

based approach, each microservice owns its model and data so that it will be autonomous from a

development and deployment point of view. But even if you have a more traditional application that’s

composed of multiple services (like SOA), you’ll also have multiple containers or services comprising a

single business application that need to be deployed as a distributed system. These kinds of systems

are complex to scale out and manage; therefore, you absolutely need an orchestrator if you want to

have a production-ready and scalable multi-container application.

Figure 4-23 illustrates deployment into a cluster of an application composed of multiple microservices

(containers).

Figure 4-23. A cluster of containers

It looks like a logical approach. But how are you handling load-balancing, routing, and orchestrating

these composed applications?

The plain Docker Engine in single Docker hosts meets the needs of managing single image instances

on one host, but it falls short when it comes to managing multiple containers deployed on multiple

hosts for more complex distributed applications. In most cases, you need a management platform

that will automatically start containers, scale-out containers with multiple instances per image,

xref:System.Diagnostics.Tracing.EventSource

68 Architecting container and microservice-based applications

suspend them or shut them down when needed, and ideally also control how they access resources

like the network and data storage.

To go beyond the management of individual containers or very simple composed apps and move

toward larger enterprise applications with microservices, you must turn to orchestration and clustering

platforms.

From an architecture and development point of view, if you’re building large enterprise composed of

microservices-based applications, it’s important to understand the following platforms and products

that support advanced scenarios:

Clusters and orchestrators. When you need to scale out applications across many Docker hosts, as

when a large microservice-based application, it’s critical to be able to manage all those hosts as a

single cluster by abstracting the complexity of the underlying platform. That’s what the container

clusters and orchestrators provide. Kubernetes is an example of an orchestrator, and is available in

Azure through Azure Kubernetes Service.

Schedulers. Scheduling means to have the capability for an administrator to launch containers in a

cluster so they also provide a UI. A cluster scheduler has several responsibilities: to use the cluster’s

resources efficiently, to set the constraints provided by the user, to efficiently load-balance containers

across nodes or hosts, and to be robust against errors while providing high availability.

The concepts of a cluster and a scheduler are closely related, so the products provided by different

vendors often provide both sets of capabilities. The following list shows the most important platform

and software choices you have for clusters and schedulers. These orchestrators are generally offered

in public clouds like Azure.

Software platforms for container clustering, orchestration, and

scheduling

Kubernetes

Kubernetes is an open-source product that provides functionality that ranges from cluster

infrastructure and container scheduling to orchestrating capabilities. It lets you automate deployment,

scaling, and operations of application containers across clusters of hosts.

Kubernetes provides a container-centric infrastructure that groups application containers into logical

units for easy management and discovery.

Kubernetes is mature in Linux, less mature in Windows.

https://kubernetes.io/

69 Architecting container and microservice-based applications

Azure Kubernetes Service (AKS)

Azure Kubernetes Service (AKS) is a managed Kubernetes container orchestration service in Azure that

simplifies Kubernetes cluster’s management, deployment, and operations.

Using container-based orchestrators in Microsoft Azure

Several cloud vendors offer Docker containers support plus Docker clusters and orchestration support,

including Microsoft Azure, Amazon EC2 Container Service, and Google Container Engine. Microsoft

Azure provides Docker cluster and orchestrator support through Azure Kubernetes Service (AKS).

Using Azure Kubernetes Service

A Kubernetes cluster pools multiple Docker hosts and exposes them as a single virtual Docker host, so

you can deploy multiple containers into the cluster and scale-out with any number of container

instances. The cluster will handle all the complex management plumbing, like scalability, health, and

so forth.

AKS provides a way to simplify the creation, configuration, and management of a cluster of virtual

machines in Azure that are preconfigured to run containerized applications. Using an optimized

configuration of popular open-source scheduling and orchestration tools, AKS enables you to use

your existing skills or draw on a large and growing body of community expertise to deploy and

manage container-based applications on Microsoft Azure.

Azure Kubernetes Service optimizes the configuration of popular Docker clustering open-source tools

and technologies specifically for Azure. You get an open solution that offers portability for both your

containers and your application configuration. You select the size, the number of hosts, and the

orchestrator tools, and AKS handles everything else.

https://azure.microsoft.com/services/kubernetes-service/

70 Architecting container and microservice-based applications

Figure 4-24. Kubernetes cluster’s simplified structure and topology

In figure 4-24 you can see the structure of a Kubernetes cluster where a master node (VM) controls

most of the coordination of the cluster and you can deploy containers to the rest of the nodes which

are managed as a single pool from an application point of view and allows you to scale to thousands

or even tens of thousands of containers.

Development environment for Kubernetes

In the development environment, Docker announced in July 2018 that Kubernetes can also run in a

single development machine (Windows 10 or macOS) by simply installing Docker Desktop. You can

later deploy to the cloud (AKS) for further integration tests, as shown in figure 4-25.

https://blog.docker.com/2018/07/kubernetes-is-now-available-in-docker-desktop-stable-channel/
https://docs.docker.com/install/

71 Architecting container and microservice-based applications

Figure 4-25. Running Kubernetes in dev machine and the cloud

Getting started with Azure Kubernetes Service (AKS)

To begin using AKS, you deploy an AKS cluster from the Azure portal or by using the CLI. For more

information on deploying a Kubernetes cluster in Azure, see Deploy an Azure Kubernetes Service

(AKS) cluster.

There are no fees for any of the software installed by default as part of AKS. All default options are

implemented with open-source software. AKS is available for multiple virtual machines in Azure.

You’re charged only for the compute instances you choose, as well as the other underlying

infrastructure resources consumed, such as storage and networking. There are no incremental charges

for AKS itself.

For further implementation information on deployment to Kubernetes based on kubectl and original

.yaml files, check the post on Setting eShopOnContainers up in AKS (Azure Kubernetes Service).

Deploying with Helm charts into Kubernetes clusters

When deploying an application to a Kubernetes cluster, you can use the original kubectl.exe CLI tool

using deployment files based on the native format (.yaml files), as already mentioned in the previous

section. However, for more complex Kubernetes applications such as when deploying complex

microservice-based applications, it’s recommended to use Helm.

Helm Charts helps you define, version, install, share, upgrade or rollback even the most complex

Kubernetes application.

Going further, Helm usage is also recommended because additional Kubernetes environments in

Azure, such as Azure Dev Spaces are also based on Helm charts.

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://github.com/dotnet-architecture/eShopOnContainers/wiki/10.-Setting-the-solution-up-in-AKS-(Azure-Kubernetes-Service)
https://helm.sh/
https://docs.microsoft.com/azure/dev-spaces/azure-dev-spaces

72 Architecting container and microservice-based applications

Helm is maintained by the Cloud Native Computing Foundation (CNCF) - in collaboration with

Microsoft, Google, Bitnami and the Helm contributor community.

For further implementation information on Helm charts and Kubernetes check the post on Using Helm

Charts to deploy eShopOnContainers to AKS.

Use Azure Dev Spaces for your Kubernetes application lifecycle

Azure Dev Spaces provides a rapid, iterative Kubernetes development experience for teams. With

minimal dev machine setup, you can iteratively run and debug containers directly in Azure Kubernetes

Service (AKS). Develop on Windows, Mac, or Linux using familiar tools like Visual Studio, Visual Studio

Code, or the command line.

As mentioned, Azure Dev Spaces uses Helm charts when deploying the container-based applications.

Azure Dev Spaces helps development teams be more productive on Kubernetes because it allows you

to rapidly iterate and debug code directly in a global Kubernetes cluster in Azure by simply using

Visual Studio 2017 or Visual Studio Code. That Kubernetes cluster in Azure is a shared managed

Kubernetes cluster, so your team can collaboratively work together. You can develop your code in

isolation, then deploy to the global cluster and do end-to-end testing with other components without

replicating or mocking up dependencies.

As shown in figure 4-26, the most differential feature in Azure Dev Spaces is capability of creating

‘spaces’ that can run integrated to the rest of the global deployment in the cluster.

Figure 4-26. Using multiple spaces in Azure Dev Spaces

Basically you can set up a shared dev space in Azure. Each developer can focus on just their part of

the application, and can iteratively develop pre-commit code in a dev space that already contains all

the other services and cloud resources that their scenarios depend on. Dependencies are always up-

to-date, and developers are working in a way that mirrors production.

Azure Dev Spaces provides the concept of a space, which allows you to work in relative isolation, and

without the fear of breaking your team’s work. Each dev space is part of a hierarchical structure that

allows you to override one microservice (or many), from the “top” master dev space, with your own

work-in-progress microservice.

https://www.cncf.io/
https://github.com/dotnet-architecture/eShopOnContainers/wiki/10.1-Deploying-to-AKS-using-Helm-Charts
https://github.com/dotnet-architecture/eShopOnContainers/wiki/10.1-Deploying-to-AKS-using-Helm-Charts
https://docs.microsoft.com/azure/dev-spaces/azure-dev-spaces

73 Architecting container and microservice-based applications

This feature is based on URL prefixes, so when using any dev space prefix in the url, a request is

served from the target microservice if it exists in the dev space, otherwise it’s forwarded up to the first

instance of the target microservice found in the hierarchy, eventually getting to the master dev space

at the top.

You can see the eShopOnContainers wiki page on Azure Dev Spaces, to get a practical view on a

concrete example.

For further information check the article on Team Development with Azure Dev Spaces.

Additional resources

• Getting started with Azure Kubernetes Service (AKS)

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

• Azure Dev Spaces

https://docs.microsoft.com/azure/dev-spaces/azure-dev-spaces

• Kubernetes The official site.

https://kubernetes.io/

https://github.com/dotnet-architecture/eShopOnContainers/wiki/10.1-Using-Azure-Dev-Spaces-and-AKS
https://docs.microsoft.com/azure/dev-spaces/team-development-netcore
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/dev-spaces/azure-dev-spaces
https://kubernetes.io/

74 Development Process for Docker-Based Applications

S E C T I O N 5

Development Process for
Docker-Based Applications

Develop containerized .NET applications the way you like, either IDE focused with Visual Studio and

Visual Studio tools for Docker or CLI/Editor focused with Docker CLI and Visual Studio Code.

Development environment for Docker apps

Development tool choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has tools that

you can use for developing Docker applications.

Visual Studio (for Windows). When developing Docker-based applications with Visual Studio, it’s

recommended to use Visual Studio 2017 version 15.7 or later, that comes with tools for Docker

already built-in. The tools for Docker let you develop, run, and validate your applications directly in

the target Docker environment. You can press F5 to run and debug your application (single container

or multiple containers) directly into a Docker host, or press CTRL+F5 to edit and refresh your

application without having to rebuild the container. This is the most powerful development choice for

Docker-based apps.

Visual Studio for Mac. It’s an IDE, evolution of Xamarin Studio, running in macOS and supports

Docker since mid-2017. This should be the preferred choice for developers working in Mac machines

who also want to use a powerful IDE.

Visual Studio Code and Docker CLI. If you prefer a lightweight and cross-platform editor that

supports any development language, you can use Microsoft Visual Studio Code (VS Code) and the

Docker CLI. This is a cross-platform development approach for Mac, Linux, and Windows. Additionally,

Visual Studio Code supports extensions for Docker such as IntelliSense for Dockerfiles and shortcut

tasks to run Docker commands from the editor.

By installing Docker Desktop Community Edition (CE), you can use a single Docker CLI to build apps

for both Windows and Linux.

Additional resources

• Visual Studio. Official site.

https://visualstudio.microsoft.com/vs/

https://hub.docker.com/search/?type=edition&offering=community
https://visualstudio.microsoft.com/vs/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link

75 Development Process for Docker-Based Applications

• Visual Studio Code. Official site.

https://code.visualstudio.com/download

• Docker Desktop for Windows Community Edition (CE)

https://hub.docker.com/editions/community/docker-ce-desktop-windows

• Docker Desktop for Mac Community Edition (CE)

https://hub.docker.com/editions/community/docker-ce-desktop-mac

.NET languages and frameworks for Docker containers

As mentioned in earlier sections of this guide, you can use .NET Framework, .NET Core, or the open-

source Mono project when developing Docker containerized .NET applications. You can develop in

C#, F#, or Visual Basic when targeting Linux or Windows Containers, depending on which .NET

framework is in use. For more details about.NET languages, see the blog post The .NET Language

Strategy.

Development workflow for Docker apps
The application development life cycle starts at your computer, as a developer, where you code the

application using your preferred language and test it locally. With this workflow, no matter which

language, framework, and platform you choose, you’re always developing and testing Docker

containers, but doing so locally.

Each container (an instance of a Docker image) includes the following components:

• An operating system selection, for example, a Linux distribution, Windows Nano Server, or

Windows Server Core.

• Files added during development, for example, source code and application binaries.

• Configuration information, such as environment settings and dependencies.

Workflow for developing Docker container-based applications

This section describes the inner-loop development workflow for Docker container-based applications.

The inner-loop workflow means it’s not considering the broader DevOps workflow, that can include

up to production deployment, and just focuses on the development work done on the developer’s

computer. The initial steps to set up the environment aren’t included, since those steps are done only

once.

An application is composed of your own services plus additional libraries (dependencies). The

following are the basic steps you usually take when building a Docker application, as illustrated in

Figure 5-1.

https://code.visualstudio.com/download
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://devblogs.microsoft.com/dotnet/the-net-language-strategy/
https://devblogs.microsoft.com/dotnet/the-net-language-strategy/

76 Development Process for Docker-Based Applications

Figure 5-1. Step-by-step workflow for developing Docker containerized apps

In this section, this whole process is detailed and every major step is explained by focusing on a Visual

Studio environment.

When you’re using an editor/CLI development approach (for example, Visual Studio Code plus Docker

CLI on macOS or Windows), you need to know every step, generally in more detail than if you’re using

Visual Studio. For more information about working in a CLI environment, see the e-book

Containerized Docker Application lifecycle with Microsoft Platforms and Tools.

When you’re using Visual Studio 2017, many of those steps are handled for you, which dramatically

improves your productivity. This is especially true when you’re using Visual Studio 2017 and targeting

multi-container applications. For instance, with just one mouse click, Visual Studio adds the Dockerfile

and docker-compose.yml file to your projects with the configuration for your application. When you

run the application in Visual Studio, it builds the Docker image and runs the multi-container

application directly in Docker; it even allows you to debug several containers at once. These features

will boost your development speed.

However, just because Visual Studio makes those steps automatic doesn’t mean that you don’t need

to know what’s going on underneath with Docker. Therefore, the following guidance details every

step.

Step 1. Start coding and create your initial application or service

baseline

Developing a Docker application is similar to the way you develop an application without Docker. The

difference is that while developing for Docker, you’re deploying and testing your application or

services running within Docker containers in your local environment (either a Linux VM setup by

Docker or directly Windows if using Windows Containers).

https://aka.ms/dockerlifecycleebook/

77 Development Process for Docker-Based Applications

Set up your local environment with Visual Studio

To begin, make sure you have Docker Community Edition (CE) for Windows installed, as explained in

the following instructions:

Get started with Docker CE for Windows

In addition, you need Visual Studio 2017 version 15.7 or later, with the .NET Core cross-platform

development workload installed, as shown in Figure 5-2.

Figure 5-2. Selecting the .NET Core cross-platform development workload during Visual Studio 2017 setup

You can start coding your application in plain .NET (usually in .NET Core if you’re planning to use

containers) even before enabling Docker in your application and deploying and testing in Docker.

However, it is recommended that you start working on Docker as soon as possible, because that will

be the real environment and any issues can be discovered as soon as possible. This is encouraged

because Visual Studio makes it so easy to work with Docker that it almost feels transparent—the best

example when debugging multi-container applications from Visual Studio.

Additional resources

• Get started with Docker CE for Windows

https://docs.docker.com/docker-for-windows/

• Visual Studio 2017

https://visualstudio.microsoft.com/downloads/

Step 2. Create a Dockerfile related to an existing .NET base image

You need a Dockerfile for each custom image you want to build; you also need a Dockerfile for each

container to be deployed, whether you deploy automatically from Visual Studio or manually using the

Docker CLI (docker run and docker-compose commands). If your application contains a single custom

service, you need a single Dockerfile. If your application contains multiple services (as in a

microservices architecture), you need one Dockerfile for each service.

The Dockerfile is placed in the root folder of your application or service. It contains the commands

that tell Docker how to set up and run your application or service in a container. You can manually

create a Dockerfile in code and add it to your project along with your .NET dependencies.

With Visual Studio and its tools for Docker, this task requires only a few mouse clicks. When you

create a new project in Visual Studio 2017, there’s an option named Enable Container (Docker)

Support, as shown in Figure 5-3.

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2017

78 Development Process for Docker-Based Applications

Figure 5-3. Enabling Docker Support when creating a new ASP.NET Core project in Visual Studio 2017

You can also enable Docker support on an existing ASP.NET Core web app project by right-clicking

the project in Solution Explorer and selecting Add > Docker Support, as shown in Figure 5-4.

Figure 5-4. Enabling Docker support in an existing Visual Studio 2017 project

79 Development Process for Docker-Based Applications

This action adds a Dockerfile to the project with the required configuration, and is only available on

ASP.NET Core projects.

In a similar fashion, Visual Studio can also add a docker-compose.yml file for the whole solution with

the option Add > Container Orchestrator Support. In step 4, we’ll explore this option in greater

detail.

Using an existing official .NET Docker image

You usually build a custom image for your container on top of a base image you get from an official

repository like the Docker Hub registry. That is precisely what happens under the covers when you

enable Docker support in Visual Studio. Your Dockerfile will use an existing aspnetcore image.

Earlier we explained which Docker images and repos you can use, depending on the framework and

OS you have chosen. For instance, if you want to use ASP.NET Core (Linux or Windows), the image to

use is mcr.microsoft.com/dotnet/core/aspnet:2.2. Therefore, you just need to specify what base

Docker image you will use for your container. You do that by adding FROM

mcr.microsoft.com/dotnet/core/aspnet:2.2 to your Dockerfile. This will be automatically

performed by Visual Studio, but if you were to update the version, you update this value.

Using an official .NET image repository from Docker Hub with a version number ensures that the same

language features are available on all machines (including development, testing, and production).

The following example shows a sample Dockerfile for an ASP.NET Core container.

FROM mcr.microsoft.com/dotnet/core/aspnet:2.2
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", " MySingleContainerWebApp.dll "]

In this case, the image is based on version 2.2 of the official ASP.NET Core Docker image (multi-arch

for Linux and Windows). This is the setting FROM mcr.microsoft.com/dotnet/core/aspnet:2.2. (For

more information about this base image, see the .NET Core Docker Image page.) In the Dockerfile,

you also need to instruct Docker to listen on the TCP port you will use at runtime (in this case, port 80,

as configured with the EXPOSE setting).

You can specify additional configuration settings in the Dockerfile, depending on the language and

framework you’re using. For instance, the ENTRYPOINT line with [“dotnet”,

“MySingleContainerWebApp.dll”] tells Docker to run a .NET Core application. If you’re using the

SDK and the .NET Core CLI (dotnet CLI) to build and run the .NET application, this setting would be

different. The bottom line is that the ENTRYPOINT line and other settings will be different depending

on the language and platform you choose for your application.

Additional resources

• Building Docker Images for .NET Core Applications

https://docs.microsoft.com/dotnet/core/docker/building-net-docker-images

• Build your own image. In the official Docker documentation.

https://docs.docker.com/engine/tutorials/dockerimages/

https://hub.docker.com/
https://hub.docker.com/_/microsoft-dotnet-core/
https://docs.microsoft.com/dotnet/core/docker/building-net-docker-images
https://docs.docker.com/engine/tutorials/dockerimages/

80 Development Process for Docker-Based Applications

• Staying up-to-date with .NET Container Images

https://devblogs.microsoft.com/dotnet/staying-up-to-date-with-net-container-images/

• Using .NET and Docker Together - DockerCon 2018 Update

https://devblogs.microsoft.com/dotnet/using-net-and-docker-together-dockercon-2018-

update/

Using multi-arch image repositories

A single repo can contain platform variants, such as a Linux image and a Windows image. This feature

allows vendors like Microsoft (base image creators) to create a single repo to cover multiple platforms

(that is Linux and Windows). For example, the dotnet/core repository available in the Docker Hub

registry provides support for Linux and Windows Nano Server by using the same repo name.

If you specify a tag, targeting a platform that is explicit like in the following cases:

• microsoft/dotnet:2.2-aspnetcore-runtime-stretch-slim

Targets: .NET Core 2.2 runtime-only on Linux

• microsoft/dotnet:2.2-aspnetcore-runtime-nanoserver-1809

Targets: .NET Core 2.2 runtime-only on Windows Nano Server

But, if you specify the same image name, even with the same tag, the multi-arch images (like the

aspnetcore image) will use the Linux or Windows version depending on the Docker host OS you’re

deploying, as shown in the following example:

• microsoft/dotnet:2.2-aspnetcore-runtime

Multi-arch: .NET Core 2.2 runtime-only on Linux or Windows Nano Server depending on the

Docker host OS

This way, when you pull an image from a Windows host, it will pull the Windows variant, and pulling

the same image name from a Linux host will pull the Linux variant.

Multi-stage builds in Dockerfile

The Dockerfile is similar to a batch script. Similar to what you would do if you had to set up the

machine from the command line.

It starts with a base image that sets up the initial context, it’s like the startup filesystem, that sits on

top of the host OS. It’s not an OS, but you can think of if like “the” OS inside the container.

The execution of every command line creates a new layer on the filesystem with the changes from the

previous one, so that, when combined, produce the resulting filesystem.

Since every new layer “rests” on top of the previous one and the resulting image size increases with

every command, images can get very large if they have to include, for example, the SDK needed to

build and publish an application.

This is where multi-stage builds get into the plot (from Docker 17.05 and higher) to do their magic.

The core idea is that you can separate the Dockerfile execution process in stages, where a stage is an

initial image followed by one or more commands, and the last stage determines the final image size.

https://devblogs.microsoft.com/dotnet/staying-up-to-date-with-net-container-images/
https://devblogs.microsoft.com/dotnet/using-net-and-docker-together-dockercon-2018-update/
https://devblogs.microsoft.com/dotnet/using-net-and-docker-together-dockercon-2018-update/
https://hub.docker.com/_/microsoft-dotnet-core/

81 Development Process for Docker-Based Applications

In short, multi-stage builds allow splitting the creation in different “phases” and then assemble the

final image taking only the relevant directories from the intermediate stages. The general strategy to

use this feature is:

4. Use a base SDK image (doesn’t matter how large), with everything needed to build and publish

the application to a folder and then

5. Use a base, small, runtime-only image and copy the publishing folder from the previous stage to

produce a small final image.

Probably the best way to understand multi-stage is going through a Dockerfile in detail, line by line,

so let’s begin with the initial Dockerfile created by Visual Studio when adding Docker support to a

project and will get into some optimizations later.

The initial Dockerfile might look something like this:

 1 FROM mcr.microsoft.com/dotnet/core/aspnet:2.2 AS base
 2 WORKDIR /app
 3 EXPOSE 80
 4
 5 FROM mcr.microsoft.com/dotnet/core/sdk:2.2 AS build
 6 WORKDIR /src
 7 COPY src/Services/Catalog/Catalog.API/Catalog.API.csproj …
 8 COPY src/BuildingBlocks/HealthChecks/src/Microsoft.AspNetCore.HealthChecks …
 9 COPY src/BuildingBlocks/HealthChecks/src/Microsoft.Extensions.HealthChecks …
10 COPY src/BuildingBlocks/EventBus/IntegrationEventLogEF/ …
11 COPY src/BuildingBlocks/EventBus/EventBus/EventBus.csproj …
12 COPY src/BuildingBlocks/EventBus/EventBusRabbitMQ/EventBusRabbitMQ.csproj …
13 COPY src/BuildingBlocks/EventBus/EventBusServiceBus/EventBusServiceBus.csproj …
14 COPY src/BuildingBlocks/WebHostCustomization/WebHost.Customization …
15 COPY src/BuildingBlocks/HealthChecks/src/Microsoft.Extensions …
16 COPY src/BuildingBlocks/HealthChecks/src/Microsoft.Extensions …
17 RUN dotnet restore src/Services/Catalog/Catalog.API/Catalog.API.csproj
18 COPY . .
19 WORKDIR /src/src/Services/Catalog/Catalog.API
20 RUN dotnet build Catalog.API.csproj -c Release -o /app
21
22 FROM build AS publish
23 RUN dotnet publish Catalog.API.csproj -c Release -o /app
24
25 FROM base AS final
26 WORKDIR /app
27 COPY --from=publish /app .
28 ENTRYPOINT ["dotnet", "Catalog.API.dll"]

And these are the details, line by line:

6. Begin a stage with a “small” runtime-only base image, call it base for reference.

7. Create /app directory in the image.

8. Expose port 80.

9. Begin a new stage with “large” image for building/publishing, call it build for reference.

10. Create directory /src in the image.

11. Up to line 16, copy referenced projects .csproj files, to be able to restore packages later.

82 Development Process for Docker-Based Applications

12. Restore packages for the Catalog.API project and the referenced projects.

13. Copy all directory tree for the solution (except the files/directories included in the

.dockerignore file) from to the /src directory in the image.

14. Change current folder to Catalog.API project.

15. Build project (and other project dependencies) and output to /app directory in the image.

16. Begin a new stage continuing from build, call it publish for reference.

17. Publish project (and dependencies) and output to /app directory in the image.

18. Begin a new stage continuing from base and call it final

19. Change current directory to /app

20. Copy the /app directory from stage publish to the current directory

21. Define the command to run when the container is started.

Now let’s explore some optimizations to improve the whole process performance that, in the case of

eShopOnContainers, means about 22 minutes or more to build the complete solution in Linux

containers.

You’ll take advantage of Docker’s layer cache feature, which is quite simple: if the base image and the

commands are the same as some previously executed, it can just use the resulting layer without the

need to execute the commands, thus saving some time.

So, let’s focus on the build stage, lines 5-6 are mostly the same, but lines 7-17 are different for every

service from eShopOnContainers, so they have to execute every single time, however if you changed

lines 7-16 to:

COPY . .

Then it would be just the same for every service, it would copy the whole solution and would create a

larger layer but:

1) The copy process would only be executed the first time (and when rebuilding if a file is changed)

and would use the cache for all other services and

2) Since the larger image occurs in an intermediate stage it, doesn’t affect the final image size.

The next significant optimization involves the restore command executed in line 17, which is also

different for every service of eShopOnContainers. If you change that line to just:

RUN dotnet restore

It would restore the packages for the whole solution, but then again, it would do it just once, instead

of the 15 times with the current strategy.

However, dotnet restore only runs if there’s a single project or solution file in the folder, so

achieving this is a bit more complicated and the way to solve it, without getting into too many details,

is this:

83 Development Process for Docker-Based Applications

22. Add the following lines to .dockerignore:

– *.sln, to ignore all solution files in the main folder tree

– !eShopOnContainers-ServicesAndWebApps.sln, to include only this solution file.

23. Include the /ignoreprojectextensions:.dcproj argument to dotnet restore, so it also

ignores the docker-compose project and only restores the packages for the

eShopOnContainers-ServicesAndWebApps solution.

For the final optimization, it just happens that line 20 is redundant, as line 23 also builds the

application and comes, in essence, right after line 20, so there goes another time-consuming

command.

The resulting file is then:

 1 FROM mcr.microsoft.com/dotnet/core/aspnet:2.2 AS base
 2 WORKDIR /app
 3 EXPOSE 80
 4
 5 FROM mcr.microsoft.com/dotnet/core/sdk:2.2 AS publish
 6 WORKDIR /src
 7 COPY . .
 8 RUN dotnet restore /ignoreprojectextensions:.dcproj
 9 WORKDIR /src/src/Services/Catalog/Catalog.API
10 RUN dotnet publish Catalog.API.csproj -c Release -0 /app
11
12 FROM base AS final
13 WORKDIR /app
14 COPY --from=publish /app
15 ENTRYPOINT ["dotnet", "Catalog.API.dll"]

Creating your base image from scratch

You can create your own Docker base image from scratch. This scenario is not recommended for

someone who is starting with Docker, but if you want to set the specific bits of your own base image,

you can do so.

Additional resources

• Multi-arch .NET Core images.

https://github.com/dotnet/announcements/issues/14

• Create a base image. Official Docker documentation.

https://docs.docker.com/develop/develop-images/baseimages/

https://github.com/dotnet/announcements/issues/14
https://docs.docker.com/develop/develop-images/baseimages/

84 Development Process for Docker-Based Applications

Step 3. Create your custom Docker images and embed your

application or service in them

For each service in your application, you need to create a related image. If your application is made up

of a single service or web application, you just need a single image.

Note that the Docker images are built automatically for you in Visual Studio. The following steps are

only needed for the editor/CLI workflow and explained for clarity about what happens underneath.

You, as a developer, need to develop and test locally until you push a completed feature or change to

your source control system (for example, to GitHub). This means that you need to create the Docker

images and deploy containers to a local Docker host (Windows or Linux VM) and run, test, and debug

against those local containers.

To create a custom image in your local environment by using Docker CLI and your Dockerfile, you can

use the docker build command, as in Figure 5-5.

Figure 5-5. Creating a custom Docker image

Optionally, instead of directly running docker build from the project folder, you can first generate a

deployable folder with the required .NET libraries and binaries by running dotnet publish, and then

use the docker build command.

This will create a Docker image with the name cesardl/netcore-webapi-microservice-

docker:first. In this case, :first is a tag representing a specific version. You can repeat this step for

each custom image you need to create for your composed Docker application.

When an application is made of multiple containers (that is, it is a multi-container application), you

can also use the docker-compose up –build command to build all the related images with a single

command by using the metadata exposed in the related docker-compose.yml files.

You can find the existing images in your local repository by using the docker images command, as

shown in Figure 5-6.

Figure 5-6. Viewing existing images using the docker images command

Creating Docker images with Visual Studio

When you use Visual Studio to create a project with Docker support, you don’t explicitly create an

image. Instead, the image is created for you when you press F5 (or Ctrl-F5) to run the dockerized

application or service. This step is automatic in Visual Studio and you won’t see it happen, but it’s

important that you know what’s going on underneath.

85 Development Process for Docker-Based Applications

Step 4. Define your services in docker-compose.yml when building a

multi-container Docker application

The docker-compose.yml file lets you define a set of related services to be deployed as a composed

application with deployment commands. It also configures its dependency relations and run-time

configuration.

To use a docker-compose.yml file, you need to create the file in your main or root solution folder, with

content similar to that in the following example:

version: '3.4'

services:

 webmvc:
 image: eshop/web
 environment:
 - CatalogUrl=http://catalog.api
 - OrderingUrl=http://ordering.api
 ports:
 - "80:80"
 depends_on:
 - catalog.api
 - ordering.api

 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=sql.data;Port=1433;Database=CatalogDB;…
 ports:
 - "81:80"
 depends_on:
 - sql.data

 ordering.api:
 image: eshop/ordering.api
 environment:
 - ConnectionString=Server=sql.data;Database=OrderingDb;…
 ports:
 - "82:80"
 extra_hosts:
 - "CESARDLBOOKVHD:10.0.75.1"
 depends_on:
 - sql.data

 sql.data:
 image: mssql-server-linux:latest
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"

https://docs.docker.com/compose/compose-file/

86 Development Process for Docker-Based Applications

This docker-compose.yml file is a simplified and merged version. It contains static configuration data

for each container (like the name of the custom image), which is always required, and configuration

information that might depend on the deployment environment, like the connection string. In later

sections, you will learn how to split the docker-compose.yml configuration into multiple docker-

compose files and override values depending on the environment and execution type (debug or

release).

The docker-compose.yml file example defines four services: the webmvc service (a web application),

two microservices (ordering.api and basket.api), and one data source container, sql.data, based

on SQL Server for Linux running as a container. Each service will be deployed as a container, so a

Docker image is required for each.

The docker-compose.yml file specifies not only what containers are being used, but how they are

individually configured. For instance, the webmvc container definition in the .yml file:

• Uses a pre-built eshop/web:latest image. However, you could also configure the image to be

built as part of the docker-compose execution with an additional configuration based on a build:

section in the docker-compose file.

• Initializes two environment variables (CatalogUrl and OrderingUrl).

• Forwards the exposed port 80 on the container to the external port 80 on the host machine.

• Links the web app to the catalog and ordering service with the depends_on setting. This causes

the service to wait until those services are started.

We will revisit the docker-compose.yml file in a later section when we cover how to implement

microservices and multi-container apps.

Working with docker-compose.yml in Visual Studio 2017

Besides adding a Dockerfile to a project, as we mentioned before, Visual Studio 2017 (from 15.8 on)

can add orchestrator support for Docker Compose to a solution.

When you add container orchestrator support, as shown in Figure 5-7, for the first time, Visual Studio

creates the Dockerfile for the project and creates a new (service section) project in your solution with

several global docker-compose*.yml files, and then adds the project to those files. You can then open

the docker-compose.yml files and update them with additional features.

You have to repeat this operation form every project you want to include in the docker-compose.yml

file.

At the time of this writing, Visual Studio supports Docker Compose and Service Fabric orchestrators.

87 Development Process for Docker-Based Applications

Figure 5-7. Adding Docker support in Visual Studio 2017 by right-clicking an ASP.NET Core project

After you add orchestrator support to your solution in Visual Studio, you will also see a new node (in

the docker-compose.dcproj project file) in Solution Explorer that contains the added docker-

compose.yml files, as shown in Figure 5-8.

Figure 5-8. The docker-compose tree node added in Visual Studio 2017 Solution Explorer

You could deploy a multi-container application with a single docker-compose.yml file by using the

docker-compose up command. However, Visual Studio adds a group of them so you can override

values depending on the environment (development or production) and execution type (release or

debug). This capability will be explained in later sections.

Step 5. Build and run your Docker application

If your application only has a single container, you can run it by deploying it to your Docker host (VM

or physical server). However, if your application contains multiple services, you can deploy it as a

88 Development Process for Docker-Based Applications

composed application, either using a single CLI command (docker-compose up), or with Visual Studio,

which will use that command under the covers. Let’s look at the different options.

Option A: Running a single-container application

Using Docker CLI

You can run a Docker container using the docker run command, as shown in Figure 5-9:

 docker run -t -d -p 80:5000 cesardl/netcore-webapi-microservice-docker:first

The above command will create a new container instance from the specified image, every time it’s run.

You can use the –name parameter to give a name to the container and then use docker start {name}

(or use the container id or automatic name) to run an existing container instance.

Figure 5-9. Running a Docker container using the docker run command

In this case, the command binds the internal port 5000 of the container to port 80 of the host

machine. This means that the host is listening on port 80 and forwarding to port 5000 on the

container.

The hash shown is the container id and it’s also assigned a random readable name if the –name option

is not used.

Using Visual Studio

If you haven’t added container orchestrator support, you can also run a single container app in Visual

Studio by pressing Ctrl-F5 and you can also use F5 to debug the application within the container. The

container runs locally using docker run.

Option B: Running a multi-container application

In most enterprise scenarios, a Docker application will be composed of multiple services, which means

you need to run a multi-container application, as shown in Figure 5-10.

Figure 5-10. VM with Docker containers deployed

89 Development Process for Docker-Based Applications

Using Docker CLI

To run a multi-container application with the Docker CLI, you use the docker-compose up command.

This command uses the docker-compose.yml file that you have at the solution level to deploy a

multi-container application. Figure 5-11 shows the results when running the command from your

main solution directory, which contains the docker-compose.yml file.

Figure 5-11. Example results when running the docker-compose up command

After the docker-compose up command runs, the application and its related containers are deployed

into your Docker host, as depicted in Figure 5-10.

Using Visual Studio

Running a multi-container application using Visual Studio 2017 can’t get any simpler. You just press

Ctrl-F5 to run or F5 to debug, as usual, setting up the docker-compose project as the startup project.

Visual Studio handles all needed setup, so you can create breakpoints as usual and debug what finally

become independent processes running in “remote servers”, just like that.

As mentioned before, each time you add Docker solution support to a project within a solution, that

project is configured in the global (solution-level) docker-compose.yml file, which lets you run or

debug the whole solution at once. Visual Studio will start one container for each project that has

Docker solution support enabled, and perform all the internal steps for you (dotnet publish, docker

build, etc.).

If you want to take a peek at all the drudgery, take a look at the file:

{root solution folder}-compose.vs.debug.g.yml

The important point here is that, as shown in Figure 5-12, in Visual Studio 2017 there is an additional

Docker command for the F5 key action. This option lets you run or debug a multi-container

application by running all the containers that are defined in the docker-compose.yml files at the

solution level. The ability to debug multiple-container solutions means that you can set several

breakpoints, each breakpoint in a different project (container), and while debugging from Visual

Studio you will stop at breakpoints defined in different projects and running on different containers.

Figure 5-12. Running multi-container apps in Visual Studio 2017

90 Development Process for Docker-Based Applications

Additional resources

• Deploy an ASP.NET container to a remote Docker host

https://docs.microsoft.com/azure/vs-azure-tools-docker-hosting-web-apps-in-docker

A note about testing and deploying with orchestrators

The docker-compose up and docker run commands (or running and debugging the containers in

Visual Studio) are adequate for testing containers in your development environment. But you should

not use this approach for production deployments, where you should target orchestrators like

Kubernetes or Service Fabric. If you’re using Kubernetes you have to use pods to organize containers

and services to network them. You also use deployments to organize pod creation and modification.

Step 6. Test your Docker application using your local Docker host

This step will vary depending on what your application is doing. In a simple .NET Core Web

application that is deployed as a single container or service, you can access the service by opening a

browser on the Docker host and navigating to that site, as shown in Figure 5-13. (If the configuration

in the Dockerfile maps the container to a port on the host that is anything other than 80, include the

host port in the URL.)

Figure 5-13. Example of testing your Docker application locally using localhost

If localhost is not pointing to the Docker host IP (by default, when using Docker CE, it should), to

navigate to your service, use the IP address of your machine’s network card.

Note that this URL in the browser uses port 80 for the particular container example being discussed.

However, internally the requests are being redirected to port 5000, because that was how it was

deployed with the docker run command, as explained in a previous step.

You can also test the application using curl from the terminal, as shown in Figure 5-14. In a Docker

installation on Windows, the default Docker Host IP is always 10.0.75.1 in addition to your machine’s

actual IP address.

https://docs.microsoft.com/azure/vs-azure-tools-docker-hosting-web-apps-in-docker
https://kubernetes.io/
https://azure.microsoft.com/services/service-fabric/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

91 Development Process for Docker-Based Applications

Figure 5-14. Example of testing your Docker application locally using curl

Testing and debugging containers with Visual Studio 2017

When running and debugging the containers with Visual Studio 2017, you can debug the .NET

application in much the same way as you would when running without containers.

Testing and debugging without Visual Studio

If you’re developing using the editor/CLI approach, debugging containers is more difficult and you

will want to debug by generating traces.

Additional resources

• Debugging apps in a local Docker container

https://docs.microsoft.com/visualstudio/containers/edit-and-refresh

• Steve Lasker. Build, Debug, Deploy ASP.NET Core Apps with Docker. Video.

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T115

Simplified workflow when developing containers with Visual Studio

Effectively, the workflow when using Visual Studio is a lot simpler than if you use the editor/CLI

approach. Most of the steps required by Docker related to the Dockerfile and docker-compose.yml

files are hidden or simplified by Visual Studio, as shown in Figure 5-15.

https://docs.microsoft.com/visualstudio/containers/edit-and-refresh
https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T115

92 Development Process for Docker-Based Applications

Figure 5-15. Simplified workflow when developing with Visual Studio

In addition, you need to perform step 2 (adding Docker support to your projects) just once. Therefore,

the workflow is similar to your usual development tasks when using .NET for any other development.

You need to know what is going on under the covers (the image build process, what base images

you’re using, deployment of containers, etc.) and sometimes you will also need to edit the Dockerfile

or docker-compose.yml file to customize behaviors. But most of the work is greatly simplified by using

Visual Studio, making you a lot more productive.

Additional resources

• Steve Lasker. .NET Docker Development with Visual Studio 2017

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111

Using PowerShell commands in a Dockerfile to set up Windows

Containers

Windows Containers allow you to convert your existing Windows applications into Docker images and

deploy them with the same tools as the rest of the Docker ecosystem. To use Windows Containers,

you run PowerShell commands in the Dockerfile, as shown in the following example:

FROM microsoft/windowsservercore
LABEL Description="IIS" Vendor="Microsoft" Version="10"
RUN powershell -Command Add-WindowsFeature Web-Server
CMD ["ping", "localhost", "-t"]

In this case, we are using a Windows Server Core base image (the FROM setting) and installing IIS with

a PowerShell command (the RUN setting). In a similar way, you could also use PowerShell commands

to set up additional components like ASP.NET 4.x, .NET 4.6, or any other Windows software. For

example, the following command in a Dockerfile sets up ASP.NET 4.5:

RUN powershell add-windowsfeature web-asp-net45

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111
https://docs.microsoft.com/virtualization/windowscontainers/about/index

93 Development Process for Docker-Based Applications

Additional resources

• aspnet-docker/Dockerfile. Example PowerShell commands to run from dockerfiles to include

Windows features.

https://github.com/Microsoft/aspnet-docker/blob/master/4.7.1-windowsservercore-

ltsc2016/runtime/Dockerfile

https://github.com/Microsoft/aspnet-docker/blob/master/4.7.1-windowsservercore-ltsc2016/runtime/Dockerfile
https://github.com/Microsoft/aspnet-docker/blob/master/4.7.1-windowsservercore-ltsc2016/runtime/Dockerfile

94 Designing and Developing Multi-Container and Microservice-Based .NET Applications

S E C T I O N

6

Designing and Developing
Multi-Container and
Microservice-Based .NET
Applications

Developing containerized microservice applications means you are building multi-container

applications. However, a multi-container application could also be simpler—for example, a three-tier

application—and might not be built using a microservice architecture.

Earlier we raised the question “Is Docker necessary when building a microservice architecture?” The

answer is a clear no. Docker is an enabler and can provide significant benefits, but containers and

Docker are not a hard requirement for microservices. As an example, you could create a

microservices-based application with or without Docker when using Azure Service Fabric, which

supports microservices running as simple processes or as Docker containers.

However, if you know how to design and develop a microservices-based application that is also based

on Docker containers, you will be able to design and develop any other, simpler application model.

For example, you might design a three-tier application that also requires a multi-container approach.

Because of that, and because microservice architectures are an important trend within the container

world, this section focuses on a microservice architecture implementation using Docker containers.

Designing a microservice-oriented application
This section focuses on developing a hypothetical server-side enterprise application.

Application specifications

The hypothetical application handles requests by executing business logic, accessing databases, and

then returning HTML, JSON, or XML responses. We will say that the application must support a variety

of clients, including desktop browsers running Single Page Applications (SPAs), traditional web apps,

mobile web apps, and native mobile apps. The application might also expose an API for third parties

to consume. It should also be able to integrate its microservices or external applications

asynchronously, so that approach will help resiliency of the microservices in the case of partial failures.

The application will consist of these types of components:

95 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Presentation components. These are responsible for handling the UI and consuming remote

services.

• Domain or business logic. This is the application’s domain logic.

• Database access logic. This consists of data access components responsible for accessing

databases (SQL or NoSQL).

• Application integration logic. This includes a messaging channel, mainly based on message

brokers.

The application will require high scalability, while allowing its vertical subsystems to scale out

autonomously, because certain subsystems will require more scalability than others.

The application must be able to be deployed in multiple infrastructure environments (multiple public

clouds and on-premises) and ideally should be cross-platform, able to move from Linux to Windows

(or vice versa) easily.

Development team context

We also assume the following about the development process for the application:

• You have multiple dev teams focusing on different business areas of the application.

• New team members must become productive quickly, and the application must be easy to

understand and modify.

• The application will have a long-term evolution and ever-changing business rules.

• You need good long-term maintainability, which means having agility when implementing new

changes in the future while being able to update multiple subsystems with minimum impact on

the other subsystems.

• You want to practice continuous integration and continuous deployment of the application.

• You want to take advantage of emerging technologies (frameworks, programming languages,

etc.) while evolving the application. You do not want to make full migrations of the application

when moving to new technologies, because that would result in high costs and impact the

predictability and stability of the application.

Choosing an architecture

What should the application deployment architecture be? The specifications for the application, along

with the development context, strongly suggest that you should architect the application by

decomposing it into autonomous subsystems in the form of collaborating microservices and

containers, where a microservice is a container.

In this approach, each service (container) implements a set of cohesive and narrowly related functions.

For example, an application might consist of services such as the catalog service, ordering service,

basket service, user profile service, etc.

96 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Microservices communicate using protocols such as HTTP (REST), but also asynchronously (for

example, using AMQP) whenever possible, especially when propagating updates with integration

events.

Microservices are developed and deployed as containers independently of one another. This means

that a development team can be developing and deploying a certain microservice without impacting

other subsystems.

Each microservice has its own database, allowing it to be fully decoupled from other microservices.

When necessary, consistency between databases from different microservices is achieved using

application-level integration events (through a logical event bus), as handled in Command and Query

Responsibility Segregation (CQRS). Because of that, the business constraints must embrace eventual

consistency between the multiple microservices and related databases.

eShopOnContainers: A reference application for .NET Core and microservices deployed

using containers

So that you can focus on the architecture and technologies instead of thinking about a hypothetical

business domain that you might not know, we have selected a well-known business domain—namely,

a simplified e-commerce (e-shop) application that presents a catalog of products, takes orders from

customers, verifies inventory, and performs other business functions. This container-based application

source code is available in the eShopOnContainers GitHub repo.

The application consists of multiple subsystems, including several store UI front ends (a Web

application and a native mobile app), along with the back-end microservices and containers for all the

required server-side operations with several API Gateways as consolidated entry points to the internal

microservices. Figure 6-1 shows the architecture of the reference application.

Figure 6-1. The eShopOnContainers reference application architecture for development environment

Hosting environment. In Figure 6-1, you see several containers deployed within a single Docker host.

That would be the case when deploying to a single Docker host with the docker-compose up

https://aka.ms/MicroservicesArchitecture

97 Designing and Developing Multi-Container and Microservice-Based .NET Applications

command. However, if you are using an orchestrator or container cluster, each container could be

running in a different host (node), and any node could be running any number of containers, as we

explained earlier in the architecture section.

Communication architecture. The eShopOnContainers application uses two communication types,

depending on the kind of the functional action (queries versus updates and transactions):

• Http client-to-microservice communication through API Gateways. This is used for queries and

when accepting update or transactional commands from the client apps. The approach using API

Gateways is explained in detail in later sections.

• Asynchronous event-based communication. This occurs through an event bus to propagate

updates across microservices or to integrate with external applications. The event bus can be

implemented with any messaging-broker infrastructure technology like RabbitMQ, or using

higher-level (abstraction-level) service buses like Azure Service Bus, NServiceBus, MassTransit, or

Brighter.

The application is deployed as a set of microservices in the form of containers. Client apps can

communicate with those microservices running as containers through the public URLs published by

the API Gateways.

Data sovereignty per microservice

In the sample application, each microservice owns its own database or data source, although all SQL

Server databases are deployed as a single container. This design decision was made only to make it

easy for a developer to get the code from GitHub, clone it, and open it in Visual Studio or Visual

Studio Code. Or alternatively, it makes it easy to compile the custom Docker images using .NET Core

CLI and the Docker CLI, and then deploy and run them in a Docker development environment. Either

way, using containers for data sources lets developers build and deploy in a matter of minutes without

having to provision an external database or any other data source with hard dependencies on

infrastructure (cloud or on-premises).

In a real production environment, for high availability and for scalability, the databases should be

based on database servers in the cloud or on-premises, but not in containers.

Therefore, the units of deployment for microservices (and even for databases in this application) are

Docker containers, and the reference application is a multi-container application that embraces

microservices principles.

Additional resources

• eShopOnContainers GitHub repo. Source code for the reference application

https://aka.ms/eShopOnContainers/

Benefits of a microservice-based solution

A microservice based solution like this has many benefits:

Each microservice is relatively small—easy to manage and evolve. Specifically:

• It is easy for a developer to understand and get started quickly with good productivity.

https://aka.ms/eShopOnContainers/

98 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Containers start fast, which makes developers more productive.

• An IDE like Visual Studio can load smaller projects fast, making developers productive.

• Each microservice can be designed, developed, and deployed independently of other

microservices, which provides agility because it is easier to deploy new versions of microservices

frequently.

It is possible to scale out individual areas of the application. For instance, the catalog service or

the basket service might need to be scaled out, but not the ordering process. A microservices

infrastructure will be much more efficient with regard to the resources used when scaling out than a

monolithic architecture would be.

You can divide the development work between multiple teams. Each service can be owned by a

single development team. Each team can manage, develop, deploy, and scale their service

independently of the rest of the teams.

Issues are more isolated. If there is an issue in one service, only that service is initially impacted

(except when the wrong design is used, with direct dependencies between microservices), and other

services can continue to handle requests. In contrast, one malfunctioning component in a monolithic

deployment architecture can bring down the entire system, especially when it involves resources, such

as a memory leak. Additionally, when an issue in a microservice is resolved, you can deploy just the

affected microservice without impacting the rest of the application.

You can use the latest technologies. Because you can start developing services independently and

run them side by side (thanks to containers and .NET Core), you can start using the latest technologies

and frameworks expediently instead of being stuck on an older stack or framework for the whole

application.

Downsides of a microservice-based solution

A microservice based solution like this also has some drawbacks:

Distributed application. Distributing the application adds complexity for developers when they are

designing and building the services. For example, developers must implement interservice

communication using protocols like HTTP or AMPQ, which adds complexity for testing and exception

handling. It also adds latency to the system.

Deployment complexity. An application that has dozens of microservices types and needs high

scalability (it needs to be able to create many instances per service and balance those services across

many hosts) means a high degree of deployment complexity for IT operations and management. If

you are not using a microservice-oriented infrastructure (like an orchestrator and scheduler), that

additional complexity can require far more development efforts than the business application itself.

Atomic transactions. Atomic transactions between multiple microservices usually are not possible.

The business requirements have to embrace eventual consistency between multiple microservices.

Increased global resource needs (total memory, drives, and network resources for all the servers or

hosts). In many cases, when you replace a monolithic application with a microservices approach, the

amount of initial global resources needed by the new microservice-based application will be larger

than the infrastructure needs of the original monolithic application. This is because the higher degree

of granularity and distributed services requires more global resources. However, given the low cost of

99 Designing and Developing Multi-Container and Microservice-Based .NET Applications

resources in general and the benefit of being able to scale out just certain areas of the application

compared to long-term costs when evolving monolithic applications, the increased use of resources is

usually a good tradeoff for large, long-term applications.

Issues with direct client-to-microservice communication. When the application is large, with

dozens of microservices, there are challenges and limitations if the application requires direct client-

to-microservice communications. One problem is a potential mismatch between the needs of the

client and the APIs exposed by each of the microservices. In certain cases, the client application might

need to make many separate requests to compose the UI, which can be inefficient over the Internet

and would be impractical over a mobile network. Therefore, requests from the client application to the

back-end system should be minimized.

Another problem with direct client-to-microservice communications is that some microservices might

be using protocols that are not Web-friendly. One service might use a binary protocol, while another

service might use AMQP messaging. Those protocols are not firewall-friendly and are best used

internally. Usually, an application should use protocols such as HTTP and WebSockets for

communication outside of the firewall.

Yet another drawback with this direct client-to-service approach is that it makes it difficult to refactor

the contracts for those microservices. Over time developers might want to change how the system is

partitioned into services. For example, they might merge two services or split a service into two or

more services. However, if clients communicate directly with the services, performing this kind of

refactoring can break compatibility with client apps.

As mentioned in the architecture section, when designing and building a complex application based

on microservices, you might consider the use of multiple fine-grained API Gateways instead of the

simpler direct client-to-microservice communication approach.

Partitioning the microservices. Finally, no matter which approach you take for your microservice

architecture, another challenge is deciding how to partition an end-to-end application into multiple

microservices. As noted in the architecture section of the guide, there are several techniques and

approaches you can take. Basically, you need to identify areas of the application that are decoupled

from the other areas and that have a low number of hard dependencies. In many cases, this is aligned

to partitioning services by use case. For example, in our e-shop application, we have an ordering

service that is responsible for all the business logic related to the order process. We also have the

catalog service and the basket service that implement other capabilities. Ideally, each service should

have only a small set of responsibilities. This is similar to the single responsibility principle (SRP)

applied to classes, which states that a class should only have one reason to change. But in this case, it

is about microservices, so the scope will be larger than a single class. Most of all, a microservice has to

be completely autonomous, end to end, including responsibility for its own data sources.

External versus internal architecture and design patterns

The external architecture is the microservice architecture composed by multiple services, following the

principles described in the architecture section of this guide. However, depending on the nature of

each microservice, and independently of high-level microservice architecture you choose, it is

common and sometimes advisable to have different internal architectures, each based on different

patterns, for different microservices. The microservices can even use different technologies and

programming languages. Figure 6-2 illustrates this diversity.

100 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-2. External versus internal architecture and design

For instance, in our eShopOnContainers sample, the catalog, basket, and user profile microservices are

simple (basically, CRUD subsystems). Therefore, their internal architecture and design is

straightforward. However, you might have other microservices, such as the ordering microservice,

which is more complex and represents ever-changing business rules with a high degree of domain

complexity. In cases like these, you might want to implement more advanced patterns within a

particular microservice, like the ones defined with domain-driven design (DDD) approaches, as we are

doing in the eShopOnContainers ordering microservice. (We will review these DDD patterns in the

section later that explains the implementation of the eShopOnContainers ordering microservice.)

Another reason for a different technology per microservice might be the nature of each microservice.

For example, it might be better to use a functional programming language like F#, or even a language

like R if you are targeting AI and machine learning domains, instead of a more object-oriented

programming language like C#.

The bottom line is that each microservice can have a different internal architecture based on different

design patterns. Not all microservices should be implemented using advanced DDD patterns, because

that would be over-engineering them. Similarly, complex microservices with ever-changing business

logic should not be implemented as CRUD components, or you can end up with low-quality code.

The new world: multiple architectural patterns and polyglot

microservices

There are many architectural patterns used by software architects and developers. The following are a

few (mixing architecture styles and architecture patterns):

• Simple CRUD, single-tier, single-layer.

• Traditional N-Layered.

https://docs.microsoft.com/previous-versions/msp-n-p/ee658109(v=pandp.10)

101 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Domain-Driven Design N-layered.

• Clean Architecture (as used with eShopOnWeb)

• Command and Query Responsibility Segregation (CQRS).

• Event-Driven Architecture (EDA).

You can also build microservices with many technologies and languages, such as ASP.NET Core Web

APIs, NancyFx, ASP.NET Core SignalR (available with .NET Core 2), F#, Node.js, Python, Java, C++,

GoLang, and more.

The important point is that no particular architecture pattern or style, nor any particular technology, is

right for all situations. Figure 6-3 shows some approaches and technologies (although not in any

particular order) that could be used in different microservices.

Figure 6-3. Multi-architectural patterns and the polyglot microservices world

As shown in Figure 6-3, in applications composed of many microservices (Bounded Contexts in

domain-driven design terminology, or simply “subsystems” as autonomous microservices), you might

implement each microservice in a different way. Each might have a different architecture pattern and

use different languages and databases depending on the application’s nature, business requirements,

and priorities. In some cases, the microservices might be similar. But that is not usually the case,

because each subsystem’s context boundary and requirements are usually different.

For instance, for a simple CRUD maintenance application, it might not make sense to design and

implement DDD patterns. But for your core domain or core business, you might need to apply more

advanced patterns to tackle business complexity with ever-changing business rules.

https://blogs.msdn.microsoft.com/cesardelatorre/2011/07/03/published-first-alpha-version-of-domain-oriented-n-layered-architecture-v2-0/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://aka.ms/WebAppArchitecture
https://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Event-driven_architecture

102 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Especially when you deal with large applications composed by multiple sub-systems, you should not

apply a single top-level architecture based on a single architecture pattern. For instance, CQRS should

not be applied as a top-level architecture for a whole application, but might be useful for a specific set

of services.

There is no silver bullet or a right architecture pattern for every given case. You cannot have “one

architecture pattern to rule them all.” Depending on the priorities of each microservice, you must

choose a different approach for each, as explained in the following sections.

Creating a simple data-driven CRUD microservice
This section outlines how to create a simple microservice that performs create, read, update, and

delete (CRUD) operations on a data source.

Designing a simple CRUD microservice

From a design point of view, this type of containerized microservice is very simple. Perhaps the

problem to solve is simple, or perhaps the implementation is only a proof of concept.

Figure 6-4. Internal design for simple CRUD microservices

An example of this kind of simple data-drive service is the catalog microservice from the

eShopOnContainers sample application. This type of service implements all its functionality in a single

ASP.NET Core Web API project that includes classes for its data model, its business logic, and its data

access code. It also stores its related data in a database running in SQL Server (as another container

for dev/test purposes), but could also be any regular SQL Server host, as shown in Figure 6-5.

103 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-5. Simple data-driven/CRUD microservice design

When you are developing this kind of service, you only need ASP.NET Core and a data-access API or

ORM like Entity Framework Core. You could also generate Swagger metadata automatically through

Swashbuckle to provide a description of what your service offers, as explained in the next section.

Note that running a database server like SQL Server within a Docker container is great for

development environments, because you can have all your dependencies up and running without

needing to provision a database in the cloud or on-premises. This is very convenient when running

integration tests. However, for production environments, running a database server in a container is

not recommended, because you usually do not get high availability with that approach. For a

production environment in Azure, it is recommended that you use Azure SQL DB or any other

database technology that can provide high availability and high scalability. For example, for a NoSQL

approach, you might choose CosmosDB.

Finally, by editing the Dockerfile and docker-compose.yml metadata files, you can configure how the

image of this container will be created—what base image it will use, plus design settings such as

internal and external names and TCP ports.

Implementing a simple CRUD microservice with ASP.NET Core

To implement a simple CRUD microservice using .NET Core and Visual Studio, you start by creating a

simple ASP.NET Core Web API project (running on .NET Core so it can run on a Linux Docker host), as

shown in Figure 6-6.

https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/ef/core/index
https://swagger.io/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

104 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-6. Creating an ASP.NET Core Web API project in Visual Studio

After creating the project, you can implement your MVC controllers as you would in any other Web

API project, using the Entity Framework API or other API. In a new Web API project, you can see that

the only dependency you have in that microservice is on ASP.NET Core itself. Internally, within the

Microsoft.AspNetCore.All dependency, it is referencing Entity Framework and many other .NET Core

Nuget packages, as shown in Figure 6-7.

Figure 6-7. Dependencies in a simple CRUD Web API microservice

105 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Implementing CRUD Web API services with Entity Framework Core

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology. EF Core is an object-relational mapper (ORM) that enables

.NET developers to work with a database using .NET objects.

The catalog microservice uses EF and the SQL Server provider because its database is running in a

container with the SQL Server for Linux Docker image. However, the database could be deployed into

any SQL Server, such as Windows on-premises or Azure SQL DB. The only thing you would need to

change is the connection string in the ASP.NET Web API microservice.

The data model

With EF Core, data access is performed by using a model. A model is made up of (domain model)

entity classes and a derived context (DbContext) that represents a session with the database, allowing

you to query and save data. You can generate a model from an existing database, manually code a

model to match your database, or use EF migrations to create a database from your model, using the

code-first approach (that makes it easy to evolve the database as your model changes over time). For

the catalog microservice we are using the last approach. You can see an example of the CatalogItem

entity class in the following code example, which is a simple Plain Old CLR Object (POCO) entity class.

public class CatalogItem
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string PictureFileName { get; set; }
 public string PictureUri { get; set; }
 public int CatalogTypeId { get; set; }
 public CatalogType CatalogType { get; set; }
 public int CatalogBrandId { get; set; }
 public CatalogBrand CatalogBrand { get; set; }
 public int AvailableStock { get; set; }
 public int RestockThreshold { get; set; }
 public int MaxStockThreshold { get; set; }

 public bool OnReorder { get; set; }
 public CatalogItem() { }

 // Additional code ...
}

You also need a DbContext that represents a session with the database. For the catalog microservice,

the CatalogContext class derives from the DbContext base class, as shown in the following example:

public class CatalogContext : DbContext
{
 public CatalogContext(DbContextOptions<CatalogContext> options) : base(options)
 {
 }
 public DbSet<CatalogItem> CatalogItems { get; set; }
 public DbSet<CatalogBrand> CatalogBrands { get; set; }
 public DbSet<CatalogType> CatalogTypes { get; set; }

 // Additional code ...

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

106 Designing and Developing Multi-Container and Microservice-Based .NET Applications

}

You can have additional DbContext implementations. For example, in the sample Catalog.API

microservice, there’s a second DbContext named CatalogContextSeed where it automatically

populates the sample data the first time it tries to access the database. This method is useful for demo

data and for automated testing scenarios, as well.

Within the DbContext, you use the OnModelCreating method to customize object/database entity

mappings and other EF extensibility points.

Querying data from Web API controllers

Instances of your entity classes are typically retrieved from the database using Language Integrated

Query (LINQ), as shown in the following example:

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 private readonly CatalogContext _catalogContext;
 private readonly CatalogSettings _settings;
 private readonly ICatalogIntegrationEventService _catalogIntegrationEventService;

 public CatalogController(CatalogContext context,
 IOptionsSnapshot<CatalogSettings> settings,
 ICatalogIntegrationEventService
catalogIntegrationEventService)
 {
 _catalogContext = context ?? throw new ArgumentNullException(nameof(context));
 _catalogIntegrationEventService = catalogIntegrationEventService ?? throw new
ArgumentNullException(nameof(catalogIntegrationEventService));

 _settings = settings.Value;
 ((DbContext)context).ChangeTracker.QueryTrackingBehavior =
QueryTrackingBehavior.NoTracking;
 }

 // GET api/v1/[controller]/items[?pageSize=3&pageIndex=10]
 [HttpGet]
 [Route("[action]")]
 [ProducesResponseType(typeof(PaginatedItemsViewModel<CatalogItem>),
(int)HttpStatusCode.OK)]
 public async Task<IActionResult> Items([FromQuery]int pageSize = 10,
 [FromQuery]int pageIndex = 0)

 {
 var totalItems = await _catalogContext.CatalogItems
 .LongCountAsync();

 var itemsOnPage = await _catalogContext.CatalogItems
 .OrderBy(c => c.Name)
 .Skip(pageSize * pageIndex)
 .Take(pageSize)
 .ToListAsync();

 itemsOnPage = ChangeUriPlaceholder(itemsOnPage);

 var model = new PaginatedItemsViewModel<CatalogItem>(
 pageIndex, pageSize, totalItems, itemsOnPage);

https://devblogs.microsoft.com/dotnet/implementing-seeding-custom-conventions-and-interceptors-in-ef-core-1-0/

107 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 return Ok(model);
 }
 //...
}

Saving data

Data is created, deleted, and modified in the database using instances of your entity classes. You

could add code like the following hard-coded example (mock data, in this case) to your Web API

controllers.

var catalogItem = new CatalogItem() {CatalogTypeId=2, CatalogBrandId=2,
 Name="Roslyn T-Shirt", Price = 12};
_context.Catalog.Add(catalogItem);
_context.SaveChanges();

Dependency Injection in ASP.NET Core and Web API controllers

In ASP.NET Core you can use Dependency Injection (DI) out of the box. You do not need to set up a

third-party Inversion of Control (IoC) container, although you can plug your preferred IoC container

into the ASP.NET Core infrastructure if you want. In this case, it means that you can directly inject the

required EF DBContext or additional repositories through the controller constructor.

In the example above of the CatalogController class, we are injecting an object of CatalogContext

type plus other objects through the CatalogController() constructor.

An important configuration to set up in the Web API project is the DbContext class registration into

the service’s IoC container. You typically do so in the Startup class by calling the

services.AddDbContext() method inside the ConfigureServices() method, as shown in the

following example:

public void ConfigureServices(IServiceCollection services)
{
 // Additional code...

 services.AddDbContext<CatalogContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlServerOptionsAction: sqlOptions =>
 {
 sqlOptions.
 MigrationsAssembly(
 typeof(Startup).
 GetTypeInfo().
 Assembly.
 GetName().Name);

 //Configuring Connection Resiliency:
 sqlOptions.
 EnableRetryOnFailure(maxRetryCount: 5,
 maxRetryDelay: TimeSpan.FromSeconds(30),
 errorNumbersToAdd: null);

 });

 // Changing default behavior when client evaluation occurs to throw.

108 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 // Default in EFCore would be to log warning when client evaluation is done.
 options.ConfigureWarnings(warnings => warnings.Throw(
 RelationalEventId.QueryClientEvaluationWarning));
 });

 //...

}

Additional resources

• Querying Data

https://docs.microsoft.com/ef/core/querying/index

• Saving Data

https://docs.microsoft.com/ef/core/saving/index

The DB connection string and environment variables used by Docker

containers

You can use the ASP.NET Core settings and add a ConnectionString property to your settings.json file

as shown in the following example:

{
 "ConnectionString": "Server=tcp:127.0.0.1,5433;Initial
Catalog=Microsoft.eShopOnContainers.Services.CatalogDb;User Id=sa;Password=Pass@word",
 "ExternalCatalogBaseUrl": "http://localhost:5101",
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

The settings.json file can have default values for the ConnectionString property or for any other

property. However, those properties will be overridden by the values of environment variables that

you specify in the docker-compose.override.yml file, when using Docker.

From your docker-compose.yml or docker-compose.override.yml files, you can initialize those

environment variables so that Docker will set them up as OS environment variables for you, as shown

in the following docker-compose.override.yml file (the connection string and other lines wrap in this

example, but it would not wrap in your own file).

docker-compose.override.yml

catalog.api:
 environment:
 -
ConnectionString=Server=sql.data;Database=Microsoft.eShopOnContainers.Services.CatalogDb;Us
er Id=sa;Password=Pass@word
 # Additional environment variables for this service

https://docs.microsoft.com/ef/core/querying/index
https://docs.microsoft.com/ef/core/saving/index

109 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 ports:
 - "5101:80"

The docker-compose.yml files at the solution level are not only more flexible than configuration files

at the project or microservice level, but also more secure if you override the environment variables

declared at the docker-compose files with values set from your deployment tools, like from Azure

DevOps Services Docker deployment tasks.

Finally, you can get that value from your code by using Configuration[“ConnectionString”], as shown

in the ConfigureServices method in an earlier code example.

However, for production environments, you might want to explore additional ways on how to store

secrets like the connection strings. An excellent way to manage application secrets is using Azure Key

Vault.

Azure Key Vault helps to store and safeguard cryptographic keys and secrets used by your cloud

applications and services. A secret is anything you want to keep strict control of, like API keys,

connection strings, passwords, etc. and strict control includes usage logging, setting expiration,

managing access, among others.

Azure Key Vault allows a very detailed control level of the application secrets usage without the need

to let anyone know them. The secrets can even be rotated for enhanced security without disrupting

development or operations.

Applications have to be registered in the organization’s Active Directory, so they can use the Key

Vault.

You can check the Key Vault Concepts documentation for more details.

Implementing versioning in ASP.NET Web APIs

As business requirements change, new collections of resources may be added, the relationships

between resources might change, and the structure of the data in resources might be amended.

Updating a Web API to handle new requirements is a relatively straightforward process, but you must

consider the effects that such changes will have on client applications consuming the Web API.

Although the developer designing and implementing a Web API has full control over that API, the

developer does not have the same degree of control over client applications that might be built by

third party organizations operating remotely.

Versioning enables a Web API to indicate the features and resources that it exposes. A client

application can then submit requests to a specific version of a feature or resource. There are several

approaches to implement versioning:

• URI versioning

• Query string versioning

• Header versioning

Query string and URI versioning are the simplest to implement. Header versioning is a good

approach. However, header versioning not as explicit and straightforward as URI versioning. Because

URL versioning is the simplest and most explicit, the eShopOnContainers sample application uses URI

versioning.

https://azure.microsoft.com/services/key-vault/
https://azure.microsoft.com/services/key-vault/

110 Designing and Developing Multi-Container and Microservice-Based .NET Applications

With URI versioning, as in the eShopOnContainers sample application, each time you modify the Web

API or change the schema of resources, you add a version number to the URI for each resource.

Existing URIs should continue to operate as before, returning resources that conform to the schema

that matches the requested version.

As shown in the following code example, the version can be set by using the Route attribute in the

Web API controller, which makes the version explicit in the URI (v1 in this case).

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 // Implementation ...

This versioning mechanism is simple and depends on the server routing the request to the

appropriate endpoint. However, for a more sophisticated versioning and the best method when using

REST, you should use hypermedia and implement HATEOAS (Hypertext as the Engine of Application

State).

Additional resources

• Scott Hanselman. ASP.NET Core RESTful Web API versioning made easy

https://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx

• Versioning a RESTful web API

https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-

web-api

• Roy Fielding. Versioning, Hypermedia, and REST

https://www.infoq.com/articles/roy-fielding-on-versioning

Generating Swagger description metadata from your ASP.NET Core

Web API

Swagger is a commonly used open source framework backed by a large ecosystem of tools that helps

you design, build, document, and consume your RESTful APIs. It is becoming the standard for the APIs

description metadata domain. You should include Swagger description metadata with any kind of

microservice, either data-driven microservices or more advanced domain-driven microservices (as

explained in following section).

The heart of Swagger is the Swagger specification, which is API description metadata in a JSON or

YAML file. The specification creates the RESTful contract for your API, detailing all its resources and

operations in both a human- and machine-readable format for easy development, discovery, and

integration.

The specification is the basis of the OpenAPI Specification (OAS) and is developed in an open,

transparent, and collaborative community to standardize the way RESTful interfaces are defined.

The specification defines the structure for how a service can be discovered and how its capabilities

understood. For more information, including a web editor and examples of Swagger specifications

from companies like Spotify, Uber, Slack, and Microsoft, see the Swagger site (https://swagger.io).

https://docs.microsoft.com/azure/architecture/best-practices/api-design#use-hateoas-to-enable-navigation-to-related-resources
https://docs.microsoft.com/azure/architecture/best-practices/api-design#use-hateoas-to-enable-navigation-to-related-resources
https://www.hanselman.com/blog/ASPNETCoreRESTfulWebAPIVersioningMadeEasy.aspx
https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://docs.microsoft.com/azure/architecture/best-practices/api-design#versioning-a-restful-web-api
https://www.infoq.com/articles/roy-fielding-on-versioning
https://swagger.io/
https://swagger.io/

111 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Why use Swagger?

The main reasons to generate Swagger metadata for your APIs are the following.

Ability for other products to automatically consume and integrate your APIs. Dozens of products

and commercial tools and many libraries and frameworks support Swagger. Microsoft has high-level

products and tools that can automatically consume Swagger-based APIs, such as the following:

• AutoRest. You can automatically generate .NET client classes for calling Swagger. This tool can

be used from the CLI and it also integrates with Visual Studio for easy use through the GUI.

• Microsoft Flow. You can automatically use and integrate your API into a high-level Microsoft

Flow workflow, with no programming skills required.

• Microsoft PowerApps. You can automatically consume your API from PowerApps mobile apps

built with PowerApps Studio, with no programming skills required.

• Azure App Service Logic Apps. You can automatically use and integrate your API into an Azure

App Service Logic App, with no programming skills required.

Ability to automatically generate API documentation. When you create large-scale RESTful APIs,

such as complex microservice-based applications, you need to handle many endpoints with different

data models used in the request and response payloads. Having proper documentation and having a

solid API explorer, as you get with Swagger, is key for the success of your API and adoption by

developers.

Swagger’s metadata is what Microsoft Flow, PowerApps, and Azure Logic Apps use to understand how

to use APIs and connect to them.

There are several options to automate Swagger metadata generation for ASP.NET Core REST API

applications, in the form of functional API help pages, based on swagger-ui.

Probably the best know is Swashbuckle which is currently used in eShopOnContainers and we’ll cover

in some detail in this guide but there’s also the option to use NSwag, that can generate Typescript

and C# API clients, as well as C# controllers, from a Swagger or OpenAPI specification and even by

scanning the .dll that contains the controllers, using NSwagStudio.

How to automate API Swagger metadata generation with the Swashbuckle NuGet

package

Generating Swagger metadata manually (in a JSON or YAML file) can be tedious work. However, you

can automate API discovery of ASP.NET Web API services by using the Swashbuckle NuGet package to

dynamically generate Swagger API metadata.

Swashbuckle automatically generates Swagger metadata for your ASP.NET Web API projects. It

supports ASP.NET Core Web API projects and the traditional ASP.NET Web API and any other flavor,

such as Azure API App, Azure Mobile App, Azure Service Fabric microservices based on ASP.NET. It

also supports plain Web API deployed on containers, as in for the reference application.

Swashbuckle combines API Explorer and Swagger or swagger-ui to provide a rich discovery and

documentation experience for your API consumers. In addition to its Swagger metadata generator

https://swagger.io/commercial-tools/
https://swagger.io/open-source-integrations/
https://github.com/Azure/AutoRest
https://flow.microsoft.com/
https://flow.microsoft.com/blog/integrating-custom-api/
https://powerapps.microsoft.com/
https://powerapps.microsoft.com/blog/register-and-use-custom-apis-in-powerapps/
https://powerapps.microsoft.com/build-powerapps/
https://docs.microsoft.com/azure/app-service-logic/app-service-logic-what-are-logic-apps
https://docs.microsoft.com/azure/app-service-logic/app-service-logic-custom-hosted-api
https://docs.microsoft.com/azure/app-service-logic/app-service-logic-custom-hosted-api
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/RSuter/NSwag
https://github.com/RSuter/NSwag/wiki/NSwagStudio
https://aka.ms/swashbuckledotnetcore
https://github.com/swagger-api/swagger-ui

112 Designing and Developing Multi-Container and Microservice-Based .NET Applications

engine, Swashbuckle also contains an embedded version of swagger-ui, which it will automatically

serve up once Swashbuckle is installed.

This means you can complement your API with a nice discovery UI to help developers to use your API.

It requires a very small amount of code and maintenance because it is automatically generated,

allowing you to focus on building your API. The result for the API Explorer looks like Figure 6-8.

Figure 6-8. Swashbuckle API Explorer based on Swagger metadata—eShopOnContainers catalog microservice

The API explorer is not the most important thing here. Once you have a Web API that can describe

itself in Swagger metadata, your API can be used seamlessly from Swagger-based tools, including

client proxy-class code generators that can target many platforms. For example, as mentioned,

AutoRest automatically generates .NET client classes. But additional tools like swagger-codegen are

also available, which allow code generation of API client libraries, server stubs, and documentation

automatically.

Currently, Swashbuckle consists of five internal NuGet packages under the high-level meta- package

Swashbuckle.AspNetCore for ASP.NET Core applications.

https://github.com/Azure/AutoRest
https://github.com/swagger-api/swagger-codegen
https://www.nuget.org/packages/Swashbuckle.AspNetCore

113 Designing and Developing Multi-Container and Microservice-Based .NET Applications

After you have installed these NuGet packages in your Web API project, you need to configure

Swagger in the Startup class, as in the following code (simplified):

public class Startup
{
 public IConfigurationRoot Configuration { get; }
 // Other startup code...

 public void ConfigureServices(IServiceCollection services)
 {
 // Other ConfigureServices() code...

 // Add framework services.
 services.AddSwaggerGen(options =>
 {
 options.DescribeAllEnumsAsStrings();
 options.SwaggerDoc("v1", new Swashbuckle.AspNetCore.Swagger.Info
 {
 Title = "eShopOnContainers - Catalog HTTP API",
 Version = "v1",
 Description = "The Catalog Microservice HTTP API. This is a Data-
Driven/CRUD microservice sample",
 TermsOfService = "Terms Of Service"
 });
 });

 // Other ConfigureServices() code...
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 // Other Configure() code...
 // ...
 app.UseSwagger()
 .UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
 });
 }
}

Once this is done, you can start your application and browse the following Swagger JSON and UI

endpoints using URLs like these:

 http://<your-root-url>/swagger/v1/swagger.json

 http://<your-root-url>/swagger/

You previously saw the generated UI created by Swashbuckle for a URL like http:///swagger. In

Figure 6-9 you can also see how you can test any API method.

114 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-9. Swashbuckle UI testing the Catalog/Items API method

Figure 6-10 shows the Swagger JSON metadata generated from the eShopOnContainers microservice

(which is what the tools use underneath) when you request http:///swagger/v1/swagger.json

using Postman.

https://www.getpostman.com/

115 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-10. Swagger JSON metadata

It is that simple. And because it is automatically generated, the Swagger metadata will grow when you

add more functionality to your API.

Additional resources

• ASP.NET Web API Help Pages using Swagger

https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger

• Get started with Swashbuckle and ASP.NET Core

https://docs.microsoft.com/aspnet/core/tutorials/getting-started-with-swashbuckle

• Get started with NSwag and ASP.NET Core

https://docs.microsoft.com/aspnet/core/tutorials/getting-started-with-nswag

Defining your multi-container application with

docker-compose.yml
In this guide, the docker-compose.yml file was introduced in the section Step 4. Define your services

in docker-compose.yml when building a multi-container Docker application. However, there are

additional ways to use the docker-compose files that are worth exploring in further detail.

For example, you can explicitly describe how you want to deploy your multi-container application in

the docker-compose.yml file. Optionally, you can also describe how you are going to build your

custom Docker images. (Custom Docker images can also be built with the Docker CLI.)

https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger
https://docs.microsoft.com/aspnet/core/tutorials/getting-started-with-swashbuckle
https://docs.microsoft.com/aspnet/core/tutorials/getting-started-with-nswag
https://docs.docker.com/compose/compose-file/

116 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Basically, you define each of the containers you want to deploy plus certain characteristics for each

container deployment. Once you have a multi-container deployment description file, you can deploy

the whole solution in a single action orchestrated by the docker-compose up CLI command, or you

can deploy it transparently from Visual Studio. Otherwise, you would need to use the Docker CLI to

deploy container-by-container in multiple steps by using the docker run command from the

command line. Therefore, each service defined in docker-compose.yml must specify exactly one

image or build. Other keys are optional, and are analogous to their docker run command-line

counterparts.

The following YAML code is the definition of a possible global but single docker-compose.yml file for

the eShopOnContainers sample. This is not the actual docker-compose file from eShopOnContainers.

Instead, it is a simplified and consolidated version in a single file, which is not the best way to work

with docker-compose files, as will be explained later.

version: '3.4'

services:
 webmvc:
 image: eshop/webmvc
 environment:
 - CatalogUrl=http://catalog.api
 - OrderingUrl=http://ordering.api
 - BasketUrl=http://basket.api
 ports:
 - "5100:80"
 depends_on:
 - catalog.api
 - ordering.api
 - basket.api

 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=sql.data;Initial Catalog=CatalogData;User
Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data

 ordering.api:
 image: eshop/ordering.api
 environment:
 - ConnectionString=Server=sql.data;Database=Services.OrderingDb;User
Id=sa;Password=your@password
 ports:
 - "5102:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"
 depends_on:
 - sql.data

https://docs.docker.com/compose/overview/

117 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 basket.api:
 image: eshop/basket.api
 environment:
 - ConnectionString=sql.data
 ports:
 - "5103:80"
 depends_on:
 - sql.data

 sql.data:
 environment:
 - SA_PASSWORD=your@password
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"

 basket.data:
 image: redis

The root key in this file is services. Under that key you define the services you want to deploy and run

when you execute the docker-compose up command or when you deploy from Visual Studio by using

this docker-compose.yml file. In this case, the docker-compose.yml file has multiple services defined,

as described in the following table.

Service

name Description

webmvc Container including the ASP.NET Core MVC application consuming the

microservices from server-side C#

catalog.api Container including the Catalog ASP.NET Core Web API microservice

ordering.api Container including the Ordering ASP.NET Core Web API microservice

sql.data Container running SQL Server for Linux, holding the microservices databases

basket.api Container with the Basket ASP.NET Core Web API microservice

basket.data Container running the REDIS cache service, with the basket database as a REDIS

cache

A simple Web Service API container

Focusing on a single container, the catalog.api container-microservice has a straightforward definition:

 catalog.api:
 image: eshop/catalog.api
 environment:
 - ConnectionString=Server=sql.data;Initial Catalog=CatalogData;User
Id=sa;Password=your@password
 expose:
 - "80"
 ports:
 - "5101:80"
 #extra hosts can be used for standalone SQL Server or services at the dev PC
 extra_hosts:
 - "CESARDLSURFBOOK:10.0.75.1"

118 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 depends_on:
 - sql.data

This containerized service has the following basic configuration:

• It is based on the custom eshop/catalog.api image. For simplicity’s sake, there is no build: key

setting in the file. This means that the image must have been previously built (with docker build)

or have been downloaded (with the docker pull command) from any Docker registry.

• It defines an environment variable named ConnectionString with the connection string to be

used by Entity Framework to access the SQL Server instance that contains the catalog data

model. In this case, the same SQL Server container is holding multiple databases. Therefore, you

need less memory in your development machine for Docker. However, you could also deploy

one SQL Server container for each microservice database.

• The SQL Server name is sql.data, which is the same name used for the container that is running

the SQL Server instance for Linux. This is convenient; being able to use this name resolution

(internal to the Docker host) will resolve the network address so you don’t need to know the

internal IP for the containers you are accessing from other containers.

Because the connection string is defined by an environment variable, you could set that variable

through a different mechanism and at a different time. For example, you could set a different

connection string when deploying to production in the final hosts, or by doing it from your CI/CD

pipelines in Azure DevOps Services or your preferred DevOps system.

• It exposes port 80 for internal access to the catalog.api service within the Docker host. The host

is currently a Linux VM because it is based on a Docker image for Linux, but you could configure

the container to run on a Windows image instead.

• It forwards the exposed port 80 on the container to port 5101 on the Docker host machine (the

Linux VM).

• It links the web service to the sql.data service (the SQL Server instance for Linux database

running in a container). When you specify this dependency, the catalog.api container will not

start until the sql.data container has already started; this is important because catalog.api needs

to have the SQL Server database up and running first. However, this kind of container

dependency is not enough in many cases, because Docker checks only at the container level.

Sometimes the service (in this case SQL Server) might still not be ready, so it is advisable to

implement retry logic with exponential backoff in your client microservices. That way, if a

dependency container is not ready for a short time, the application will still be resilient.

• It is configured to allow access to external servers: the extra_hosts setting allows you to access

external servers or machines outside of the Docker host (that is, outside the default Linux VM

which is a development Docker host), such as a local SQL Server instance on your development

PC.

There are also other, more advanced docker-compose.yml settings that we will discuss in the

following sections.

119 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Using docker-compose files to target multiple environments

The docker-compose.yml files are definition files and can be used by multiple infrastructures that

understand that format. The most straightforward tool is the docker-compose command.

Therefore, by using the docker-compose command you can target the following main scenarios.

Development environments

When you develop applications, it is important to be able to run an application in an isolated

development environment. You can use the docker-compose CLI command to create that

environment or use Visual Studio which uses docker-compose under the covers.

The docker-compose.yml file allows you to configure and document all your application’s service

dependencies (other services, cache, databases, queues, etc.). Using the docker-compose CLI

command, you can create and start one or more containers for each dependency with a single

command (docker-compose up).

The docker-compose.yml files are configuration files interpreted by Docker engine but also serve as

convenient documentation files about the composition of your multi-container application.

Testing environments

An important part of any continuous deployment (CD) or continuous integration (CI) process are the

unit tests and integration tests. These automated tests require an isolated environment so they are

not impacted by the users or any other change in the application’s data.

With Docker Compose you can create and destroy that isolated environment very easily in a few

commands from your command prompt or scripts, like the following commands:

docker-compose -f docker-compose.yml -f docker-compose-test.override.yml up -d
./run_unit_tests
docker-compose -f docker-compose.yml -f docker-compose.test.override.yml down

Production deployments

You can also use Compose to deploy to a remote Docker Engine. A typical case is to deploy to a

single Docker host instance (like a production VM or server provisioned with Docker Machine).

If you are using any other orchestrator (Azure Service Fabric, Kubernetes, etc.), you might need to add

setup and metadata configuration settings like those in docker-compose.yml, but in the format

required by the other orchestrator.

In any case, docker-compose is a convenient tool and metadata format for development, testing and

production workflows, although the production workflow might vary on the orchestrator you are

using.

Using multiple docker-compose files to handle several environments

When targeting different environments, you should use multiple compose files. This lets you create

multiple configuration variants depending on the environment.

https://docs.docker.com/machine/overview/

120 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Overriding the base docker-compose file

You could use a single docker-compose.yml file as in the simplified examples shown in previous

sections. However, that is not recommended for most applications.

By default, Compose reads two files, a docker-compose.yml and an optional docker-

compose.override.yml file. As shown in Figure 6-11, when you are using Visual Studio and enabling

Docker support, Visual Studio also creates an additional docker-compose.vs.debug.g.yml file for

debugging the application, you can take a look at this file in folder obj\Docker\ in the main solution

folder.

Figure 6-11. docker-compose files in Visual Studio 2017

You can edit the docker-compose files with any editor, like Visual Studio Code or Sublime, and run the

application with the docker-compose up command.

By convention, the docker-compose.yml file contains your base configuration and other static

settings. That means that the service configuration should not change depending on the deployment

environment you are targeting.

The docker-compose.override.yml file, as its name suggests, contains configuration settings that

override the base configuration, such as configuration that depends on the deployment environment.

You can have multiple override files with different names also. The override files usually contain

additional information needed by the application but specific to an environment or to a deployment.

Targeting multiple environments

A typical use case is when you define multiple compose files so you can target multiple environments,

like production, staging, CI, or development. To support these differences, you can split your

Compose configuration into multiple files, as shown in Figure 6-12.

Figure 6-12. Multiple docker-compose files overriding values in the base docker-compose.yml file

121 Designing and Developing Multi-Container and Microservice-Based .NET Applications

You start with the base docker-compose.yml file. This base file has to contain the base or static

configuration settings that do not change depending on the environment. For example, the

eShopOnContainers has the following docker-compose.yml file (simplified with less services) as the

base file.

#docker-compose.yml (Base)
version: '3.4'
services:
 basket.api:
 image: eshop/basket.api:${TAG:-latest}
 build:
 context: .
 dockerfile: src/Services/Basket/Basket.API/Dockerfile
 depends_on:
 - basket.data
 - identity.api
 - rabbitmq

 catalog.api:
 image: eshop/catalog.api:${TAG:-latest}
 build:
 context: .
 dockerfile: src/Services/Catalog/Catalog.API/Dockerfile
 depends_on:
 - sql.data
 - rabbitmq

 marketing.api:
 image: eshop/marketing.api:${TAG:-latest}
 build:
 context: .
 dockerfile: src/Services/Marketing/Marketing.API/Dockerfile
 depends_on:
 - sql.data
 - nosql.data
 - identity.api
 - rabbitmq

 webmvc:
 image: eshop/webmvc:${TAG:-latest}
 build:
 context: .
 dockerfile: src/Web/WebMVC/Dockerfile
 depends_on:
 - catalog.api
 - ordering.api
 - identity.api
 - basket.api
 - marketing.api

 sql.data:
 image: microsoft/mssql-server-linux:2017-latest

 nosql.data:
 image: mongo

 basket.data:
 image: redis

122 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 rabbitmq:
 image: rabbitmq:3-management

The values in the base docker-compose.yml file should not change because of different target

deployment environments.

If you focus on the webmvc service definition, for instance, you can see how that information is much

the same no matter what environment you might be targeting. You have the following information:

• The service name: webmvc.

• The container’s custom image: eshop/webmvc.

• The command to build the custom Docker image, indicating which Dockerfile to use.

• Dependencies on other services, so this container does not start until the other dependency

containers have started.

You can have additional configuration, but the important point is that in the base docker-

compose.yml file, you just want to set the information that is common across environments. Then in

the docker-compose.override.yml or similar files for production or staging, you should place

configuration that is specific for each environment.

Usually, the docker-compose.override.yml is used for your development environment, as in the

following example from eShopOnContainers:

#docker-compose.override.yml (Extended config for DEVELOPMENT env.)
version: '3.4'

services:
Simplified number of services here:

 basket.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:80
 - ConnectionString=${ESHOP_AZURE_REDIS_BASKET_DB:-basket.data}
 - identityUrl=http://identity.api
 - IdentityUrlExternal=http://${ESHOP_EXTERNAL_DNS_NAME_OR_IP}:5105
 - EventBusConnection=${ESHOP_AZURE_SERVICE_BUS:-rabbitmq}
 - EventBusUserName=${ESHOP_SERVICE_BUS_USERNAME}
 - EventBusPassword=${ESHOP_SERVICE_BUS_PASSWORD}
 - AzureServiceBusEnabled=False
 - ApplicationInsights__InstrumentationKey=${INSTRUMENTATION_KEY}
 - OrchestratorType=${ORCHESTRATOR_TYPE}
 - UseLoadTest=${USE_LOADTEST:-False}

 ports:
 - "5103:80"

 catalog.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:80
 - ConnectionString=${ESHOP_AZURE_CATALOG_DB:-
Server=sql.data;Database=Microsoft.eShopOnContainers.Services.CatalogDb;User
Id=sa;Password=Pass@word}
 - PicBaseUrl=${ESHOP_AZURE_STORAGE_CATALOG_URL:-

123 Designing and Developing Multi-Container and Microservice-Based .NET Applications

http://localhost:5202/api/v1/catalog/items/[0]/pic/}
 - EventBusConnection=${ESHOP_AZURE_SERVICE_BUS:-rabbitmq}
 - EventBusUserName=${ESHOP_SERVICE_BUS_USERNAME}
 - EventBusPassword=${ESHOP_SERVICE_BUS_PASSWORD}
 - AzureStorageAccountName=${ESHOP_AZURE_STORAGE_CATALOG_NAME}
 - AzureStorageAccountKey=${ESHOP_AZURE_STORAGE_CATALOG_KEY}
 - UseCustomizationData=True
 - AzureServiceBusEnabled=False
 - AzureStorageEnabled=False
 - ApplicationInsights__InstrumentationKey=${INSTRUMENTATION_KEY}
 - OrchestratorType=${ORCHESTRATOR_TYPE}
 ports:
 - "5101:80"

 marketing.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:80
 - ConnectionString=${ESHOP_AZURE_MARKETING_DB:-
Server=sql.data;Database=Microsoft.eShopOnContainers.Services.MarketingDb;User
Id=sa;Password=Pass@word}
 - MongoConnectionString=${ESHOP_AZURE_COSMOSDB:-mongodb://nosql.data}
 - MongoDatabase=MarketingDb
 - EventBusConnection=${ESHOP_AZURE_SERVICE_BUS:-rabbitmq}
 - EventBusUserName=${ESHOP_SERVICE_BUS_USERNAME}
 - EventBusPassword=${ESHOP_SERVICE_BUS_PASSWORD}
 - identityUrl=http://identity.api
 - IdentityUrlExternal=http://${ESHOP_EXTERNAL_DNS_NAME_OR_IP}:5105
 - CampaignDetailFunctionUri=${ESHOP_AZUREFUNC_CAMPAIGN_DETAILS_URI}
 - PicBaseUrl=${ESHOP_AZURE_STORAGE_MARKETING_URL:-
http://localhost:5110/api/v1/campaigns/[0]/pic/}
 - AzureStorageAccountName=${ESHOP_AZURE_STORAGE_MARKETING_NAME}
 - AzureStorageAccountKey=${ESHOP_AZURE_STORAGE_MARKETING_KEY}
 - AzureServiceBusEnabled=False
 - AzureStorageEnabled=False
 - ApplicationInsights__InstrumentationKey=${INSTRUMENTATION_KEY}
 - OrchestratorType=${ORCHESTRATOR_TYPE}
 - UseLoadTest=${USE_LOADTEST:-False}
 ports:
 - "5110:80"

 webmvc:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:80
 - PurchaseUrl=http://webshoppingapigw
 - IdentityUrl=http://10.0.75.1:5105
 - MarketingUrl=http://webmarketingapigw
 - CatalogUrlHC=http://catalog.api/hc
 - OrderingUrlHC=http://ordering.api/hc
 - IdentityUrlHC=http://identity.api/hc
 - BasketUrlHC=http://basket.api/hc
 - MarketingUrlHC=http://marketing.api/hc
 - PaymentUrlHC=http://payment.api/hc
 - SignalrHubUrl=http://${ESHOP_EXTERNAL_DNS_NAME_OR_IP}:5202
 - UseCustomizationData=True
 - ApplicationInsights__InstrumentationKey=${INSTRUMENTATION_KEY}
 - OrchestratorType=${ORCHESTRATOR_TYPE}
 - UseLoadTest=${USE_LOADTEST:-False}
 ports:
 - "5100:80"

124 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 sql.data:
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"
 nosql.data:
 ports:
 - "27017:27017"
 basket.data:
 ports:
 - "6379:6379"
 rabbitmq:
 ports:
 - "15672:15672"
 - "5672:5672"

In this example, the development override configuration exposes some ports to the host, defines

environment variables with redirect URLs, and specifies connection strings for the development

environment. These settings are all just for the development environment.

When you run docker-compose up (or launch it from Visual Studio), the command reads the overrides

automatically as if it were merging both files.

Suppose that you want another Compose file for the production environment, with different

configuration values, ports or connection strings. You can create another override file, like file named

docker-compose.prod.yml with different settings and environment variables. That file might be

stored in a different Git repo or managed and secured by a different team.

How to deploy with a specific override file

To use multiple override files, or an override file with a different name, you can use the -f option with

the docker-compose command and specify the files. Compose merges files in the order they are

specified on the command line. The following example shows how to deploy with override files.

docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d

Using environment variables in docker-compose files

It is convenient, especially in production environments, to be able to get configuration information

from environment variables, as we have shown in previous examples. You can reference an

environment variable in your docker-compose files using the syntax ${MY_VAR}. The following line

from a docker-compose.prod.yml file shows how to reference the value of an environment variable.

IdentityUrl=http://${ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP}:5105

Environment variables are created and initialized in different ways, depending on your host

environment (Linux, Windows, Cloud cluster, etc.). However, a convenient approach is to use an .env

file. The docker-compose files support declaring default environment variables in the .env file. These

values for the environment variables are the default values. But they can be overridden by the values

you might have defined in each of your environments (host OS or environment variables from your

cluster). You place this .env file in the folder where the docker-compose command is executed from.

The following example shows an .env file like the .env file for the eShopOnContainers application.

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/.env

125 Designing and Developing Multi-Container and Microservice-Based .NET Applications

.env file

ESHOP_EXTERNAL_DNS_NAME_OR_IP=localhost

ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP=10.121.122.92

Docker-compose expects each line in an .env file to be in the format <variable>=<value>.

Note that the values set in the runtime environment always override the values defined inside the .env

file. In a similar way, values passed via command-line command arguments also override the default

values set in the .env file.

Additional resources

• Overview of Docker Compose

https://docs.docker.com/compose/overview/

• Multiple Compose files

https://docs.docker.com/compose/extends/#multiple-compose-files

Building optimized ASP.NET Core Docker images

If you are exploring Docker and .NET Core on sources on the Internet, you will find Dockerfiles that

demonstrate the simplicity of building a Docker image by copying your source into a container. These

examples suggest that by using a simple configuration, you can have a Docker image with the

environment packaged with your application. The following example shows a simple Dockerfile in this

vein.

FROM mcr.microsoft.com/dotnet/core/sdk:2.2
WORKDIR /app
ENV ASPNETCORE_URLS http://+:80
EXPOSE 80
COPY . .
RUN dotnet restore
ENTRYPOINT ["dotnet", "run"]

A Dockerfile like this will work. However, you can substantially optimize your images, especially your

production images.

In the container and microservices model, you are constantly starting containers. The typical way of

using containers does not restart a sleeping container, because the container is disposable.

Orchestrators (like Kubernetes and Azure Service Fabric) simply create new instances of images. What

this means is that you would need to optimize by precompiling the application when it is built so the

instantiation process will be faster. When the container is started, it should be ready to run. You

should not restore and compile at run time, using dotnet restore and dotnet build commands

from the dotnet CLI that, as you see in many blog posts about .NET Core and Docker.

The .NET team has been doing important work to make .NET Core and ASP.NET Core a container-

optimized framework. Not only is .NET Core a lightweight framework with a small memory footprint;

the team has focused on optimized Docker images for three main scenarios and published them in

the Docker Hub registry at dotnet/core, beginning with version 2.1:

24. Development: Where the priority is the ability to quickly iterate and debug changes, and where

size is secondary.

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/extends/#multiple-compose-files

126 Designing and Developing Multi-Container and Microservice-Based .NET Applications

25. Build: The priority is compiling the application and includes binaries and other dependencies to

optimize binaries.

26. Production: Where the focus is fast deploying and starting of containers, so these images are

limited to the binaries and the content needed to run the application.

To achieve this, the .NET team is providing four basic variants in dotnet/core (at Docker Hub):

27. sdk: for development and build scenarios

28. aspnet: for ASP.NET production scenarios

29. runtime: for .NET production scenarios

30. runtime-deps: for production scenarios of self-contained applications.

For faster startup, runtime images also automatically set aspnetcore_urls to port 80 and use Ngen to

create a native image cache of assemblies.

Additional resources

• Building Optimized Docker Images with ASP.NET Core

https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-

with-asp-net-core/

• Building Docker Images for .NET Core Applications

https://docs.microsoft.com/dotnet/core/docker/building-net-docker-images

Using a database server running as a container
You can have your databases (SQL Server, PostgreSQL, MySQL, etc.) on regular standalone servers, in

on-premises clusters, or in PaaS services in the cloud like Azure SQL DB. However, for development

and test environments, having your databases running as containers is convenient, because you do

not have any external dependency and simply running the docker-compose up command starts the

whole application. Having those databases as containers is also great for integration tests, because

the database is started in the container and is always populated with the same sample data, so tests

can be more predictable.

SQL Server running as a container with a microservice-related database

In eShopOnContainers, there is a container named sql.data defined in the docker-compose.yml file

that runs SQL Server for Linux with all the SQL Server databases needed for the microservices. (You

could also have one SQL Server container for each database, but that would require more memory

assigned to Docker.) The important point in microservices is that each microservice owns its related

data, therefore its related SQL database in this case. But the databases can be anywhere.

The SQL Server container in the sample application is configured with the following YAML code in the

docker-compose.yml file, which is executed when you run docker-compose up. Note that the YAML

code has consolidated configuration information from the generic docker-compose.yml file and the

docker-compose.override.yml file. (Usually you would separate the environment settings from the

base or static information related to the SQL Server image.)

https://hub.docker.com/_/microsoft-dotnet-core/
https://docs.microsoft.com/dotnet/core/deploying/index#self-contained-deployments-scd
https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/
https://blogs.msdn.microsoft.com/stevelasker/2016/09/29/building-optimized-docker-images-with-asp-net-core/
https://docs.microsoft.com/dotnet/core/docker/building-net-docker-images
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/docker-compose.yml

127 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 sql.data:
 image: microsoft/mssql-server-linux:2017-latest
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5434:1433"

In a similar way, instead of using docker-compose, the following docker run command can run that

container:

 docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Pass@word' -p 5433:1433 -d microsoft/mssql-
server-linux:2017-latest

However, if you are deploying a multi-container application like eShopOnContainers, it is more

convenient to use the docker-compose up command so that it deploys all the required containers for

the application.

When you start this SQL Server container for the first time, the container initializes SQL Server with the

password that you provide. Once SQL Server is running as a container, you can update the database

by connecting through any regular SQL connection, such as from SQL Server Management Studio,

Visual Studio, or C# code.

The eShopOnContainers application initializes each microservice database with sample data by

seeding it with data on startup, as explained in the following section.

Having SQL Server running as a container is not just useful for a demo where you might not have

access to an instance of SQL Server. As noted, it is also great for development and testing

environments so that you can easily run integration tests starting from a clean SQL Server image and

known data by seeding new sample data.

Additional resources

• Run the SQL Server Docker image on Linux, Mac, or Windows

https://docs.microsoft.com/sql/linux/sql-server-linux-setup-docker

• Connect and query SQL Server on Linux with sqlcmd

https://docs.microsoft.com/sql/linux/sql-server-linux-connect-and-query-sqlcmd

Seeding with test data on Web application startup

To add data to the database when the application starts up, you can add code like the following to

the Configure method in the Startup class of the Web API project:

public class Startup
{
 // Other Startup code...
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 // Other Configure code...
 // Seed data through our custom class
 CatalogContextSeed.SeedAsync(app)
 .Wait();
 // Other Configure code...

https://docs.microsoft.com/sql/linux/sql-server-linux-setup-docker
https://docs.microsoft.com/sql/linux/sql-server-linux-connect-and-query-sqlcmd

128 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 }
}

The following code in the custom CatalogContextSeed class populates the data.

public class CatalogContextSeed
{
 public static async Task SeedAsync(IApplicationBuilder applicationBuilder)
 {
 var context = (CatalogContext)applicationBuilder
 .ApplicationServices.GetService(typeof(CatalogContext));
 using (context)
 {
 context.Database.Migrate();
 if (!context.CatalogBrands.Any())
 {
 context.CatalogBrands.AddRange(
 GetPreconfiguredCatalogBrands());
 await context.SaveChangesAsync();
 }
 if (!context.CatalogTypes.Any())
 {
 context.CatalogTypes.AddRange(
 GetPreconfiguredCatalogTypes());
 await context.SaveChangesAsync();
 }
 }
 }

 static IEnumerable<CatalogBrand> GetPreconfiguredCatalogBrands()
 {
 return new List<CatalogBrand>()
 {
 new CatalogBrand() { Brand = "Azure"},
 new CatalogBrand() { Brand = ".NET" },
 new CatalogBrand() { Brand = "Visual Studio" },
 new CatalogBrand() { Brand = "SQL Server" }
 };
 }

 static IEnumerable<CatalogType> GetPreconfiguredCatalogTypes()
 {
 return new List<CatalogType>()
 {
 new CatalogType() { Type = "Mug"},
 new CatalogType() { Type = "T-Shirt" },
 new CatalogType() { Type = "Backpack" },
 new CatalogType() { Type = "USB Memory Stick" }
 };
 }
}

When you run integration tests, having a way to generate data consistent with your integration tests is

useful. Being able to create everything from scratch, including an instance of SQL Server running on a

container, is great for test environments.

129 Designing and Developing Multi-Container and Microservice-Based .NET Applications

EF Core InMemory database versus SQL Server running as a container

Another good choice when running tests is to use the Entity Framework InMemory database provider.

You can specify that configuration in the ConfigureServices method of the Startup class in your Web

API project:

public class Startup
{
 // Other Startup code ...
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IConfiguration>(Configuration);
 // DbContext using an InMemory database provider
 services.AddDbContext<CatalogContext>(opt => opt.UseInMemoryDatabase());
 //(Alternative: DbContext using a SQL Server provider
 //services.AddDbContext<CatalogContext>(c =>
 //{
 // c.UseSqlServer(Configuration["ConnectionString"]);
 //
 //});
 }

 // Other Startup code ...

}

There is an important catch, though. The in-memory database does not support many constraints that

are specific to a particular database. For instance, you might add a unique index on a column in your

EF Core model and write a test against your in-memory database to check that it does not let you add

a duplicate value. But when you are using the in-memory database, you cannot handle unique indexes

on a column. Therefore, the in-memory database does not behave exactly the same as a real SQL

Server database—it does not emulate database-specific constraints.

Even so, an in-memory database is still useful for testing and prototyping. But if you want to create

accurate integration tests that take into account the behavior of a specific database implementation,

you need to use a real database like SQL Server. For that purpose, running SQL Server in a container is

a great choice and more accurate than the EF Core InMemory database provider.

Using a Redis cache service running in a container

You can run Redis on a container, especially for development and testing and for proof-of-concept

scenarios. This scenario is convenient, because you can have all your dependencies running on

containers—not just for your local development machines, but for your testing environments in your

CI/CD pipelines.

However, when you run Redis in production, it is better to look for a high-availability solution like

Redis Microsoft Azure, which runs as a PaaS (Platform as a Service). In your code, you just need to

change your connection strings.

Redis provides a Docker image with Redis. That image is available from Docker Hub at this URL:

https://hub.docker.com/_/redis/

You can directly run a Docker Redis container by executing the following Docker CLI command in your

command prompt:

https://hub.docker.com/_/redis/

130 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 docker run --name some-redis -d redis

The Redis image includes expose:6379 (the port used by Redis), so standard container linking will

make it automatically available to the linked containers.

In eShopOnContainers, the basket.api microservice uses a Redis cache running as a container. That

basket.data container is defined as part of the multi-container docker-compose.yml file, as shown in

the following example:

#docker-compose.yml file
#...
 basket.data:
 image: redis
 expose:
 - "6379"

This code in the docker-compose.yml defines a container named basket.data based on the redis

image and publishing the port 6379 internally, meaning that it will be accessible only from other

containers running within the Docker host.

Finally, in the docker-compose.override.yml file, the basket.api microservice for the

eShopOnContainers sample defines the connection string to use for that Redis container:

 basket.api:
 environment:
 # Other data ...
 - ConnectionString=basket.data
 - EventBusConnection=rabbitmq

As mentioned before, the name of the microservice “basket.data” is resolved by docker’s internal

network DNS.

Implementing event-based communication between

microservices (integration events)
As described earlier, when you use event-based communication, a microservice publishes an event

when something notable happens, such as when it updates a business entity. Other microservices

subscribe to those events. When a microservice receives an event, it can update its own business

entities, which might lead to more events being published. This is the essence of the eventual

consistency concept. This publish/subscribe system is usually performed by using an implementation

of an event bus. The event bus can be designed as an interface with the API needed to subscribe and

unsubscribe to events and to publish events. It can also have one or more implementations based on

any inter-process or messaging communication, such as a messaging queue or a service bus that

supports asynchronous communication and a publish/subscribe model.

You can use events to implement business transactions that span multiple services, which gives you

eventual consistency between those services. An eventually consistent transaction consists of a series

of distributed actions. At each action, the microservice updates a business entity and publishes an

event that triggers the next action.

131 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-18. Event-driven communication based on an event bus

This section describes how you can implement this type of communication with .NET by using a

generic event bus interface, as shown in Figure 6-18. There are multiple potential implementations,

each using a different technology or infrastructure such as RabbitMQ, Azure Service Bus, or any other

third-party open-source or commercial service bus.

Using message brokers and services buses for production systems

As noted in the architecture section, you can choose from multiple messaging technologies for

implementing your abstract event bus. But these technologies are at different levels. For instance,

RabbitMQ, a messaging broker transport, is at a lower level than commercial products like Azure

Service Bus, NServiceBus, MassTransit, or Brighter. Most of these products can work on top of either

RabbitMQ or Azure Service Bus. Your choice of product depends on how many features and how

much out-of-the-box scalability you need for your application.

For implementing just an event bus proof-of-concept for your development environment, as in the

eShopOnContainers sample, a simple implementation on top of RabbitMQ running as a container

might be enough. But for mission-critical and production systems that need high scalability, you

might want to evaluate and use Azure Service Bus.

If you require high-level abstractions and richer features like Sagas for long-running processes that

make distributed development easier, other commercial and open-source service buses like

NServiceBus, MassTransit, and Brighter are worth evaluating. In this case, the abstractions and API to

use would usually be directly the ones provided by those high-level service buses instead of your own

abstractions (like the simple event bus abstractions provided at eShopOnContainers). For that matter,

you can research the forked eShopOnContainers using NServiceBus (additional derived sample

implemented by Particular Software)

Of course, you could always build your own service bus features on top of lower-level technologies

like RabbitMQ and Docker, but the work needed to “reinvent the wheel” might be too costly for a

custom enterprise application.

https://docs.particular.net/nservicebus/sagas/
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/BuildingBlocks/EventBus/EventBus/Abstractions/IEventBus.cs
https://go.particular.net/eShopOnContainers

132 Designing and Developing Multi-Container and Microservice-Based .NET Applications

To reiterate: the sample event bus abstractions and implementation showcased in the

eShopOnContainers sample are intended to be used only as a proof of concept. Once you have

decided that you want to have asynchronous and event-driven communication, as explained in the

current section, you should choose the service bus product that best fits your needs for production.

Integration events

Integration events are used for bringing domain state in sync across multiple microservices or external

systems. This is done by publishing integration events outside the microservice. When an event is

published to multiple receiver microservices (to as many microservices as are subscribed to the

integration event), the appropriate event handler in each receiver microservice handles the event.

An integration event is basically a data-holding class, as in the following example:

public class ProductPriceChangedIntegrationEvent : IntegrationEvent
{
 public int ProductId { get; private set; }
 public decimal NewPrice { get; private set; }
 public decimal OldPrice { get; private set; }

 public ProductPriceChangedIntegrationEvent(int productId, decimal newPrice,
 decimal oldPrice)
 {
 ProductId = productId;
 NewPrice = newPrice;
 OldPrice = oldPrice;
 }
}

The integration events can be defined at the application level of each microservice, so they are

decoupled from other microservices, in a way comparable to how ViewModels are defined in the

server and client. What is not recommended is sharing a common integration events library across

multiple microservices; doing that would be coupling those microservices with a single event

definition data library. You do not want to do that for the same reasons that you do not want to share

a common domain model across multiple microservices: microservices must be completely

autonomous.

There are only a few kinds of libraries you should share across microservices. One is libraries that are

final application blocks, like the Event Bus client API, as in eShopOnContainers. Another is libraries

that constitute tools that could also be shared as NuGet components, like JSON serializers.

The event bus

An event bus allows publish/subscribe-style communication between microservices without requiring

the components to explicitly be aware of each other, as shown in Figure 6-19.

https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/BuildingBlocks/EventBus

133 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-19. Publish/subscribe basics with an event bus

The event bus is related to the Observer pattern and the publish-subscribe pattern.

Observer pattern

In the Observer pattern, your primary object (known as the Observable) notifies other interested

objects (known as Observers) with relevant information (events).

Publish/Subscribe (Pub/Sub) pattern

The purpose of the Publish/Subscribe pattern is the same as the Observer pattern: you want to notify

other services when certain events take place. But there is an important difference between the

Observer and Pub/Sub patterns. In the observer pattern, the broadcast is performed directly from the

observable to the observers, so they “know” each other. But when using a Pub/Sub pattern, there is a

third component, called broker or message broker or event bus, which is known by both the publisher

and subscriber. Therefore, when using the Pub/Sub pattern the publisher and the subscribers are

precisely decoupled thanks to the mentioned event bus or message broker.

The middleman or event bus

How do you achieve anonymity between publisher and subscriber? An easy way is let a middleman

take care of all the communication. An event bus is one such middleman.

An event bus is typically composed of two parts:

• The abstraction or interface.

• One or more implementations.

In Figure 6-19 you can see how, from an application point of view, the event bus is nothing more than

a Pub/Sub channel. The way you implement this asynchronous communication can vary. It can have

multiple implementations so that you can swap between them, depending on the environment

requirements (for example, production versus development environments).

In Figure 6-20 you can see an abstraction of an event bus with multiple implementations based on

infrastructure messaging technologies like RabbitMQ, Azure Service Bus, or another event/message

broker.

https://en.wikipedia.org/wiki/Observer_pattern
https://docs.microsoft.com/previous-versions/msp-n-p/ff649664(v=pandp.10)

134 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6- 20. Multiple implementations of an event bus

However, and as mentioned previously, using your own abstractions (the event bus interface) is good

only if you need basic event bus features supported by your abstractions. If you need richer service

bus features, you should probably use the API and abstractions provided by your preferred

commercial service bus instead of your own abstractions.

Defining an event bus interface

Let’s start with some implementation code for the event bus interface and possible implementations

for exploration purposes. The interface should be generic and straightforward, as in the following

interface.

public interface IEventBus
{
 void Publish(IntegrationEvent @event);

 void Subscribe<T, TH>()
 where T : IntegrationEvent
 where TH : IIntegrationEventHandler<T>;

 void SubscribeDynamic<TH>(string eventName)
 where TH : IDynamicIntegrationEventHandler;

 void UnsubscribeDynamic<TH>(string eventName)
 where TH : IDynamicIntegrationEventHandler;

 void Unsubscribe<T, TH>()
 where TH : IIntegrationEventHandler<T>
 where T : IntegrationEvent;
}

135 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The Publish method is straightforward. The event bus will broadcast the integration event passed to

it to any microservice, or even an external application, subscribed to that event. This method is used

by the microservice that is publishing the event.

The Subscribe methods (you can have several implementations depending on the arguments) are

used by the microservices that want to receive events. This method has two arguments. The first is the

integration event to subscribe to (IntegrationEvent). The second argument is the integration event

handler (or callback method), named IIntegrationEventHandler, to be executed when the receiver

microservice gets that integration event message.

Implementing an event bus with RabbitMQ for the

development or test environment
We should start by saying that if you create your custom event bus based on RabbitMQ running in a

container, as the eShopOnContainers application does, it should be used only for your development

and test environments. You should not use it for your production environment, unless you are

building it as a part of a production-ready service bus. A simple custom event bus might be missing

many production-ready critical features that a commercial service bus has.

One of the event bus custom implementation in eShopOnContainers is basically a library using the

RabbitMQ API (There’s another implementation based on Azure Service Bus).

The event bus implementation with RabbitMQ lets microservices subscribe to events, publish events,

and receive events, as shown in Figure 6-21.

Figure 6-21. RabbitMQ implementation of an event bus

In the code, the EventBusRabbitMQ class implements the generic IEventBus interface. This is based on

Dependency Injection so that you can swap from this dev/test version to a production version.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Implementation using RabbitMQ API

136 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 //...
}

The RabbitMQ implementation of a sample dev/test event bus is boilerplate code. It has to handle the

connection to the RabbitMQ server and provide code for publishing a message event to the queues. It

also has to implement a dictionary of collections of integration event handlers for each event type;

these event types can have a different instantiation and different subscriptions for each receiver

microservice, as shown in Figure 6-21.

Implementing a simple publish method with RabbitMQ

The following code is a simplified version of an event bus implementation for RabbitMQ, to

showcase the whole scenario. You don’t really handle the connection this way. To see the full

implementation, see the actual code in the dotnet-architecture/eShopOnContainers repository.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Member objects and other methods ...
 // ...

 public void Publish(IntegrationEvent @event)
 {
 var eventName = @event.GetType().Name;
 var factory = new ConnectionFactory() { HostName = _connectionString };
 using (var connection = factory.CreateConnection())
 using (var channel = connection.CreateModel())
 {
 channel.ExchangeDeclare(exchange: _brokerName,
 type: "direct");
 string message = JsonConvert.SerializeObject(@event);
 var body = Encoding.UTF8.GetBytes(message);
 channel.BasicPublish(exchange: _brokerName,
 routingKey: eventName,
 basicProperties: null,
 body: body);
 }
 }
}

The actual code of the Publish method in the eShopOnContainers application is improved by using a

Polly retry policy, which retries the task a certain number of times in case the RabbitMQ container is

not ready. This can occur when docker-compose is starting the containers; for example, the RabbitMQ

container might start more slowly than the other containers.

As mentioned earlier, there are many possible configurations in RabbitMQ, so this code should be

used only for dev/test environments.

Implementing the subscription code with the RabbitMQ API

As with the publish code, the following code is a simplification of part of the event bus

implementation for RabbitMQ. Again, you usually do not need to change it unless you are improving

it.

public class EventBusRabbitMQ : IEventBus, IDisposable
{
 // Member objects and other methods ...

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/BuildingBlocks/EventBus/EventBusRabbitMQ/EventBusRabbitMQ.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/BuildingBlocks/EventBus/EventBusRabbitMQ/EventBusRabbitMQ.cs
https://github.com/App-vNext/Polly

137 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 // ...

 public void Subscribe<T, TH>()
 where T : IntegrationEvent
 where TH : IIntegrationEventHandler<T>
 {
 var eventName = _subsManager.GetEventKey<T>();

 var containsKey = _subsManager.HasSubscriptionsForEvent(eventName);
 if (!containsKey)
 {
 if (!_persistentConnection.IsConnected)
 {
 _persistentConnection.TryConnect();
 }

 using (var channel = _persistentConnection.CreateModel())
 {
 channel.QueueBind(queue: _queueName,
 exchange: BROKER_NAME,
 routingKey: eventName);
 }
 }

 _subsManager.AddSubscription<T, TH>();
 }
}

Each event type has a related channel to get events from RabbitMQ. You can then have as many event

handlers per channel and event type as needed.

The Subscribe method accepts an IIntegrationEventHandler object, which is like a callback method in

the current microservice, plus its related IntegrationEvent object. The code then adds that event

handler to the list of event handlers that each integration event type can have per client microservice.

If the client code has not already been subscribed to the event, the code creates a channel for the

event type so it can receive events in a push style from RabbitMQ when that event is published from

any other service.

Subscribing to events
The first step for using the event bus is to subscribe the microservices to the events they want to

receive. That should be done in the receiver microservices.

The following simple code shows what each receiver microservice needs to implement when starting

the service (that is, in the Startup class) so it subscribes to the events it needs. In this case, the

basket.api microservice needs to subscribe to ProductPriceChangedIntegrationEvent and the

OrderStartedIntegrationEvent messages.

For instance, when subscribing to the ProductPriceChangedIntegrationEvent event, that makes the

basket microservice aware of any changes to the product price and lets it warn the user about the

change if that product is in the user’s basket.

var eventBus = app.ApplicationServices.GetRequiredService<IEventBus>();

eventBus.Subscribe<ProductPriceChangedIntegrationEvent,
 ProductPriceChangedIntegrationEventHandler>();

138 Designing and Developing Multi-Container and Microservice-Based .NET Applications

eventBus.Subscribe<OrderStartedIntegrationEvent,
 OrderStartedIntegrationEventHandler>();

After this code runs, the subscriber microservice will be listening through RabbitMQ channels. When

any message of type ProductPriceChangedIntegrationEvent arrives, the code invokes the event

handler that is passed to it and processes the event.

Publishing events through the event bus

Finally, the message sender (origin microservice) publishes the integration events with code similar to

the following example. (This is a simplified example that does not take atomicity into account.) You

would implement similar code whenever an event must be propagated across multiple microservices,

usually right after committing data or transactions from the origin microservice.

First, the event bus implementation object (based on RabbitMQ or based on a service bus) would be

injected at the controller constructor, as in the following code:

[Route("api/v1/[controller]")]
public class CatalogController : ControllerBase
{
 private readonly CatalogContext _context;
 private readonly IOptionsSnapshot<Settings> _settings;
 private readonly IEventBus _eventBus;

 public CatalogController(CatalogContext context,
 IOptionsSnapshot<Settings> settings,
 IEventBus eventBus)
 {
 _context = context;
 _settings = settings;
 _eventBus = eventBus;
 }
 // ...
}

Then you use it from your controller’s methods, like in the UpdateProduct method:

[Route("items")]
[HttpPost]
public async Task<IActionResult> UpdateProduct([FromBody]CatalogItem product)
{
 var item = await _context.CatalogItems.SingleOrDefaultAsync(
 i => i.Id == product.Id);
 // ...
 if (item.Price != product.Price)
 {
 var oldPrice = item.Price;
 item.Price = product.Price;
 _context.CatalogItems.Update(item);
 var @event = new ProductPriceChangedIntegrationEvent(item.Id,
 item.Price,
 oldPrice);
 // Commit changes in original transaction
 await _context.SaveChangesAsync();
 // Publish integration event to the event bus
 // (RabbitMQ or a service bus underneath)
 _eventBus.Publish(@event);
 // ...

139 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 }
 // ...
}

In this case, since the origin microservice is a simple CRUD microservice, that code is placed right into

a Web API controller.

In more advanced microservices, like when using CQRS approaches, it can be implemented in the

CommandHandler class, within the Handle() method.

Designing atomicity and resiliency when publishing to the event bus

When you publish integration events through a distributed messaging system like your event bus, you

have the problem of atomically updating the original database and publishing an event (that is, either

both operations complete or none of them). For instance, in the simplified example shown earlier, the

code commits data to the database when the product price is changed and then publishes a

ProductPriceChangedIntegrationEvent message. Initially, it might look essential that these two

operations be performed atomically. However, if you are using a distributed transaction involving the

database and the message broker, as you do in older systems like Microsoft Message Queuing

(MSMQ), this is not recommended for the reasons described by the CAP theorem.

Basically, you use microservices to build scalable and highly available systems. Simplifying somewhat,

the CAP theorem says that you cannot build a (distributed) database (or a microservice that owns its

model) that is continually available, strongly consistent, and tolerant to any partition. You must

choose two of these three properties.

In microservices-based architectures, you should choose availability and tolerance, and you should

deemphasize strong consistency. Therefore, in most modern microservice-based applications, you

usually do not want to use distributed transactions in messaging, as you do when you implement

distributed transactions based on the Windows Distributed Transaction Coordinator (DTC) with

MSMQ.

Let’s go back to the initial issue and its example. If the service crashes after the database is updated

(in this case, right after the line of code with _context.SaveChangesAsync()), but before the integration

event is published, the overall system could become inconsistent. This might be business critical,

depending on the specific business operation you are dealing with.

As mentioned earlier in the architecture section, you can have several approaches for dealing with this

issue:

• Using the full Event Sourcing pattern.

• Using transaction log mining.

• Using the Outbox pattern. This is a transactional table to store the integration events (extending

the local transaction).

For this scenario, using the full Event Sourcing (ES) pattern is one of the best approaches, if not the

best. However, in many application scenarios, you might not be able to implement a full ES system. ES

means storing only domain events in your transactional database, instead of storing current state

data. Storing only domain events can have great benefits, such as having the history of your system

available and being able to determine the state of your system at any moment in the past. However,

implementing a full ES system requires you to rearchitect most of your system and introduces many

https://msdn.microsoft.com/library/windows/desktop/ms711472(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ms711472(v=vs.85).aspx
https://www.quora.com/What-Is-CAP-Theorem-1
https://docs.microsoft.com/previous-versions/windows/desktop/ms681205(v=vs.85)
https://msdn.microsoft.com/library/windows/desktop/ms711472(v=vs.85).aspx
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
https://www.scoop.it/t/sql-server-transaction-log-mining
http://gistlabs.com/2014/05/the-outbox/

140 Designing and Developing Multi-Container and Microservice-Based .NET Applications

other complexities and requirements. For example, you would want to use a database specifically

made for event sourcing, such as Event Store, or a document-oriented database such as Azure

Cosmos DB, MongoDB, Cassandra, CouchDB, or RavenDB. ES is a great approach for this problem, but

not the easiest solution unless you are already familiar with event sourcing.

The option to use transaction log mining initially looks very transparent. However, to use this

approach, the microservice has to be coupled to your RDBMS transaction log, such as the SQL Server

transaction log. This is probably not desirable. Another drawback is that the low-level updates

recorded in the transaction log might not be at the same level as your high-level integration events. If

so, the process of reverse-engineering those transaction log operations can be difficult.

A balanced approach is a mix of a transactional database table and a simplified ES pattern. You can

use a state such as “ready to publish the event,” which you set in the original event when you commit

it to the integration events table. You then try to publish the event to the event bus. If the publish-

event action succeeds, you start another transaction in the origin service and move the state from

“ready to publish the event” to “event already published.”

If the publish-event action in the event bus fails, the data still will not be inconsistent within the origin

microservice—it is still marked as “ready to publish the event,” and with respect to the rest of the

services, it will eventually be consistent. You can always have background jobs checking the state of

the transactions or integration events. If the job finds an event in the “ready to publish the event”

state, it can try to republish that event to the event bus.

Notice that with this approach, you are persisting only the integration events for each origin

microservice, and only the events that you want to communicate to other microservices or external

systems. In contrast, in a full ES system, you store all domain events as well.

Therefore, this balanced approach is a simplified ES system. You need a list of integration events with

their current state (“ready to publish” versus “published”). But you only need to implement these

states for the integration events. And in this approach, you do not need to store all your domain data

as events in the transactional database, as you would in a full ES system.

If you are already using a relational database, you can use a transactional table to store integration

events. To achieve atomicity in your application, you use a two-step process based on local

transactions. Basically, you have an IntegrationEvent table in the same database where you have your

domain entities. That table works as an insurance for achieving atomicity so that you include persisted

integration events into the same transactions that are committing your domain data.

Step by step, the process goes like this:

31. The application begins a local database transaction.

32. It then updates the state of your domain entities and inserts an event into the integration event

table.

33. Finally, it commits the transaction, so you get the desired atomicity and then

34. You publish the event somehow (next).

When implementing the steps of publishing the events, you have these choices:

https://eventstore.org/

141 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Publish the integration event right after committing the transaction and use another local

transaction to mark the events in the table as being published. Then, use the table just as an

artifact to track the integration events in case of issues in the remote microservices, and perform

compensatory actions based on the stored integration events.

• Use the table as a kind of queue. A separate application thread or process queries the

integration event table, publishes the events to the event bus, and then uses a local transaction

to mark the events as published.

Figure 6-22 shows the architecture for the first of these approaches.

Figure 6-22. Atomicity when publishing events to the event bus

The approach illustrated in Figure 6-22 is missing an additional worker microservice that is in charge

of checking and confirming the success of the published integration events. In case of failure, that

additional checker worker microservice can read events from the table and republish them, that is,

repeat step number 2.

About the second approach: you use the EventLog table as a queue and always use a worker

microservice to publish the messages. In that case, the process is like that shown in Figure 6-23. This

shows an additional microservice, and the table is the single source when publishing events.

142 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-23. Atomicity when publishing events to the event bus with a worker microservice

For simplicity, the eShopOnContainers sample uses the first approach (with no additional processes or

checker microservices) plus the event bus. However, the eShopOnContainers is not handling all

possible failure cases. In a real application deployed to the cloud, you must embrace the fact that

issues will arise eventually, and you must implement that check and resend logic. Using the table as a

queue can be more effective than the first approach if you have that table as a single source of events

when publishing them (with the worker) through the event bus.

Implementing atomicity when publishing integration events through the event bus

The following code shows how you can create a single transaction involving multiple DbContext

objects—one context related to the original data being updated, and the second context related to

the IntegrationEventLog table.

Note that the transaction in the example code below will not be resilient if connections to the

database have any issue at the time when the code is running. This can happen in cloud-based

systems like Azure SQL DB, which might move databases across servers. For implementing resilient

transactions across multiple contexts, see the Implementing resilient Entity Framework Core SQL

connections section later in this guide.

For clarity, the following example shows the whole process in a single piece of code. However, the

eShopOnContainers implementation is actually refactored and split this logic into multiple classes so it

is easier to maintain.

// Update Product from the Catalog microservice
//
public async Task<IActionResult> UpdateProduct([FromBody]CatalogItem productToUpdate)
{
 var catalogItem =
 await _catalogContext.CatalogItems.SingleOrDefaultAsync(i => i.Id ==
 productToUpdate.Id);
 if (catalogItem == null) return NotFound();

 bool raiseProductPriceChangedEvent = false;

143 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 IntegrationEvent priceChangedEvent = null;

 if (catalogItem.Price != productToUpdate.Price)
 raiseProductPriceChangedEvent = true;

 if (raiseProductPriceChangedEvent) // Create event if price has changed
 {
 var oldPrice = catalogItem.Price;
 priceChangedEvent = new ProductPriceChangedIntegrationEvent(catalogItem.Id,
 productToUpdate.Price,
 oldPrice);
 }
 // Update current product
 catalogItem = productToUpdate;

 // Just save the updated product if the Product's Price hasn't changed.
 if (!raiseProductPriceChangedEvent)
 {
 await _catalogContext.SaveChangesAsync();
 }
 else // Publish to event bus only if product price changed
 {
 // Achieving atomicity between original DB and the IntegrationEventLog
 // with a local transaction
 using (var transaction = _catalogContext.Database.BeginTransaction())
 {
 _catalogContext.CatalogItems.Update(catalogItem);
 await _catalogContext.SaveChangesAsync();

 // Save to EventLog only if product price changed
 if(raiseProductPriceChangedEvent)
 await _integrationEventLogService.SaveEventAsync(priceChangedEvent);

 transaction.Commit();
 }

 // Publish the integration event through the event bus
 _eventBus.Publish(priceChangedEvent);

 integrationEventLogService.MarkEventAsPublishedAsync(
 priceChangedEvent);
 }

 return Ok();
}

After the ProductPriceChangedIntegrationEvent integration event is created, the transaction that

stores the original domain operation (update the catalog item) also includes the persistence of the

event in the EventLog table. This makes it a single transaction, and you will always be able to check

whether event messages were sent.

The event log table is updated atomically with the original database operation, using a local

transaction against the same database. If any of the operations fail, an exception is thrown and the

transaction rolls back any completed operation, thus maintaining consistency between the domain

operations and the event messages saved to the table.

144 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Receiving messages from subscriptions: event handlers in receiver microservices

In addition to the event subscription logic, you need to implement the internal code for the

integration event handlers (like a callback method). The event handler is where you specify where the

event messages of a certain type will be received and processed.

An event handler first receives an event instance from the event bus. Then it locates the component to

be processed related to that integration event, propagating and persisting the event as a change in

state in the receiver microservice. For example, if a ProductPriceChanged event originates in the

catalog microservice, it is handled in the basket microservice and changes the state in this receiver

basket microservice as well, as shown in the following code.

namespace Microsoft.eShopOnContainers.Services.Basket.API.IntegrationEvents.EventHandling
{
 public class ProductPriceChangedIntegrationEventHandler :
 IIntegrationEventHandler<ProductPriceChangedIntegrationEvent>
 {
 private readonly IBasketRepository _repository;

 public ProductPriceChangedIntegrationEventHandler(
 IBasketRepository repository)
 {
 _repository = repository;
 }

 public async Task Handle(ProductPriceChangedIntegrationEvent @event)
 {
 var userIds = await _repository.GetUsers();
 foreach (var id in userIds)
 {
 var basket = await _repository.GetBasket(id);
 await UpdatePriceInBasketItems(@event.ProductId, @event.NewPrice, basket);
 }
 }

 private async Task UpdatePriceInBasketItems(int productId, decimal newPrice,
 CustomerBasket basket)
 {
 var itemsToUpdate = basket?.Items?.Where(x => int.Parse(x.ProductId) ==
 productId).ToList();
 if (itemsToUpdate != null)
 {
 foreach (var item in itemsToUpdate)
 {
 if(item.UnitPrice != newPrice)
 {
 var originalPrice = item.UnitPrice;
 item.UnitPrice = newPrice;
 item.OldUnitPrice = originalPrice;
 }
 }
 await _repository.UpdateBasket(basket);
 }
 }
 }
}

145 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The event handler needs to verify whether the product exists in any of the basket instances. It also

updates the item price for each related basket line item. Finally, it creates an alert to be displayed to

the user about the price change, as shown in Figure 6-24.

Figure 6-24. Displaying an item price change in a basket, as communicated by integration events

Idempotency in update message events

An important aspect of update message events is that a failure at any point in the communication

should cause the message to be retried. Otherwise a background task might try to publish an event

that has already been published, creating a race condition. You need to make sure that the updates

are either idempotent or that they provide enough information to ensure that you can detect a

duplicate, discard it, and send back only one response.

As noted earlier, idempotency means that an operation can be performed multiple times without

changing the result. In a messaging environment, as when communicating events, an event is

idempotent if it can be delivered multiple times without changing the result for the receiver

microservice. This may be necessary because of the nature of the event itself, or because of the way

the system handles the event. Message idempotency is important in any application that uses

messaging, not just in applications that implement the event bus pattern.

An example of an idempotent operation is a SQL statement that inserts data into a table only if that

data is not already in the table. It does not matter how many times you run that insert SQL statement;

the result will be the same—the table will contain that data. Idempotency like this can also be

necessary when dealing with messages if the messages could potentially be sent and therefore

146 Designing and Developing Multi-Container and Microservice-Based .NET Applications

processed more than once. For instance, if retry logic causes a sender to send exactly the same

message more than once, you need to make sure that it is idempotent.

It is possible to design idempotent messages. For example, you can create an event that says “set the

product price to $25” instead of “add $5 to the product price.” You could safely process the first

message any number of times and the result will be the same. That is not true for the second

message. But even in the first case, you might not want to process the first event, because the system

could also have sent a newer price-change event and you would be overwriting the new price.

Another example might be an order-completed event being propagated to multiple subscribers. It is

important that order information be updated in other systems just once, even if there are duplicated

message events for the same order-completed event.

It is convenient to have some kind of identity per event so that you can create logic that enforces that

each event is processed only once per receiver.

Some message processing is inherently idempotent. For example, if a system generates image

thumbnails, it might not matter how many times the message about the generated thumbnail is

processed; the outcome is that the thumbnails are generated and they are the same every time. On

the other hand, operations such as calling a payment gateway to charge a credit card may not be

idempotent at all. In these cases, you need to ensure that processing a message multiple times has

the effect that you expect.

Additional resources

• Honoring message idempotency https://docs.microsoft.com/previous-versions/msp-n-

p/jj591565(v=pandp.10)#honoring-message-idempotency

Deduplicating integration event messages

You can make sure that message events are sent and processed just once per subscriber at different

levels. One way is to use a deduplication feature offered by the messaging infrastructure you are

using. Another is to implement custom logic in your destination microservice. Having validations at

both the transport level and the application level is your best bet.

Deduplicating message events at the EventHandler level

One way to make sure that an event is processed just once by any receiver is by implementing certain

logic when processing the message events in event handlers. For example, that is the approach used

in the eShopOnContainers application, as you can see in the source code of the

UserCheckoutAcceptedIntegrationEventHandler class when it receives an

UserCheckoutAcceptedIntegrationEvent integration event. (In this case we wrap the

CreateOrderCommand with an IdentifiedCommand, using the eventMsg.RequestId as an identifier,

before sending it to the command handler).

Deduplicating messages when using RabbitMQ

When intermittent network failures happen, messages can be duplicated, and the message receiver

must be ready to handle these duplicated messages. If possible, receivers should handle messages in

an idempotent way, which is better than explicitly handling them with deduplication.

https://docs.microsoft.com/previous-versions/msp-n-p/jj591565(v=pandp.10)#honoring-message-idempotency
https://docs.microsoft.com/previous-versions/msp-n-p/jj591565(v=pandp.10)#honoring-message-idempotency
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Application/IntegrationEvents/EventHandling/UserCheckoutAcceptedIntegrationEventHandler.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Application/IntegrationEvents/EventHandling/UserCheckoutAcceptedIntegrationEventHandler.cs

147 Designing and Developing Multi-Container and Microservice-Based .NET Applications

According to the RabbitMQ documentation, “If a message is delivered to a consumer and then

requeued (because it was not acknowledged before the consumer connection dropped, for example)

then RabbitMQ will set the redelivered flag on it when it is delivered again (whether to the same

consumer or a different one).

If the “redelivered” flag is set, the receiver must take that into account, because the message might

already have been processed. But that is not guaranteed; the message might never have reached the

receiver after it left the message broker, perhaps because of network issues. On the other hand, if the

“redelivered” flag is not set, it is guaranteed that the message has not been sent more than once.

Therefore, the receiver needs to deduplicate messages or process messages in an idempotent way

only if the “redelivered” flag is set in the message.

Additional resources

• Forked eShopOnContainers using NServiceBus (Particular Software)

https://go.particular.net/eShopOnContainers

• Event Driven Messaging

http://soapatterns.org/design_patterns/event_driven_messaging

• Jimmy Bogard. Refactoring Towards Resilience: Evaluating Coupling

https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/

• Publish-Subscribe channel

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.ht

ml

• Communicating Between Bounded Contexts

https://docs.microsoft.com/previous-versions/msp-n-p/jj591572(v=pandp.10)

• Eventual Consistency

https://en.wikipedia.org/wiki/Eventual_consistency

• Philip Brown. Strategies for Integrating Bounded Contexts

https://www.culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

• Chris Richardson. Developing Transactional Microservices Using Aggregates, Event

Sourcing and CQRS - Part 2

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson

• Chris Richardson. Event Sourcing pattern

https://microservices.io/patterns/data/event-sourcing.html

• Introducing Event Sourcing

https://docs.microsoft.com/previous-versions/msp-n-p/jj591559(v=pandp.10)

• Event Store database. Official site.

https://geteventstore.com/

• Patrick Nommensen. Event-Driven Data Management for Microservices

https://dzone.com/articles/event-driven-data-management-for-microservices-1

https://www.rabbitmq.com/reliability.html#consumer
https://go.particular.net/eShopOnContainers
http://soapatterns.org/design_patterns/event_driven_messaging
https://jimmybogard.com/refactoring-towards-resilience-evaluating-coupling/
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
https://docs.microsoft.com/previous-versions/msp-n-p/jj591572(v=pandp.10)
https://en.wikipedia.org/wiki/Eventual_consistency
https://www.culttt.com/2014/11/26/strategies-integrating-bounded-contexts/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson
https://microservices.io/patterns/data/event-sourcing.html
https://docs.microsoft.com/previous-versions/msp-n-p/jj591559(v=pandp.10)
https://geteventstore.com/
https://dzone.com/articles/event-driven-data-management-for-microservices-1

148 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• The CAP Theorem

https://en.wikipedia.org/wiki/CAP_theorem

• What is CAP Theorem?

https://www.quora.com/What-Is-CAP-Theorem-1

• Data Consistency Primer

https://docs.microsoft.com/previous-versions/msp-n-p/dn589800(v=pandp.10)

• Rick Saling. The CAP Theorem: Why “Everything is Different” with the Cloud and Internet

https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-

everything-is-different-with-the-cloud-and-internet/

• Eric Brewer. CAP Twelve Years Later: How the “Rules” Have Changed

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

• Azure Service Bus. Brokered Messaging: Duplicate Detection

https://code.msdn.microsoft.com/Brokered-Messaging-c0acea25

• Reliability Guide (RabbitMQ documentation)

https://www.rabbitmq.com/reliability.html#consumer

Testing ASP.NET Core services and web apps
Controllers are a central part of any ASP.NET Core API service and ASP.NET MVC Web application. As

such, you should have confidence they behave as intended for your application. Automated tests can

provide you with this confidence and can detect errors before they reach production.

You need to test how the controller behaves based on valid or invalid inputs, and test controller

responses based on the result of the business operation it performs. However, you should have these

types of tests for your microservices:

• Unit tests. These ensure that individual components of the application work as expected.

Assertions test the component API.

• Integration tests. These ensure that component interactions work as expected against external

artifacts like databases. Assertions can test component API, UI, or the side effects of actions like

database I/O, logging, etc.

• Functional tests for each microservice. These ensure that the application works as expected from

the user’s perspective.

• Service tests. These ensure that end-to-end service use cases, including testing multiple services

at the same time, are tested. For this type of testing, you need to prepare the environment first.

In this case, it means starting the services (for example, by using docker-compose up).

Implementing unit tests for ASP.NET Core Web APIs

Unit testing involves testing a part of an application in isolation from its infrastructure and

dependencies. When you unit test controller logic, only the content of a single action or method is

https://en.wikipedia.org/wiki/CAP_theorem
https://www.quora.com/What-Is-CAP-Theorem-1
https://docs.microsoft.com/previous-versions/msp-n-p/dn589800(v=pandp.10)
https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-everything-is-different-with-the-cloud-and-internet/
https://blogs.msdn.microsoft.com/rickatmicrosoft/2013/01/03/the-cap-theorem-why-everything-is-different-with-the-cloud-and-internet/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://code.msdn.microsoft.com/Brokered-Messaging-c0acea25
https://www.rabbitmq.com/reliability.html#consumer

149 Designing and Developing Multi-Container and Microservice-Based .NET Applications

tested, not the behavior of its dependencies or of the framework itself. Unit tests do not detect issues

in the interaction between components—that is the purpose of integration testing.

As you unit test your controller actions, make sure you focus only on their behavior. A controller unit

test avoids things like filters, routing, or model binding (the mapping of request data to a ViewModel

or DTO). Because they focus on testing just one thing, unit tests are generally simple to write and

quick to run. A well-written set of unit tests can be run frequently without much overhead.

Unit tests are implemented based on test frameworks like xUnit.net, MSTest, Moq, or NUnit. For the

eShopOnContainers sample application, we are using xUnit.

When you write a unit test for a Web API controller, you instantiate the controller class directly using

the new keyword in C#, so that the test will run as fast as possible. The following example shows how

to do this when using xUnit as the Test framework.

[Fact]
public async Task Get_order_detail_success()
{
 //Arrange
 var fakeOrderId = "12";
 var fakeOrder = GetFakeOrder();

 //...

 //Act
 var orderController = new OrderController(
 _orderServiceMock.Object,
 _basketServiceMock.Object,
 _identityParserMock.Object);

 orderController.ControllerContext.HttpContext = _contextMock.Object;
 var actionResult = await orderController.Detail(fakeOrderId);

 //Assert
 var viewResult = Assert.IsType<ViewResult>(actionResult);
 Assert.IsAssignableFrom<Order>(viewResult.ViewData.Model);
}

Implementing integration and functional tests for each microservice

As noted, integration tests and functional tests have different purposes and goals. However, the way

you implement both when testing ASP.NET Core controllers is similar, so in this section we

concentrate on integration tests.

Integration testing ensures that an application’s components function correctly when assembled.

ASP.NET Core supports integration testing using unit test frameworks and a built-in test web host that

can be used to handle requests without network overhead.

Unlike unit testing, integration tests frequently involve application infrastructure concerns, such as a

database, file system, network resources, or web requests and responses. Unit tests use fakes or mock

objects in place of these concerns. But the purpose of integration tests is to confirm that the system

works as expected with these systems, so for integration testing you do not use fakes or mock objects.

Instead, you include the infrastructure, like database access or service invocation from other services.

https://xunit.github.io/

150 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Because integration tests exercise larger segments of code than unit tests, and because integration

tests rely on infrastructure elements, they tend to be orders of magnitude slower than unit tests. Thus,

it is a good idea to limit how many integration tests you write and run.

ASP.NET Core includes a built-in test web host that can be used to handle HTTP requests without

network overhead, meaning that you can run those tests faster when using a real web host. The test

web host (TestServer) is available in a NuGet component as Microsoft.AspNetCore.TestHost. It can be

added to integration test projects and used to host ASP.NET Core applications.

As you can see in the following code, when you create integration tests for ASP.NET Core controllers,

you instantiate the controllers through the test host. This is comparable to an HTTP request, but it

runs faster.

public class PrimeWebDefaultRequestShould
{
 private readonly TestServer _server;
 private readonly HttpClient _client;

 public PrimeWebDefaultRequestShould()
 {
 // Arrange
 _server = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
 _client = _server.CreateClient();
 }

 [Fact]
 public async Task ReturnHelloWorld()
 {
 // Act
 var response = await _client.GetAsync("/");
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.ReadAsStringAsync();
 // Assert
 Assert.Equal("Hello World!", responseString);
 }
}

Additional resources

• Steve Smith. Testing controllers (ASP.NET Core)

https://docs.microsoft.com/aspnet/core/mvc/controllers/testing

• Steve Smith. Integration testing (ASP.NET Core)

https://docs.microsoft.com/aspnet/core/test/integration-tests

• Unit testing in .NET Core using dotnet test

https://docs.microsoft.com/dotnet/core/testing/unit-testing-with-dotnet-test

• xUnit.net. Official site.

https://xunit.github.io/

• Unit Test Basics.

https://docs.microsoft.com/visualstudio/test/unit-test-basics

https://docs.microsoft.com/aspnet/core/mvc/controllers/testing
https://docs.microsoft.com/aspnet/core/test/integration-tests
https://docs.microsoft.com/dotnet/core/testing/unit-testing-with-dotnet-test
https://xunit.github.io/
https://docs.microsoft.com/visualstudio/test/unit-test-basics

151 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• Moq. GitHub repo.

https://github.com/moq/moq

• NUnit. Official site.

https://www.nunit.org/

Implementing service tests on a multi-container application

As noted earlier, when you test multi-container applications, all the microservices need to be running

within the Docker host or container cluster. End-to-end service tests that include multiple operations

involving several microservices require you to deploy and start the whole application in the Docker

host by running docker-compose up (or a comparable mechanism if you are using an orchestrator).

Once the whole application and all its services is running, you can execute end-to-end integration and

functional tests.

There are a few approaches you can use. In the docker-compose.yml file that you use to deploy the

application at the solution level you can expand the entry point to use dotnet test. You can also use

another compose file that would run your tests in the image you are targeting. By using another

compose file for integration tests that includes your microservices and databases on containers, you

can make sure that the related data is always reset to its original state before running the tests.

Once the compose application is up and running, you can take advantage of breakpoints and

exceptions if you are running Visual Studio. Or you can run the integration tests automatically in your

CI pipeline in Azure DevOps Services or any other CI/CD system that supports Docker containers.

Testing in eShopOnContainers

The reference application (eShopOnContainers) tests were recently restructured and now there are

four categories:

35. Unit tests, just plain old regular unit tests, contained in the {MicroserviceName}.UnitTests

projects

36. Microservice functional/integration tests, with test cases involving the infrastructure for each

microservice but isolated from the others and are contained in the

{MicroserviceName}.FunctionalTests projects.

37. Application functional/integration tests, that focus on microservices integration, with test

cases that exert several microservices. These tests are located in project

Application.FunctionalTests.

38. Load tests, that focus on response times for each microservice. These tests are located in project

LoadTest and need Visual Studio 2017 Enterprise Edition.

Unit and integration test per microservice are contained in a test folder in each microservice and

Application a Load tests are contained under the test folder in the solution folder, as shown in Figure

6-25.

https://github.com/moq/moq
https://www.nunit.org/
https://docs.microsoft.com/dotnet/core/tools/dotnet-test

152 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-25. Test folder structure in eShopOnContainers

Microservice and Application functional/integration tests are run from Visual Studio, using the regular

tests runner, but first you need to start the required infrastructure services, by means of a set of

docker-compose files contained in the solution test folder:

docker-compose-test.yml

version: '3.4'

services:
 redis.data:
 image: redis:alpine
 rabbitmq:
 image: rabbitmq:3-management-alpine
 sql.data:
 image: microsoft/mssql-server-linux:2017-latest
 nosql.data:
 image: mongo

docker-compose-test.override.yml

version: '3.4'

services:
 redis.data:
 ports:
 - "6379:6379"
 rabbitmq:

153 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 ports:
 - "15672:15672"
 - "5672:5672"
 sql.data:
 environment:
 - SA_PASSWORD=Pass@word
 - ACCEPT_EULA=Y
 ports:
 - "5433:1433"
 nosql.data:
 ports:
 - "27017:27017"

So, to run the functional/integration tests you must first run this command, from the solution test

folder:

docker-compose -f docker-compose-test.yml -f docker-compose-test.override.yml up

As you can see, these docker-compose files only start the Redis, RabbitMQ, SQL Server and MongoDB

microservices.

Additional resources

• Tests README file on the eShopOnContainers repo on GitHub

https://github.com/dotnet-architecture/eShopOnContainers/tree/dev/test

• Load tests README file on the eShopOnContainers repo on GitHub

https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/test/ServicesTests/LoadTest/

Implement background tasks in microservices with

IHostedService and the BackgroundService class
Background tasks and scheduled jobs are something you might need to implement, eventually, in a

microservice based application or in any kind of application. The difference when using a

microservices architecture is that you can implement a single microservice process/container for

hosting these background tasks so you can scale it down/up as you need or you can even make sure

that it runs a single instance of that microservice process/container.

From a generic point of view, in .NET Core we called these type of tasks Hosted Services, because they

are services/logic that you host within your host/application/microservice. Note that in this case, the

hosted service simply means a class with the background task logic.

Since .NET Core 2.0, the framework provides a new interface named

Microsoft.Extensions.Hosting.IHostedService helping you to easily implement hosted services. The

basic idea is that you can register multiple background tasks (hosted services), that run in the

background while your web host or host is running, as shown in the image 6-26.

https://github.com/dotnet-architecture/eShopOnContainers/tree/dev/test
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/test/ServicesTests/LoadTest/
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/test/ServicesTests/LoadTest/

154 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-26. Using IHostedService in a WebHost vs. a Host

Note the difference made between WebHost and Host.

A WebHost (base class implementing IWebHost) in ASP.NET Core 2.0 is the infrastructure artifact you

use to provide HTTP server features to your process, such as if you are implementing an MVC web

app or Web API service. It provides all the new infrastructure goodness in ASP.NET Core, enabling you

to use dependency injection, insert middlewares in the request pipeline, etc. and precisely use these

IHostedServices for background tasks.

A Host (base class implementing IHost) was introduced in .NET Core 2.1. Basically, a Host allows you

to have a similar infrastructure than what you have with WebHost (dependency injection, hosted

services, etc.), but in this case, you just want to have a simple and lighter process as the host, with

nothing related to MVC, Web API or HTTP server features.

Therefore, you can choose and either create a specialized host-process with IHost to handle the

hosted services and nothing else, such a microservice made just for hosting the IHostedServices, or

you can alternatively extend an existing ASP.NET Core WebHost, such as an existing ASP.NET Core Web

API or MVC app.

Each approach has pros and cons depending on your business and scalability needs. The bottom line

is basically that if your background tasks have nothing to do with HTTP (IWebHost) you should use

IHost.

Registering hosted services in your WebHost or Host

Let’s drill down further on the IHostedService interface since its usage is pretty similar in a WebHost

or in a Host.

SignalR is one example of an artifact using hosted services, but you can also use it for much simpler

things like:

• A background task polling a database looking for changes.

155 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• A scheduled task updating some cache periodically.

• An implementation of QueueBackgroundWorkItem that allows a task to be executed on a

background thread.

• Processing messages from a message queue in the background of a web app while sharing

common services such as ILogger.

• A background task started with Task.Run().

You can basically offload any of those actions to a background task based on IHostedService.

The way you add one or multiple IHostedServices into your WebHost or Host is by registering them

up through the standard DI (dependency injection) in an ASP.NET Core WebHost (or in a Host in .NET

Core 2.1 and above). Basically, you have to register the hosted services within the familiar

ConfigureServices() method of the Startup class, as in the following code from a typical ASP.NET

WebHost.

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 //Other DI registrations;

 // Register Hosted Services
 services.AddSingleton<IHostedService, GracePeriodManagerService>();
 services.AddSingleton<IHostedService, MyHostedServiceB>();
 services.AddSingleton<IHostedService, MyHostedServiceC>();
 //...
}

In that code, the GracePeriodManagerService hosted service is real code from the Ordering business

microservice in eShopOnContainers, while the other two are just two additional samples.

The IHostedService background task execution is coordinated with the lifetime of the application

(host or microservice, for that matter). You register tasks when the application starts and you have the

opportunity to do some graceful action or clean-up when the application is shutting down.

Without using IHostedService, you could always start a background thread to run any task. The

difference is precisely at the app’s shutdown time when that thread would simply be killed without

having the opportunity to run graceful clean-up actions.

The IHostedService interface

When you register an IHostedService, .NET Core will call the StartAsync() and StopAsync()

methods of your IHostedService type during application start and stop respectively. Specifically, start

is called after the server has started and IApplicationLifetime.ApplicationStarted is triggered.

The IHostedService as defined in .NET Core, looks like the following.

namespace Microsoft.Extensions.Hosting
{
 //
 // Summary:
 // Defines methods for objects that are managed by the host.
 public interface IHostedService
 {
 //

156 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 // Summary:
 // Triggered when the application host is ready to start the service.
 Task StartAsync(CancellationToken cancellationToken);
 //
 // Summary:
 // Triggered when the application host is performing a graceful shutdown.
 Task StopAsync(CancellationToken cancellationToken);
 }
}

As you can imagine, you can create multiple implementations of IHostedService and register them at

the ConfigureService() method into the DI container, as shown previously. All those hosted services

will be started and stopped along with the application/microservice.

As a developer, you are responsible for handling the stopping action of your services when

StopAsync() method is triggered by the host.

Implementing IHostedService with a custom hosted service class

deriving from the BackgroundService base class

You could go ahead and create your custom hosted service class from scratch and implement the

IHostedService, as you need to do when using .NET Core 2.0.

However, since most background tasks will have similar needs in regard to the cancellation tokens

management and other typical operations, there is a convenient abstract base class you can derive

from, named BackgroundService (available since .NET Core 2.1).

That class provides the main work needed to set up the background task.

The next code is the abstract BackgroundService base class as implemented in .NET Core.

// Copyright (c) .NET Foundation. Licensed under the Apache License, Version 2.0.
/// <summary>
/// Base class for implementing a long running <see cref="IHostedService"/>.
/// </summary>
public abstract class BackgroundService : IHostedService, IDisposable
{
 private Task _executingTask;
 private readonly CancellationTokenSource _stoppingCts =
 new CancellationTokenSource();

 protected abstract Task ExecuteAsync(CancellationToken stoppingToken);

 public virtual Task StartAsync(CancellationToken cancellationToken)
 {
 // Store the task we're executing
 _executingTask = ExecuteAsync(_stoppingCts.Token);

 // If the task is completed then return it,
 // this will bubble cancellation and failure to the caller
 if (_executingTask.IsCompleted)
 {
 return _executingTask;
 }

 // Otherwise it's running
 return Task.CompletedTask;
 }

157 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 public virtual async Task StopAsync(CancellationToken cancellationToken)
 {
 // Stop called without start
 if (_executingTask == null)
 {
 return;
 }

 try
 {
 // Signal cancellation to the executing method
 _stoppingCts.Cancel();
 }
 finally
 {
 // Wait until the task completes or the stop token triggers
 await Task.WhenAny(_executingTask, Task.Delay(Timeout.Infinite,
 cancellationToken));
 }

 }

 public virtual void Dispose()
 {
 _stoppingCts.Cancel();
 }
}

When deriving from the previous abstract base class, thanks to that inherited implementation, you just

need to implement the ExecuteAsync() method in your own custom hosted service class, as in the

following simplified code from eShopOnContainers which is polling a database and publishing

integration events into the Event Bus when needed.

public class GracePeriodManagerService : BackgroundService
{
 private readonly ILogger<GracePeriodManagerService> _logger;
 private readonly OrderingBackgroundSettings _settings;

 private readonly IEventBus _eventBus;

 public GracePeriodManagerService(IOptions<OrderingBackgroundSettings> settings,
 IEventBus eventBus,
 ILogger<GracePeriodManagerService> logger)
 {
 //Constructor’s parameters validations...
 }

 protected override async Task ExecuteAsync(CancellationToken stoppingToken)
 {
 _logger.LogDebug($"GracePeriodManagerService is starting.");

 stoppingToken.Register(() =>
 _logger.LogDebug($" GracePeriod background task is stopping."));

 while (!stoppingToken.IsCancellationRequested)
 {
 _logger.LogDebug($"GracePeriod task doing background work.");

 // This eShopOnContainers method is querying a database table

158 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 // and publishing events into the Event Bus (RabbitMS / ServiceBus)
 CheckConfirmedGracePeriodOrders();

 await Task.Delay(_settings.CheckUpdateTime, stoppingToken);
 }

 _logger.LogDebug($"GracePeriod background task is stopping.");
 }

 .../...
}

In this specific case for eShopOnContainers, it’s executing an application method that’s querying a

database table looking for orders with a specific state and when applying changes, it is publishing

integration events through the event bus (underneath it can be using RabbitMQ or Azure Service Bus).

Of course, you could run any other business background task, instead.

By default, the cancellation token is set with a 5 second timeout, although you can change that value

when building your WebHost using the UseShutdownTimeout extension of the IWebHostBuilder. This

means that our service is expected to cancel within 5 seconds otherwise it will be more abruptly killed.

The following code would be changing that time to 10 seconds.

WebHost.CreateDefaultBuilder(args)
 .UseShutdownTimeout(TimeSpan.FromSeconds(10))
 ...

Summary class diagram

The following image shows a visual summary of the classes and interfaced involved when

implementing IHostedServices.

Figure 6-27. Class diagram showing the multiple classes and interfaces related to IHostedService

159 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Deployment considerations and takeaways

It is important to note that the way you deploy your ASP.NET Core WebHost or .NET Core Host might

impact the final solution. For instance, if you deploy your WebHost on IIS or a regular Azure App

Service, your host can be shut down because of app pool recycles. But if you are deploying your host

as a container into an orchestrator like Kubernetes or Service Fabric, you can control the assured

number of live instances of your host. In addition, you could consider other approaches in the cloud

especially made for these scenarios, like Azure Functions. Finally, if you need the service to be running

all the time and are deploying on a Windows Server you could use a Windows Service.

But even for a WebHost deployed into an app pool, there are scenarios like repopulating or flushing

application’s in-memory cache, that would be still applicable.

The IHostedService interface provides a convenient way to start background tasks in an ASP.NET

Core web application (in .NET Core 2.0) or in any process/host (starting in .NET Core 2.1 with IHost).

Its main benefit is the opportunity you get with the graceful cancellation to clean-up code of your

background tasks when the host itself is shutting down.

Additional resources

• Building a scheduled task in ASP.NET Core/Standard 2.0

https://blog.maartenballiauw.be/post/2017/08/01/building-a-scheduled-cache-updater-in-

aspnet-core-2.html

• Implementing IHostedService in ASP.NET Core 2.0 https://www.stevejgordon.co.uk/asp-net-

core-2-ihostedservice

• GenericHost Sample using ASP.NET Core 2.1

https://github.com/aspnet/Hosting/tree/release/2.1/samples/GenericHostSample

Implement API Gateways with Ocelot
The reference microservice application eShopOnContainers is using Ocelot, a simple and lightweight

API Gateway that you can deploy anywhere along with your microservices/containers, such as in any

of the following environments used by eShopOnContainers.

• Docker host, in your local dev PC, on-premises or in the cloud.

• Kubernetes cluster, on-premises or in managed cloud such as Azure Kubernetes Service (AKS).

• Service Fabric cluster, on-premises or in the cloud.

• Service Fabric mesh, as PaaS/Serverless in Azure.

Architect and design your API Gateways

The following architecture diagram shows how API Gateways are implemented with Ocelot in

eShopOnContainers.

https://blog.maartenballiauw.be/post/2017/08/01/building-a-scheduled-cache-updater-in-aspnet-core-2.html
https://blog.maartenballiauw.be/post/2017/08/01/building-a-scheduled-cache-updater-in-aspnet-core-2.html
https://www.stevejgordon.co.uk/asp-net-core-2-ihostedservice
https://www.stevejgordon.co.uk/asp-net-core-2-ihostedservice
https://github.com/aspnet/Hosting/tree/release/2.1/samples/GenericHostSample
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/ThreeMammals/Ocelot

160 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-28. eShopOnContainers architecture with API Gateways

That diagram shows how the whole application is deployed into a single Docker host or development

PC with “Docker for Windows” or “Docker for Mac”. However, deploying into any orchestrator would

be pretty similar but any container in the diagram could be scaled-out in the orchestrator.

In addition, the infrastructure assets such as databases, cache, and message brokers should be

offloaded from the orchestrator and deployed into high available systems for infrastructure, like Azure

SQL Database, Azure Cosmos DB, Azure Redis, Azure Service Bus, or any HA clustering solution on-

premises.

As you can also notice in the diagram, having several API Gateways allows multiple development

teams to be autonomous (in this case Marketing features vs. Shopping features) when developing and

deploying their microservices plus their own related API Gateways.

If you had a single monolithic API Gateway that would mean a single point to be updated by several

development teams, which could couple all the microservices with a single part of the application.

Going much further in the design, sometimes a fine-grained API Gateway can also be limited to a

single business microservice depending on the chosen architecture. Having the API Gateway’s

boundaries dictated by the business or domain will help you to get a better design.

For instance, fine granularity in the API Gateway tier can be especially useful for more advanced

composite UI applications that are based on microservices, because the concept of a fine-grained API

Gateway is similar to a UI composition service.

We delve into more details in the previous section Creating composite UI based on microservices.

As key takeaway, for many medium- and large-size applications, using a custom-built API Gateway

product is usually a good approach, but not as a single monolithic aggregator or unique central

custom API Gateway unless that API Gateway allows multiple independent configuration areas for the

several development teams creating autonomous microservices.

161 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Sample microservices/containers to re-route through the API Gateways

As an example, eShopOnContainers has around six internal microservice-types that have to be

published through the API Gateways, as shown in the following image.

Figure 6-29. Microservice folders in eShopOnContainers solution in Visual Studio

About the Identity service, in the design it’s left out of the API Gateway routing because it’s the only

cross-cutting concern in the system, although with Ocelot it’s also possible to include it as part of the

rerouting lists.

All those services are currently implemented as ASP.NET Core Web API services, as you can tell from

the code. Let’s focus on one of the microservices like the Catalog microservice code.

162 Designing and Developing Multi-Container and Microservice-Based .NET Applications

163 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-30. Sample Web API microservice (Catalog microservice)

You can see that the Catalog microservice is a typical ASP.NET Core Web API project with several

controllers and methods like in the following code.

[HttpGet]
[Route("items/{id:int}")]
[ProducesResponseType((int)HttpStatusCode.BadRequest)]
[ProducesResponseType((int)HttpStatusCode.NotFound)]
[ProducesResponseType(typeof(CatalogItem),(int)HttpStatusCode.OK)]
public async Task<IActionResult> GetItemById(int id)
{
 if (id <= 0)
 {
 return BadRequest();
 }
 var item = await _catalogContext.CatalogItems.
 SingleOrDefaultAsync(ci => ci.Id == id);
 //…

 if (item != null)
 {
 return Ok(item);
 }
 return NotFound();
}

The HTTP request will end up running that kind of C# code accessing the microservice database and

any additional required action.

Regarding the microservice URL, when the containers are deployed in your local development PC

(local Docker host), each microservice’s container has always an internal port (usually port 80)

specified in its dockerfile, as in the following dockerfile:

FROM microsoft/aspnetcore:2.0.5 AS base
WORKDIR /app
EXPOSE 80

The port 80 shown in the code is internal within the Docker host, so it can’t be reached by client apps.

Client apps can access only the external ports (if any) published when deploying with docker-

compose.

Those external ports shouldn’t be published when deploying to a production environment. This is

precisely why you want to use the API Gateway, to avoid the direct communication between the client

apps and the microservices.

However, when developing, you want to access the microservice/container directly and run it through

Swagger. That’s why in eShopOnContainers, the external ports are still specified even when they won’t

be used by the API Gateway or the client apps.

Here’s an example of the docker-compose.override.yml file for the Catalog microservice:

catalog.api:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://0.0.0.0:80
 - ConnectionString=YOUR_VALUE

164 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 - ... Other Environment Variables
 ports:
 - "5101:80" # Important: In a production environment you should remove the external
port (5101) kept here for microservice debugging purposes.
 # The API Gateway redirects and access through the internal port (80).

You can see how in the docker-compose.override.yml configuration the internal port for the Catalog

container is port 80, but the port for external access is 5101. But this port shouldn’t be used by the

application when using an API Gateway, only to debug, run and test just the Catalog microservice.

Normally, you won’t be deploying with docker-compose into a production environment because the

right production deployment environment for microservices is an orchestrator like Kubernetes or

Service Fabric. When deploying to those environments you use different configuration files where you

won’t publish directly any external port for the microservices but, you’ll always use the reverse proxy

from the API Gateway.

Run the catalog microservice in your local Docker host either by running the full eShopOnContainers

solution from Visual Studio (it’ll run all the services in the docker-compose files) or just starting the

Catalog microservice with the following docker-compose command in CMD or PowerShell positioned

at the folder where the docker-compose.yml and docker-compose.override.yml are placed.

docker-compose run --service-ports catalog.api

This command only runs the catalog.api service container plus dependencies that are specified in the

docker-compose.yml. In this case, the SQL Server container and RabbitMQ container.

Then, you can directly access the Catalog microservice and see its methods through the Swagger UI

accessing directly through that “external” port, in this case http://localhost:5101/swagger:

165 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-31. Testing the Catalog microservice with its Swagger UI

At this point, you could set a breakpoint in C# code in Visual Studio, test the microservice with the

methods exposed in Swagger UI, and finally clean-up everything with the docker-compose down

command.

However, direct-access communication to the microservice, in this case through the external port

5101, is precisely what you want to avoid in your application. And you can avoid that by setting the

additional level of indirection of the API Gateway (Ocelot, in this case). That way, the client app won’t

directly access the microservice.

Implementing your API Gateways with Ocelot

Ocelot is basically a set of middlewares that you can apply in a specific order.

Ocelot is designed to work with ASP.NET Core only. It targets netstandard2.0 so it can be used

anywhere .NET Standard 2.0 is supported, including .NET Core 2.0 runtime and .NET Framework 4.6.1

runtime and up.

166 Designing and Developing Multi-Container and Microservice-Based .NET Applications

You install Ocelot and its dependencies in your ASP.NET Core project with Ocelot’s NuGet package,

from Visual Studio.

Install-Package Ocelot

In eShopOnContainers, its API Gateway implementation is a simple ASP.NET Core WebHost project,

and Ocelot’s middlewares handle all the API Gateway features, as shown in the following image:

Figure 6-32. The OcelotApiGw base project in eShopOnContainers

This ASP.NET Core WebHost project is basically built with two simple files: Program.cs and

Startup.cs.

The Program.cs just needs to create and configure the typical ASP.NET Core BuildWebHost.

namespace OcelotApiGw
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args)
 {
 var builder = WebHost.CreateDefaultBuilder(args);

 builder.ConfigureServices(s => s.AddSingleton(builder))
 .ConfigureAppConfiguration(
 ic => ic.AddJsonFile(Path.Combine("configuration",
 "configuration.json")))
 .UseStartup<Startup>();
 var host = builder.Build();
 return host;
 }
 }
}

https://www.nuget.org/packages/Ocelot/

167 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The important point here for Ocelot is the configuration.json file that you must provide to the

builder through the AddJsonFile() method. That configuration.json is where you specify all the

API Gateway ReRoutes, meaning the external endpoints with specific ports and the correlated internal

endpoints, usually using different ports.

{
 "ReRoutes": [],
 "GlobalConfiguration": {}
}

There are two sections to the configuration. An array of Re-Routes and a GlobalConfiguration. The Re-

Routes are the objects that tell Ocelot how to treat an upstream request. The Global configuration

allows overrides of Re-Route specific settings. It’s useful if you don’t want to manage lots of Re-Route

specific settings.

Here’s a simplified example of ReRoute configuration file from one of the API Gateways from

eShopOnContainers.

{
 "ReRoutes": [
 {
 "DownstreamPathTemplate": "/api/{version}/{everything}",
 "DownstreamScheme": "http",
 "DownstreamHostAndPorts": [
 {
 "Host": "catalog.api",
 "Port": 80
 }
],
 "UpstreamPathTemplate": "/api/{version}/c/{everything}",
 "UpstreamHttpMethod": ["POST", "PUT", "GET"]
 },
 {
 "DownstreamPathTemplate": "/api/{version}/{everything}",
 "DownstreamScheme": "http",
 "DownstreamHostAndPorts": [
 {
 "Host": "basket.api",
 "Port": 80
 }
],
 "UpstreamPathTemplate": "/api/{version}/b/{everything}",
 "UpstreamHttpMethod": ["POST", "PUT", "GET"],
 "AuthenticationOptions": {
 "AuthenticationProviderKey": "IdentityApiKey",
 "AllowedScopes": []
 }
 }

],
 "GlobalConfiguration": {
 "RequestIdKey": "OcRequestId",
 "AdministrationPath": "/administration"
 }
 }

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/ApiGateways/Web.Bff.Shopping/apigw/configuration.json

168 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The main functionality of an Ocelot API Gateway is to take incoming HTTP requests and forward them

on to a downstream service, currently as another HTTP request. Ocelot’s describes the routing of one

request to another as a Re-Route.

For instance, let’s focus on one of the Re-Routes in the configuration.json from above, the

configuration for the Basket microservice.

{
 "DownstreamPathTemplate": "/api/{version}/{everything}",
 "DownstreamScheme": "http",
 "DownstreamHostAndPorts": [
 {
 "Host": "basket.api",
 "Port": 80
 }
],
 "UpstreamPathTemplate": "/api/{version}/b/{everything}",
 "UpstreamHttpMethod": ["POST", "PUT", "GET"],
 "AuthenticationOptions": {
 "AuthenticationProviderKey": "IdentityApiKey",
 "AllowedScopes": []
 }
}

The DownstreamPathTemplate, Scheme, and DownstreamHostAndPorts make the internal

microservice URL that this request will be forwarded to.

The port is the internal port used by the service. When using containers, the port specified at its

dockerfile.

The Host is a service name that depends on the service name resolution you are using. When using

docker-compose, the services names are provided by the Docker Host, which is using the service

names provided in the docker-compose files. If using an orchestrator like Kubernetes or Service

Fabric, that name should be resolved by the DNS or name resolution provided by each orchestrator.

DownstreamHostAndPorts is an array that contains the host and port of any downstream services that

you wish to forward requests to. Usually this will just contain one entry but sometimes you might want

to load balance requests to your downstream services and Ocelot lets you add more than one entry

and then select a load balancer. But if using Azure and any orchestrator it is probably a better idea to

load balance with the cloud and orchestrator infrastructure.

The UpstreamPathTemplate is the URL that Ocelot will use to identify which

DownstreamPathTemplate to use for a given request from the client. Finally, the

UpstreamHttpMethod is used so Ocelot can distinguish between different requests (GET, POST, PUT)

to the same URL.

At this point, you could have a single Ocelot API Gateway (ASP.NET Core WebHost) using one or

multiple merged configuration.json files or you can also store the configuration in a Consul KV store.

But as introduced in the architecture and design sections, if you really want to have autonomous

microservices, it might be better to split that single monolithic API Gateway into multiple API

Gateways and/or BFF (Backend for Frontend). For that purpose, let’s see how to implement that

approach with Docker containers.

https://ocelot.readthedocs.io/en/latest/features/configuration.html#merging-configuration-files
https://ocelot.readthedocs.io/en/latest/features/configuration.html#store-configuration-in-consul

169 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Using a single Docker container image to run multiple different API Gateway / BFF

container types

In eShopOnContainers we’re using a single Docker container image with the Ocelot API Gateway but

then, at run time, we create different services/containers for each type of API-Gateway/BFF by

providing a different configuration.json file, using a docker volume to access a different PC folder for

each service.

Figure 6-33. Re-using a single Ocelot Docker image across multiple API Gateway types

In eShopOnContainers, the “Generic Ocelot API Gateway Docker Image” is created with the project

named ‘OcelotApiGw’ and the image name “eshop/ocelotapigw” that is specified in the docker-

compose.yml file. Then, when deploying to Docker, there will be four API-Gateway containers created

from that same Docker image, as shown in the following extract from the docker-compose.yml file.

 mobileshoppingapigw:
 image: eshop/ocelotapigw:${TAG:-latest}
 build:
 context: .
 dockerfile: src/ApiGateways/ApiGw-Base/Dockerfile

 mobilemarketingapigw:
 image: eshop/ocelotapigw:${TAG:-latest}
 build:

170 Designing and Developing Multi-Container and Microservice-Based .NET Applications

 context: .
 dockerfile: src/ApiGateways/ApiGw-Base/Dockerfile

 webshoppingapigw:
 image: eshop/ocelotapigw:${TAG:-latest}
 build:
 context: .
 dockerfile: src/ApiGateways/ApiGw-Base/Dockerfile

 webmarketingapigw:
 image: eshop/ocelotapigw:${TAG:-latest}
 build:
 context: .
 dockerfile: src/ApiGateways/ApiGw-Base/Dockerfile

Additionally, as you can see in the following docker-compose.override.yml file, the only difference

between those API Gateway containers is the Ocelot configuration file, which is different for each

service container and it’s specified at runtime through a Docker volume.

mobileshoppingapigw:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - IdentityUrl=http://identity.api
 ports:
 - "5200:80"
 volumes:
 - ./src/ApiGateways/Mobile.Bff.Shopping/apigw:/app/configuration

mobilemarketingapigw:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - IdentityUrl=http://identity.api
 ports:
 - "5201:80"
 volumes:
 - ./src/ApiGateways/Mobile.Bff.Marketing/apigw:/app/configuration

webshoppingapigw:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - IdentityUrl=http://identity.api
 ports:
 - "5202:80"
 volumes:
 - ./src/ApiGateways/Web.Bff.Shopping/apigw:/app/configuration

webmarketingapigw:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - IdentityUrl=http://identity.api
 ports:
 - "5203:80"
 volumes:
 - ./src/ApiGateways/Web.Bff.Marketing/apigw:/app/configuration

Because of that previous code, and as shown in the Visual Studio Explorer below, the only file needed

to define each specific business/BFF API Gateway is just a configuration.json file, because the four API

Gateways are based on the same Docker image.

171 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-34. The only file needed to define each API Gateway / BFF with Ocelot is a configuration file

By splitting the API Gateway into multiple API Gateways, different development teams focusing on

different subsets of microservices can manage their own API Gateways by using independent Ocelot

configuration files. Plus, at the same time they can reuse the same Ocelot Docker image.

Now, if you run eShopOnContainers with the API Gateways (included by default in VS when opening

eShopOnContainers-ServicesAndWebApps.sln solution or if running “docker-compose up”), the

following sample routes will be performed.

For instance, when visiting the upstream URL http://localhost:5202/api/v1/c/catalog/items/2/

served by the webshoppingapigw API Gateway, you get the same result from the internal Downstream

URL http://catalog.api/api/v1/2 within the Docker host, as in the following browser.

Figure 6-35. Accessing a microservice through a URL provided by the API Gateway

Because of testing or debugging reasons, if you wanted to directly access to the Catalog Docker

container (only at the development environment) without passing through the API Gateway, since

‘catalog.api’ is a DNS resolution internal to the Docker host (service discovery handled by docker-

compose service names), the only way to directly access the container is through the external port

published in the docker-compose.override.yml, which is provided only for development tests, such as

http://localhost:5101/api/v1/Catalog/items/1 in the following browser.

Figure 6-36. Direct access to a microservice for testing purposes

172 Designing and Developing Multi-Container and Microservice-Based .NET Applications

But the application is configured so it accesses all the microservices through the API Gateways, not

though the direct port “shortcuts”.

The Gateway aggregation pattern in eShopOnContainers

As introduced previously, a flexible way to implement requests aggregation is with custom services, by

code. You could also implement request aggregation with the Request Aggregation feature in Ocelot,

but it might not be as flexible as you need. Therefore, the selected way to implement aggregation in

eShopOnContainers is with an explicit ASP.NET Core Web API services for each aggregator.

According to that approach, the API Gateway composition diagram is in reality a bit more extended

when considering the aggregator services that are not shown in the simplified global architecture

diagram shown previously.

In the following diagram, you can also see how the aggregator services work with their related API

Gateways.

Figure 6-37. eShopOnContainers architecture with aggregator services

Zooming in further, on the “Shopping” business area in the following image, you can see that

chattiness between the client apps and the microservices is reduced when using the aggregator

services in the API Gateways.

https://ocelot.readthedocs.io/en/latest/features/requestaggregation.html#request-aggregation

173 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-38. Zoom in vision of the Aggregator services

You can notice how when the diagram shows the possible requests coming from the API Gateways it

can get pretty complex. Although you can see how the arrows in blue would be simplified, from a

client apps perspective, when using the aggregator pattern by reducing chattiness and latency in the

communication, ultimately significantly improving the user experience for the remote apps (mobile

and SPA apps), especially.

In the case of the “Marketing” business area and microservices, it is a very simple use case so there

was no need to use aggregators, but it could also be possible, if needed.

Authentication and authorization in Ocelot API Gateways

In an Ocelot API Gateway you can sit the authentication service, such as an ASP.NET Core Web API

service using IdentityServer providing the auth token, either out or inside the API Gateway.

Since eShopOnContainers is using multiple API Gateways with boundaries based on BFF and business

areas, the Identity/Auth service is left out of the API Gateways, as highlighted in yellow in the

following diagram.

https://identityserver.io/

174 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Figure 6-39. Position of the Identity service in eShopOnContainers

However, Ocelot also supports sitting the Identity/Auth microservice within the API Gateway

boundary, as in this other diagram.

Figure 6-40. Authentication in Ocelot

Because eShopOnContainers application has split the API Gateway into multiple BFF (Backend for

Frontend) and business areas API Gateways, another option would had been to create an additional

API Gateway for cross-cutting concerns. That choice would be fair in a more complex microservice

based architecture with multiple cross-cutting concerns microservices. Since there’s only one cross-

cutting concern in eShopOnContainers, it was decided to just handle the security service out of the

API Gateway realm, for simplicity’s sake.

In any case, if the app is secured at the API Gateway level, the authentication module of the Ocelot

API Gateway is visited at first when trying to use any secured microservice. That re-directs the HTTP

request to visit the Identity or auth microservice to get the access token so you can visit the protected

services with the access_token.

175 Designing and Developing Multi-Container and Microservice-Based .NET Applications

The way you secure with authentication any service at the API Gateway level is by setting the

AuthenticationProviderKey in its related settings at the configuration.json.

 {
 "DownstreamPathTemplate": "/api/{version}/{everything}",
 "DownstreamScheme": "http",
 "DownstreamHostAndPorts": [
 {
 "Host": "basket.api",
 "Port": 80
 }
],
 "UpstreamPathTemplate": "/api/{version}/b/{everything}",
 "UpstreamHttpMethod": [],
 "AuthenticationOptions": {
 "AuthenticationProviderKey": "IdentityApiKey",
 "AllowedScopes": []
 }
 }

When Ocelot runs, it will look at the Re-Routes AuthenticationOptions.AuthenticationProviderKey and

check that there is an Authentication Provider registered with the given key. If there isn’t, then Ocelot

will not start up. If there is, then the ReRoute will use that provider when it executes.

Because the Ocelot WebHost is configured with the authenticationProviderKey =

“IdentityApiKey”, that will require authentication whenever that service has any requests without

any auth token.

namespace OcelotApiGw
{
 public class Startup
 {
 private readonly IConfiguration _cfg;

 public Startup(IConfiguration configuration) => _cfg = configuration;

 public void ConfigureServices(IServiceCollection services)
 {
 var identityUrl = _cfg.GetValue<string>("IdentityUrl");
 var authenticationProviderKey = "IdentityApiKey";
 //…
 services.AddAuthentication()
 .AddJwtBearer(authenticationProviderKey, x =>
 {
 x.Authority = identityUrl;
 x.RequireHttpsMetadata = false;
 x.TokenValidationParameters = new
Microsoft.IdentityModel.Tokens.TokenValidationParameters()
 {
 ValidAudiences = new[] { "orders", "basket", "locations",
"marketing", "mobileshoppingagg", "webshoppingagg" }
 };
 });
 //...
 }
 }
}

176 Designing and Developing Multi-Container and Microservice-Based .NET Applications

Then, you also need to set authorization with the [Authorize] attribute on any resource to be accessed

like the microservices, such as in the following Basket microservice controller.

namespace Microsoft.eShopOnContainers.Services.Basket.API.Controllers
{
 [Route("api/v1/[controller]")]
 [Authorize]
 public class BasketController : Controller
 {
 //...
 }
}

The ValidAudiences such as “basket” are correlated with the audience defined in each microservice

with AddJwtBearer() at the ConfigureServices() of the Startup class, such as in the code below.

// prevent from mapping "sub" claim to nameidentifier.
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Clear();

var identityUrl = Configuration.GetValue<string>("IdentityUrl");

services.AddAuthentication(options =>
{
 options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

}).AddJwtBearer(options =>
{
 options.Authority = identityUrl;
 options.RequireHttpsMetadata = false;
 options.Audience = "basket";
});

If you try to access any secured microservice, like the Basket microservice with a Re-Route URL based

on the API Gateway like http://localhost:5202/api/v1/b/basket/1, then you’ll get a 401

Unauthorized unless you provide a valid token. On the other hand, if a Re-Route URL is authenticated,

Ocelot will invoke whatever downstream scheme is associated with it (the internal microservice URL).

Authorization at Ocelot’s ReRoutes tier. Ocelot supports claims-based authorization evaluated after

the authentication. You set the authorization at a route level by adding the following lines to the

ReRoute configuration.

"RouteClaimsRequirement": {
 "UserType": "employee"
}

In that example, when the authorization middleware is called, Ocelot will find if the user has the claim

type ‘UserType’ in the token and if the value of that claim is ‘employee’. If it isn’t, then the user will not

be authorized and the response will be 403 forbidden.

Using Kubernetes Ingress plus Ocelot API Gateways

When using Kubernetes (like in an Azure Kubernetes Service cluster), you usually unify all the HTTP

requests through the Kubernetes Ingress tier based on Nginx.

In Kubernetes, if you don’t use any ingress approach, then your services and pods have IPs only

routable by the cluster network.

https://kubernetes.io/docs/concepts/services-networking/ingress/

177 Designing and Developing Multi-Container and Microservice-Based .NET Applications

But if you use an ingress approach, you’ll have a middle tier between the Internet and your services

(including your API Gateways), acting as a reverse proxy.

As a definition, an Ingress is a collection of rules that allow inbound connections to reach the cluster

services. An ingress is usually configured to provide services externally reachable URLs, load balance

traffic, SSL termination and more. Users request ingress by POSTing the Ingress resource to the API

server.

In eShopOnContainers, when developing locally and using just your development machine as the

Docker host, you are not using any ingress but only the multiple API Gateways.

However, when targeting a “production” environment based on Kubernetes, eShopOnContainers is

using an ingress in front of the API gateways. That way, the clients still call the same base URL but the

requests are routed to multiple API Gateways or BFF.

Note that API Gateways are front-ends or façades surfacing only the services but not the web

applications that are usually out of their scope. In addition, the API Gateways might hide certain

internal microservices.

The ingress, however, is just redirecting HTTP requests but not trying to hide any microservice or web

app.

Having an ingress Nginx tier in Kubernetes in front of the web applications plus the several Ocelot API

Gateways / BFF is the ideal architecture, as shown in the following diagram.

Figure 6-41. The ingress tier in eShopOnContainers when deployed into Kubernetes

When you deploy eShopOnContainers into Kubernetes, it exposes just a few services or endpoints via

ingress, basically the following list of postfixes on the URLs:

• / for the client SPA web application

• /webmvc for the client MVC web application

• /webstatus for the client web app showing the status/healthchecks

178 Designing and Developing Multi-Container and Microservice-Based .NET Applications

• /webshoppingapigw for the web BFF and shopping business processes

• /webmarketingapigw for the web BFF and marketing business processes

• /mobileshoppingapigw for the mobile BFF and shopping business processes

• /mobilemarketingapigw for the mobile BFF and marketing business processes

When deploying to Kubernetes, each Ocelot API Gateway is using a different “configuration.json” file

for each pod running the API Gateways. Those “configuration.json” files are provided by mounting

(originally with the deploy.ps1 script) a volume created based on a Kubernetes config map named

‘ocelot’. Each container mounts its related configuration file in the container’s folder named

/app/configuration.

In the source code files of eShopOnContainers, the original “configuration.json” files can be found

within the k8s/ocelot/ folder. There’s one file for each BFF/APIGateway.

Additional cross-cutting features in an Ocelot API Gateway

There are other important features to research and use, when using an Ocelot API Gateway, described

in the following links.

• Service discovery in the client side integrating Ocelot with Consul or Eureka

https://ocelot.readthedocs.io/en/latest/features/servicediscovery.html

• Caching at the API Gateway tier

https://ocelot.readthedocs.io/en/latest/features/caching.html

• Logging at the API Gateway tier

https://ocelot.readthedocs.io/en/latest/features/logging.html

• Quality of Service (Retries and Circuit breakers) at the API Gateway tier

https://ocelot.readthedocs.io/en/latest/features/qualityofservice.html

• Rate limiting

https://ocelot.readthedocs.io/en/latest/features/ratelimiting.html

https://ocelot.readthedocs.io/en/latest/features/servicediscovery.html
https://ocelot.readthedocs.io/en/latest/features/caching.html
https://ocelot.readthedocs.io/en/latest/features/logging.html
https://ocelot.readthedocs.io/en/latest/features/qualityofservice.html
https://ocelot.readthedocs.io/en/latest/features/ratelimiting.html

179 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

S E C T I O N

8

S E C T I O N 7

Tackle Business
Complexity in a
Microservice with DDD
and CQRS Patterns

Design a domain model for each microservice or Bounded Context that reflects understanding of the

business domain.

This section focuses on more advanced microservices that you implement when you need to tackle

complex subsystems, or microservices derived from the knowledge of domain experts with ever-

changing business rules. The architecture patterns used in this section are based on domain-driven

design (DDD) and Command and Query Responsibility Segregation (CQRS) approaches, as illustrated

in Figure 7-1.

Figure 7-1. External microservice architecture versus internal architecture patterns for each microservice

180 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

However, most of the techniques for data driven microservices, such as how to implement an ASP.NET

Core Web API service or how to expose Swagger metadata with Swashbuckle or NSwag, are also

applicable to the more advanced microservices implemented internally with DDD patterns. This

section is an extension of the previous sections, because most of the practices explained earlier also

apply here or for any kind of microservice.

This section first provides details on the simplified CQRS patterns used in the eShopOnContainers

reference application. Later, you will get an overview of the DDD techniques that enable you to find

common patterns that you can reuse in your applications.

DDD is a large topic with a rich set of resources for learning. You can start with books like Domain-

Driven Design by Eric Evans and additional materials from Vaughn Vernon, Jimmy Nilsson, Greg

Young, Udi Dahan, Jimmy Bogard, and many other DDD/CQRS experts. But most of all you need to try

to learn how to apply DDD techniques from the conversations, whiteboarding, and domain modeling

sessions with the experts in your concrete business domain.

Additional resources

DDD (Domain-Driven Design)

• Eric Evans. Domain Language

https://domainlanguage.com/

• Martin Fowler. Domain-Driven Design

https://martinfowler.com/tags/domain%20driven%20design.html

• Jimmy Bogard. Strengthening your domain: a primer

https://lostechies.com/jimmybogard/2010/02/04/strengthening-your-domain-a-primer/

DDD books

• Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-

Software/dp/0321125215/

• Eric Evans. Domain-Driven Design Reference: Definitions and Pattern Summaries

https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-2014-09-

22/dp/B01N8YB4ZO/

• Vaughn Vernon. Implementing Domain-Driven Design

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-

Vernon/dp/0321834577/

• Vaughn Vernon. Domain-Driven Design Distilled

https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420/

• Jimmy Nilsson. Applying Domain-Driven Design and Patterns

https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202/

https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/
https://martinfowler.com/tags/domain%20driven%20design.html
https://lostechies.com/jimmybogard/2010/02/04/strengthening-your-domain-a-primer/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-2014-09-22/dp/B01N8YB4ZO/
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-2014-09-22/dp/B01N8YB4ZO/
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/
https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420/
https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202/

181 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Cesar de la Torre. N-Layered Domain-Oriented Architecture Guide with .NET

https://www.amazon.com/N-Layered-Domain-Oriented-Architecture-Guide-

NET/dp/8493903612/

• Abel Avram and Floyd Marinescu. Domain-Driven Design Quickly

https://www.amazon.com/Domain-Driven-Design-Quickly-Abel-Avram/dp/1411609255/

• Scott Millett, Nick Tune - Patterns, Principles, and Practices of Domain-Driven Design

http://www.wrox.com/WileyCDA/WroxTitle/Patterns-Principles-and-Practices-of-Domain-Driven-

Design.productCd-1118714709.html

DDD training

• Julie Lerman and Steve Smith. Domain-Driven Design Fundamentals

https://bit.ly/PS-DDD

Apply simplified CQRS and DDD patterns in a

microservice
CQRS is an architectural pattern that separates the models for reading and writing data. The related

term Command Query Separation (CQS) was originally defined by Bertrand Meyer in his book Object

Oriented Software Construction. The basic idea is that you can divide a system’s operations into two

sharply separated categories:

• Queries. These return a result and do not change the state of the system, and they are free of

side effects.

• Commands. These change the state of a system.

CQS is a simple concept—it is about methods within the same object being either queries or

commands. Each method either returns state or mutates state, but not both. Even a single repository

pattern object can comply with CQS. CQS can be considered a foundational principle for CQRS.

Command and Query Responsibility Segregation (CQRS) was introduced by Greg Young and strongly

promoted by Udi Dahan and others. It is based on the CQS principle, although it is more detailed. It

can be considered a pattern based on commands and events plus optionally on asynchronous

messages. In many cases, CQRS is related to more advanced scenarios, like having a different physical

database for reads (queries) than for writes (updates). Moreover, a more evolved CQRS system might

implement Event-Sourcing (ES) for your updates database, so you would only store events in the

domain model instead of storing the current-state data. However, this is not the approach used in this

guide; we are using the simplest CQRS approach, which consists of just separating the queries from

the commands.

The separation aspect of CQRS is achieved by grouping query operations in one layer and commands

in another layer. Each layer has its own data model (note that we say model, not necessarily a different

database) and is built using its own combination of patterns and technologies. More importantly, the

two layers can be within the same tier or microservice, as in the example (ordering microservice) used

for this guide. Or they could be implemented on different microservices or processes so they can be

optimized and scaled out separately without affecting one another.

https://www.amazon.com/N-Layered-Domain-Oriented-Architecture-Guide-NET/dp/8493903612/
https://www.amazon.com/N-Layered-Domain-Oriented-Architecture-Guide-NET/dp/8493903612/
https://www.amazon.com/Domain-Driven-Design-Quickly-Abel-Avram/dp/1411609255/
http://www.wrox.com/WileyCDA/WroxTitle/Patterns-Principles-and-Practices-of-Domain-Driven-Design.productCd-1118714709.html
http://www.wrox.com/WileyCDA/WroxTitle/Patterns-Principles-and-Practices-of-Domain-Driven-Design.productCd-1118714709.html
https://bit.ly/PS-DDD
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html

182 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

CQRS means having two objects for a read/write operation where in other contexts there is one. There

are reasons to have a denormalized reads database, which you can learn about in more advanced

CQRS literature. But we are not using that approach here, where the goal is to have more flexibility in

the queries instead of limiting the queries with constraints from DDD patterns like aggregates.

An example of this kind of service is the ordering microservice from the eShopOnContainers reference

application. This service implements a microservice based on a simplified CQRS approach. It uses a

single data source or database, but two logical models plus DDD patterns for the transactional

domain, as shown in Figure 7-2.

Figure 7-2. Simplified CQRS- and DDD-based microservice

The application layer can be the Web API itself. The important design aspect here is that the

microservice has split the queries and ViewModels (data models especially created for the client

applications) from the commands, domain model, and transactions following the CQRS pattern. This

approach keeps the queries independent from restrictions and constraints coming from DDD patterns

that only make sense for transactions and updates, as explained in later sections.

Additional resources

• Greg Young. Versioning in an Event Sourced System (Free to read online e-book)

https://leanpub.com/esversioning/read

https://leanpub.com/esversioning/read

183 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Apply CQRS and CQS approaches in a DDD

microservice in eShopOnContainers
The design of the ordering microservice at the eShopOnContainers reference application is based on

CQRS principles. However, it uses the simplest approach, which is just separating the queries from the

commands and using the same database for both actions.

The essence of those patterns, and the important point here, is that queries are idempotent: no matter

how many times you query a system, the state of that system won’t change. In other words, queries

are side-effect free.

Therefore, you could use a different “reads” data model than the transactional logic “writes” domain

model, even though the ordering microservices are using the same database. Hence, this is a

simplified CQRS approach.

On the other hand, commands, which trigger transactions and data updates, change state in the

system. With commands, you need to be careful when dealing with complexity and ever-changing

business rules. This is where you want to apply DDD techniques to have a better modeled system.

The DDD patterns presented in this guide should not be applied universally. They introduce

constraints on your design. Those constraints provide benefits such as higher quality over time,

especially in commands and other code that modifies system state. However, those constraints add

complexity with fewer benefits for reading and querying data.

One such pattern is the Aggregate pattern, which we examine more in later sections. Briefly, in the

Aggregate pattern, you treat many domain objects as a single unit as a result of their relationship in

the domain. You might not always gain advantages from this pattern in queries; it can increase the

complexity of query logic. For read-only queries, you do not get the advantages of treating multiple

objects as a single Aggregate. You only get the complexity.

As shown in Figure 7-2, this guide suggests using DDD patterns only in the transactional/updates area

of your microservice (that is, as triggered by commands). Queries can follow a simpler approach and

should be separated from commands, following a CQRS approach.

For implementing the “queries side”, you can choose between many approaches, from your full-blown

ORM like EF Core, AutoMapper projections, stored procedures, views, materialized views or a micro

ORM.

In this guide and in eShopOnContainers (specifically the ordering microservice) we chose to

implement straight queries using a micro ORM like Dapper. This lets you implement any query based

on SQL statements to get the best performance, thanks to a light framework with very little overhead.

Note that when you use this approach, any updates to your model that impact how entities are

persisted to a SQL database also need separate updates to SQL queries used by Dapper or any other

separate (non-EF) approaches to querying.

CQRS and DDD patterns are not top-level architectures

It’s important to understand that CQRS and most DDD patterns (like DDD layers or a domain model

with aggregates) are not architectural styles, but only architecture patterns. Microservices, SOA, and

https://github.com/StackExchange/dapper-dot-net

184 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

event-driven architecture (EDA) are examples of architectural styles. They describe a system of many

components, such as many microservices. CQRS and DDD patterns describe something inside a single

system or component; in this case, something inside a microservice.

Different Bounded Contexts (BCs) will employ different patterns. They have different responsibilities,

and that leads to different solutions. It is worth emphasizing that forcing the same pattern everywhere

leads to failure. Do not use CQRS and DDD patterns everywhere. Many subsystems, BCs, or

microservices are simpler and can be implemented more easily using simple CRUD services or using

another approach.

There is only one application architecture: the architecture of the system or end-to-end application

you are designing (for example, the microservices architecture). However, the design of each Bounded

Context or microservice within that application reflects its own tradeoffs and internal design decisions

at an architecture patterns level. Do not try to apply the same architectural patterns like CQRS or DDD

everywhere.

Additional resources

• Martin Fowler. CQRS

https://martinfowler.com/bliki/CQRS.html

• Greg Young. CQRS Documents

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

• Udi Dahan. Clarified CQRS

http://udidahan.com/2009/12/09/clarified-cqrs/

Implement reads/queries in a CQRS microservice
For reads/queries, the ordering microservice from the eShopOnContainers reference application

implements the queries independently from the DDD model and transactional area. This was done

primarily because the demands for queries and for transactions are drastically different. Writes

execute transactions that must be compliant with the domain logic. Queries, on the other hand, are

idempotent and can be segregated from the domain rules.

The approach is simple, as shown in Figure 7-3. The API interface is implemented by the Web API

controllers using any infrastructure, such as a micro Object Relational Mapper (ORM) like Dapper, and

returning dynamic ViewModels depending on the needs of the UI applications.

https://martinfowler.com/bliki/CQRS.html
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
http://udidahan.com/2009/12/09/clarified-cqrs/

185 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-3. The simplest approach for queries in a CQRS microservice

This is the simplest possible approach for queries. The query definitions query the database and

return a dynamic ViewModel built on the fly for each query. Since the queries are idempotent, they

won’t change the data no matter how many times you run a query. Therefore, you don’t need to be

restricted by any DDD pattern used in the transactional side, like aggregates and other patterns, and

that is why queries are separated from the transactional area. You simply query the database for the

data that the UI needs and return a dynamic ViewModel that does not need to be statically defined

anywhere (no classes for the ViewModels) except in the SQL statements themselves.

Since this is a simple approach, the code required for the queries side (such as code using a micro

ORM like Dapper) can be implemented within the same Web API project. Figure 7-4 shows this. The

queries are defined in the Ordering.API microservice project within the eShopOnContainers solution.

Figure 7-4. Queries in the Ordering microservice in eShopOnContainers

Use ViewModels specifically made for client apps, independent from

domain model constraints

Since the queries are performed to obtain the data needed by the client applications, the returned

type can be specifically made for the clients, based on the data returned by the queries. These models,

or Data Transfer Objects (DTOs), are called ViewModels.

The returned data (ViewModel) can be the result of joining data from multiple entities or tables in the

database, or even across multiple aggregates defined in the domain model for the transactional area.

In this case, because you are creating queries independent of the domain model, the aggregates

boundaries and constraints are completely ignored and you’re free to query any table and column

https://github.com/StackExchange/Dapper
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Application/Queries/OrderQueries.cs

186 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

you might need. This approach provides great flexibility and productivity for the developers creating

or updating the queries.

The ViewModels can be static types defined in classes. Or they can be created dynamically based on

the queries performed (as is implemented in the ordering microservice), which is very agile for

developers.

Use Dapper as a micro ORM to perform queries

You can use any micro ORM, Entity Framework Core, or even plain ADO.NET for querying. In the

sample application, Dapper was selected for the ordering microservice in eShopOnContainers as a

good example of a popular micro ORM. It can run plain SQL queries with great performance, because

it’s a very light framework. Using Dapper, you can write a SQL query that can access and join multiple

tables.

Dapper is an open-source project (original created by Sam Saffron), and is part of the building blocks

used in Stack Overflow. To use Dapper, you just need to install it through the Dapper NuGet package,

as shown in the following figure:

You also need to add a using statement so your code has access to the Dapper extension methods.

When you use Dapper in your code, you directly use the System.Data.SqlClient.SqlConnection class

available in the System.Data.SqlClient namespace. Through the QueryAsync method and other

extension methods that extend the System.Data.SqlClient.SqlConnection class, you can simply run

queries in a straightforward and performant way.

Dynamic versus static ViewModels

When returning ViewModels from the server-side to client apps, you can think about those

ViewModels as DTOs (Data Transfer Objects) that can be different to the internal domain entities of

your entity model because the ViewModels hold the data the way the client app needs. Therefore, in

many cases, you can aggregate data coming from multiple domain entities and compose the

ViewModels precisely according to how the client app needs that data.

Those ViewModels or DTOs can be defined explicitly (as data holder classes) like the OrderSummary

class shown in a later code snippet, or you could just return dynamic ViewModels or dynamic DTOs

simply based on the attributes returned by your queries, as a dynamic type.

ViewModel as dynamic type

As shown in the following code, a ViewModel can be directly returned by the queries by just returning

a dynamic type that internally is based on the attributes returned by a query. That means that the

subset of attributes to be returned is based on the query itself. Therefore, if you add a new column to

the query or join, that data is dynamically added to the returned ViewModel.

using Dapper;
using Microsoft.Extensions.Configuration;
using System.Data.SqlClient;

https://stackoverflow.com/
https://www.nuget.org/packages/Dapper

187 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

using System.Threading.Tasks;
using System.Dynamic;
using System.Collections.Generic;

public class OrderQueries : IOrderQueries
{
 public async Task<IEnumerable<dynamic>> GetOrdersAsync()
 {
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return await connection.QueryAsync<dynamic>(
 @"SELECT o.[Id] as ordernumber,
 o.[OrderDate] as [date],os.[Name] as [status],
 SUM(oi.units*oi.unitprice) as total
 FROM [ordering].[Orders] o
 LEFT JOIN[ordering].[orderitems] oi ON o.Id = oi.orderid
 LEFT JOIN[ordering].[orderstatus] os on o.OrderStatusId = os.Id
 GROUP BY o.[Id], o.[OrderDate], os.[Name]");
 }
 }
}

The important point is that by using a dynamic type, the returned collection of data is dynamically

assembled as the ViewModel.

Pros: This approach reduces the need to modify static ViewModel classes whenever you update the

SQL sentence of a query, making this design approach pretty agile when coding, straightforward, and

quick to evolve in regard to future changes.

Cons: In the long term, dynamic types can negatively impact the clarity and the compatibility of a

service with client apps. In addition, middleware software like Swashbuckle cannot provide the same

level of documentation on returned types if using dynamic types.

ViewModel as predefined DTO classes

Pros: Having static predefined ViewModel classes, like “contracts” based on explicit DTO classes, is

definitely better for public APIs but also for long term microservices, even if they are only used by the

same application.

If you want to specify response types for Swagger, you need to use explicit DTO classes as the return

type. Therefore, predefined DTO classes allow you to offer richer information from Swagger. That

improves the API documentation and compatibility when consuming an API.

Cons: As mentioned earlier, when updating the code, it takes some more steps to update the DTO

classes.

Tip based on our experience: In the queries implemented at the Ordering microservice in

eShopOnContainers, we started developing by using dynamic ViewModels as it was very

straightforward and agile on the early development stages. But, once the development was stabilized,

we chose to refactor the APIs and use static or pre-defined DTOs for the ViewModels, because it is

clearer for the microservice’s consumers to know explicit DTO types, used as “contracts”.

In the following example, you can see how the query is returning data by using an explicit ViewModel

DTO class: the OrderSummary class.

188 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

using Dapper;
using Microsoft.Extensions.Configuration;
using System.Data.SqlClient;
using System.Threading.Tasks;
using System.Dynamic;
using System.Collections.Generic;

public class OrderQueries : IOrderQueries
{
 public async Task<IEnumerable<OrderSummary>> GetOrdersAsync()
 {
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var result = await connection.QueryAsync<OrderSummary>(
 @"SELECT o.[Id] as ordernumber,
 o.[OrderDate] as [date],os.[Name] as [status],
 SUM(oi.units*oi.unitprice) as total
 FROM [ordering].[Orders] o
 LEFT JOIN[ordering].[orderitems] oi ON o.Id = oi.orderid
 LEFT JOIN[ordering].[orderstatus] os on o.OrderStatusId = os.Id
 GROUP BY o.[Id], o.[OrderDate], os.[Name]
 ORDER BY o.[Id]");
 }
 }
}

Describe response types of Web APIs

Developers consuming web APIs and microservices are most concerned with what is returned —

specifically response types and error codes (if not standard). These are handled in the XML comments

and data annotations.

Without proper documentation in the Swagger UI, the consumer lacks knowledge of what types are

being returned or what HTTP codes can be returned. That problem is fixed by adding the

Microsoft.AspNetCore.Mvc.ProducesResponseTypeAttribute?displayProperty=nameWithType, so

Swashbuckle can generate richer information about the API return model and values, as shown in the

following code:

namespace Microsoft.eShopOnContainers.Services.Ordering.API.Controllers
{
 [Route("api/v1/[controller]")]
 [Authorize]
 public class OrdersController : Controller
 {
 //Additional code...
 [Route("")]
 [HttpGet]
 [ProducesResponseType(typeof(IEnumerable<OrderSummary>),
 (int)HttpStatusCode.OK)]
 public async Task<IActionResult> GetOrders()
 {
 var userid = _identityService.GetUserIdentity();
 var orders = await _orderQueries
 .GetOrdersFromUserAsync(Guid.Parse(userid));
 return Ok(orders);
 }
 }
}

189 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

However, the ProducesResponseType attribute cannot use dynamic as a type but requires to use

explicit types, like the OrderSummary ViewModel DTO, shown in the following example:

public class OrderSummary
{
 public int ordernumber { get; set; }
 public DateTime date { get; set; }
 public string status { get; set; }
 public double total { get; set; }
}

This is another reason why explicit returned types are better than dynamic types, in the long term.

When using the ProducesResponseType attribute, you can also specify what is the expected outcome

in regards possible HTTP errors/codes, like 200, 400, etc.

In the following image, you can see how Swagger UI shows the ResponseType information.

Figure 7-5. Swagger UI showing response types and possible HTTP status codes from a Web API

You can see in the image above some example values based on the ViewModel types plus the

possible HTTP status codes that can be returned.

190 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

• Dapper

https://github.com/StackExchange/dapper-dot-net

• Julie Lerman. Data Points - Dapper, Entity Framework and Hybrid Apps (MSDN Mag.

article)

https://msdn.microsoft.com/magazine/mt703432.aspx

• ASP.NET Core Web API Help Pages using Swagger

https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-

swagger?tabs=visual-studio

Design a DDD-oriented microservice
Domain-driven design (DDD) advocates modeling based on the reality of business as relevant to your

use cases. In the context of building applications, DDD talks about problems as domains. It describes

independent problem areas as Bounded Contexts (each Bounded Context correlates to a

microservice), and emphasizes a common language to talk about these problems. It also suggests

many technical concepts and patterns, like domain entities with rich models (no anemic-domain

model), value objects, aggregates and aggregate root (or root entity) rules to support the internal

implementation. This section introduces the design and implementation of those internal patterns.

Sometimes these DDD technical rules and patterns are perceived as obstacles that have a steep

learning curve for implementing DDD approaches. But the important part is not the patterns

themselves, but organizing the code so it is aligned to the business problems, and using the same

business terms (ubiquitous language). In addition, DDD approaches should be applied only if you are

implementing complex microservices with significant business rules. Simpler responsibilities, like a

CRUD service, can be managed with simpler approaches.

Where to draw the boundaries is the key task when designing and defining a microservice. DDD

patterns help you understand the complexity in the domain. For the domain model for each Bounded

Context, you identify and define the entities, value objects, and aggregates that model your domain.

You build and refine a domain model that is contained within a boundary that defines your context.

And that is very explicit in the form of a microservice. The components within those boundaries end

up being your microservices, although in some cases a BC or business microservices can be composed

of several physical services. DDD is about boundaries and so are microservices.

Keep the microservice context boundaries relatively small

Determining where to place boundaries between Bounded Contexts balances two competing goals.

First, you want to initially create the smallest possible microservices, although that should not be the

main driver; you should create a boundary around things that need cohesion. Second, you want to

avoid chatty communications between microservices. These goals can contradict one another. You

should balance them by decomposing the system into as many small microservices as you can until

you see communication boundaries growing quickly with each additional attempt to separate a new

Bounded Context. Cohesion is key within a single bounded context.

https://github.com/StackExchange/dapper-dot-net
https://msdn.microsoft.com/magazine/mt703432.aspx
https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio
https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio
https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/bliki/AnemicDomainModel.html

191 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

It is similar to the Inappropriate Intimacy code smell when implementing classes. If two microservices

need to collaborate a lot with each other, they should probably be the same microservice.

Another way to look at this is autonomy. If a microservice must rely on another service to directly

service a request, it is not truly autonomous.

Layers in DDD microservices

Most enterprise applications with significant business and technical complexity are defined by

multiple layers. The layers are a logical artifact, and are not related to the deployment of the service.

They exist to help developers manage the complexity in the code. Different layers (like the domain

model layer versus the presentation layer, etc.) might have different types, which mandates

translations between those types.

For example, an entity could be loaded from the database. Then part of that information, or an

aggregation of information including additional data from other entities, can be sent to the client UI

through a REST Web API. The point here is that the domain entity is contained within the domain

model layer and should not be propagated to other areas that it does not belong to, like to the

presentation layer.

Additionally, you need to have always-valid entities (see the Designing validations in the domain

model layer section) controlled by aggregate roots (root entities). Therefore, entities should not be

bound to client views, because at the UI level some data might still not be validated. This is what the

ViewModel is for. The ViewModel is a data model exclusively for presentation layer needs. The domain

entities do not belong directly to the ViewModel. Instead, you need to translate between ViewModels

and domain entities and vice versa.

When tackling complexity, it is important to have a domain model controlled by aggregate roots that

make sure that all the invariants and rules related to that group of entities (aggregate) are performed

through a single entry-point or gate, the aggregate root.

Figure 7-5 shows how a layered design is implemented in the eShopOnContainers application.

https://sourcemaking.com/refactoring/smells/inappropriate-intimacy

192 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-5. DDD layers in the ordering microservice in eShopOnContainers

You want to design the system so that each layer communicates only with certain other layers. That

may be easier to enforce if layers are implemented as different class libraries, because you can clearly

identify what dependencies are set between libraries. For instance, the domain model layer should not

take a dependency on any other layer (the domain model classes should be Plain Old CLR Objects, or

POCO, classes). As shown in Figure 7-6, the Ordering.Domain layer library has dependencies only on

the .NET Core libraries or NuGet packages, but not on any other custom library, such as data library or

persistence library.

Figure 7-6. Layers implemented as libraries allow better control of dependencies between layers

The domain model layer

Eric Evans’s excellent book Domain Driven Design says the following about the domain model layer

and the application layer.

Domain Model Layer: Responsible for representing concepts of the business, information about the

business situation, and business rules. State that reflects the business situation is controlled and used

here, even though the technical details of storing it are delegated to the infrastructure. This layer is

the heart of business software.

The domain model layer is where the business is expressed. When you implement a microservice

domain model layer in .NET, that layer is coded as a class library with the domain entities that capture

data plus behavior (methods with logic).

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
https://domainlanguage.com/ddd/

193 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Following the Persistence Ignorance and the Infrastructure Ignorance principles, this layer must

completely ignore data persistence details. These persistence tasks should be performed by the

infrastructure layer. Therefore, this layer should not take direct dependencies on the infrastructure,

which means that an important rule is that your domain model entity classes should be POCOs.

Domain entities should not have any direct dependency (like deriving from a base class) on any data

access infrastructure framework like Entity Framework or NHibernate. Ideally, your domain entities

should not derive from or implement any type defined in any infrastructure framework.

Most modern ORM frameworks like Entity Framework Core allow this approach, so that your domain

model classes are not coupled to the infrastructure. However, having POCO entities is not always

possible when using certain NoSQL databases and frameworks, like Actors and Reliable Collections in

Azure Service Fabric.

Even when it is important to follow the Persistence Ignorance principle for your Domain model, you

should not ignore persistence concerns. It is still very important to understand the physical data

model and how it maps to your entity object model. Otherwise you can create impossible designs.

Also, this does not mean you can take a model designed for a relational database and directly move it

to a NoSQL or document-oriented database. In some entity models, the model might fit, but usually it

does not. There are still constraints that your entity model must adhere to, based both on the storage

technology and ORM technology.

The application layer

Moving on to the application layer, we can again cite Eric Evans’s book Domain Driven Design:

Application Layer: Defines the jobs the software is supposed to do and directs the expressive domain

objects to work out problems. The tasks this layer is responsible for are meaningful to the business or

necessary for interaction with the application layers of other systems. This layer is kept thin. It does

not contain business rules or knowledge, but only coordinates tasks and delegates work to

collaborations of domain objects in the next layer down. It does not have state reflecting the business

situation, but it can have state that reflects the progress of a task for the user or the program.

A microservice’s application layer in .NET is commonly coded as an ASP.NET Core Web API project.

The project implements the microservice’s interaction, remote network access, and the external Web

APIs used from the UI or client apps. It includes queries if using a CQRS approach, commands

accepted by the microservice, and even the event-driven communication between microservices

(integration events). The ASP.NET Core Web API that represents the application layer must not contain

business rules or domain knowledge (especially domain rules for transactions or updates); these

should be owned by the domain model class library. The application layer must only coordinate tasks

and must not hold or define any domain state (domain model). It delegates the execution of business

rules to the domain model classes themselves (aggregate roots and domain entities), which will

ultimately update the data within those domain entities.

Basically, the application logic is where you implement all use cases that depend on a given front end.

For example, the implementation related to a Web API service.

The goal is that the domain logic in the domain model layer, its invariants, the data model, and

related business rules must be completely independent from the presentation and application layers.

Most of all, the domain model layer must not directly depend on any infrastructure framework.

https://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
https://domainlanguage.com/ddd/

194 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The infrastructure layer

The infrastructure layer is how the data that is initially held in domain entities (in memory) is persisted

in databases or another persistent store. An example is using Entity Framework Core code to

implement the Repository pattern classes that use a DBContext to persist data in a relational

database.

In accordance with the previously mentioned Persistence Ignorance and Infrastructure Ignorance

principles, the infrastructure layer must not “contaminate” the domain model layer. You must keep the

domain model entity classes agnostic from the infrastructure that you use to persist data (EF or any

other framework) by not taking hard dependencies on frameworks. Your domain model layer class

library should have only your domain code, just POCO entity classes implementing the heart of your

software and completely decoupled from infrastructure technologies.

Thus, your layers or class libraries and projects should ultimately depend on your domain model layer

(library), not vice versa, as shown in Figure 7-7.

Figure 7-7. Dependencies between layers in DDD

This layer design should be independent for each microservice. As noted earlier, you can implement

the most complex microservices following DDD patterns, while implementing simpler data-driven

microservices (simple CRUD in a single layer) in a simpler way.

Additional resources

• DevIQ. Persistence Ignorance principle

https://deviq.com/persistence-ignorance/

• Oren Eini. Infrastructure Ignorance

https://ayende.com/blog/3137/infrastructure-ignorance

• Angel Lopez. Layered Architecture In Domain-Driven Design

https://ajlopez.wordpress.com/2008/09/12/layered-architecture-in-domain-driven-design/

https://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
https://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance
https://ajlopez.wordpress.com/2008/09/12/layered-architecture-in-domain-driven-design/

195 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Design a microservice domain model
Define one rich domain model for each business microservice or Bounded Context.

Your goal is to create a single cohesive domain model for each business microservice or Bounded

Context (BC). Keep in mind, however, that a BC or business microservice could sometimes be

composed of several physical services that share a single domain model. The domain model must

capture the rules, behavior, business language, and constraints of the single Bounded Context or

business microservice that it represents.

The Domain Entity pattern

Entities represent domain objects and are primarily defined by their identity, continuity, and

persistence over time, and not only by the attributes that comprise them. As Eric Evans says, “an

object primarily defined by its identity is called an Entity.” Entities are very important in the domain

model, since they are the base for a model. Therefore, you should identify and design them carefully.

An entity’s identity can cross multiple microservices or Bounded Contexts.

The same identity (that is, the same Id value, although perhaps not the same domain entity) can be

modeled across multiple Bounded Contexts or microservices. However, that does not imply that the

same entity, with the same attributes and logic would be implemented in multiple Bounded Contexts.

Instead, entities in each Bounded Context limit their attributes and behaviors to those required in that

Bounded Context’s domain.

For instance, the buyer entity might have most of a person’s attributes that are defined in the user

entity in the profile or identity microservice, including the identity. But the buyer entity in the ordering

microservice might have fewer attributes, because only certain buyer data is related to the order

process. The context of each microservice or Bounded Context impacts its domain model.

Domain entities must implement behavior in addition to implementing data attributes.

A domain entity in DDD must implement the domain logic or behavior related to the entity data (the

object accessed in memory). For example, as part of an order entity class you must have business logic

and operations implemented as methods for tasks such as adding an order item, data validation, and

total calculation. The entity’s methods take care of the invariants and rules of the entity instead of

having those rules spread across the application layer.

Figure 7-8 shows a domain entity that implements not only data attributes but operations or methods

with related domain logic.

196 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-8. Example of a domain entity design implementing data plus behavior

Of course, sometimes you can have entities that do not implement any logic as part of the entity class.

This can happen in child entities within an aggregate if the child entity does not have any special logic

because most of the logic is defined in the aggregate root. If you have a complex microservice that

has a lot of logic implemented in the service classes instead of in the domain entities, you could be

falling into the anemic domain model, explained in the following section.

Rich domain model versus anemic domain model

In his post AnemicDomainModel, Martin Fowler describes an anemic domain model this way:

The basic symptom of an Anemic Domain Model is that at first blush it looks like the real thing. There

are objects, many named after the nouns in the domain space, and these objects are connected with

the rich relationships and structure that true domain models have. The catch comes when you look at

the behavior, and you realize that there is hardly any behavior on these objects, making them little

more than bags of getters and setters.

Of course, when you use an anemic domain model, those data models will be used from a set of

service objects (traditionally named the business layer) which capture all the domain or business logic.

The business layer sits on top of the data model and uses the data model just as data.

The anemic domain model is just a procedural style design. Anemic entity objects are not real objects

because they lack behavior (methods). They only hold data properties and thus it is not object-

oriented design. By putting all the behavior out into service objects (the business layer) you essentially

end up with spaghetti code or transaction scripts, and therefore you lose the advantages that a

domain model provides.

Regardless, if your microservice or Bounded Context is very simple (a CRUD service), the anemic

domain model in the form of entity objects with just data properties might be good enough, and it

might not be worth implementing more complex DDD patterns. In that case, it will be simply a

persistence model, because you have intentionally created an entity with only data for CRUD

purposes.

That is why microservices architectures are perfect for a multi-architectural approach depending on

each Bounded Context. For instance, in eShopOnContainers, the ordering microservice implements

DDD patterns, but the catalog microservice, which is a simple CRUD service, does not.

https://martinfowler.com/bliki/AnemicDomainModel.html
https://en.wikipedia.org/wiki/Spaghetti_code
https://martinfowler.com/eaaCatalog/transactionScript.html

197 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Some people say that the anemic domain model is an anti-pattern. It really depends on what you are

implementing. If the microservice you are creating is simple enough (for example, a CRUD service),

following the anemic domain model it is not an anti-pattern. However, if you need to tackle the

complexity of a microservice’s domain that has a lot of ever-changing business rules, the anemic

domain model might be an anti-pattern for that microservice or Bounded Context. In that case,

designing it as a rich model with entities containing data plus behavior as well as implementing

additional DDD patterns (aggregates, value objects, etc.) might have huge benefits for the long-term

success of such a microservice.

Additional resources

• DevIQ. Domain Entity

https://deviq.com/entity/

• Martin Fowler. The Domain Model

https://martinfowler.com/eaaCatalog/domainModel.html

• Martin Fowler. The Anemic Domain Model

https://martinfowler.com/bliki/AnemicDomainModel.html

The Value Object pattern

As Eric Evans has noted, “Many objects do not have conceptual identity. These objects describe

certain characteristics of a thing.”

An entity requires an identity, but there are many objects in a system that do not, like the Value

Object pattern. A value object is an object with no conceptual identity that describes a domain aspect.

These are objects that you instantiate to represent design elements that only concern you temporarily.

You care about what they are, not who they are. Examples include numbers and strings, but can also

be higher-level concepts like groups of attributes.

Something that is an entity in a microservice might not be an entity in another microservice, because

in the second case, the Bounded Context might have a different meaning. For example, an address in

an e-commerce application might not have an identity at all, since it might only represent a group of

attributes of the customer’s profile for a person or company. In this case, the address should be

classified as a value object. However, in an application for an electric power utility company, the

customer address could be important for the business domain. Therefore, the address must have an

identity so the billing system can be directly linked to the address. In that case, an address should be

classified as a domain entity.

A person with a name and surname is usually an entity because a person has identity, even if the

name and surname coincide with another set of values, such as if those names also refers to a

different person.

Value objects are hard to manage in relational databases and ORMs like EF, whereas in document

oriented databases they are easier to implement and use.

EF Core 2.0 includes the Owned Entities feature that makes it easier to handle value objects, as we’ll

see in detail later on.

https://deviq.com/entity/
https://martinfowler.com/eaaCatalog/domainModel.html
https://martinfowler.com/bliki/AnemicDomainModel.html
https://devblogs.microsoft.com/dotnet/announcing-entity-framework-core-2-0/#owned-entities-and-table-splitting

198 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

• Martin Fowler. Value Object pattern

https://martinfowler.com/bliki/ValueObject.html

• Value Object

https://deviq.com/value-object/

• Value Objects in Test-Driven Development

https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects

• Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. (Book;

includes a discussion of value objects)

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-

Software/dp/0321125215/

The Aggregate pattern

A domain model contains clusters of different data entities and processes that can control a

significant area of functionality, such as order fulfillment or inventory. A more fine-grained DDD unit is

the aggregate, which describes a cluster or group of entities and behaviors that can be treated as a

cohesive unit.

You usually define an aggregate based on the transactions that you need. A classic example is an

order that also contains a list of order items. An order item will usually be an entity. But it will be a

child entity within the order aggregate, which will also contain the order entity as its root entity,

typically called an aggregate root.

Identifying aggregates can be hard. An aggregate is a group of objects that must be consistent

together, but you cannot just pick a group of objects and label them an aggregate. You must start

with a domain concept and think about the entities that are used in the most common transactions

related to that concept. Those entities that need to be transactionally consistent are what forms an

aggregate. Thinking about transaction operations is probably the best way to identify aggregates.

The Aggregate Root or Root Entity pattern

An aggregate is composed of at least one entity: the aggregate root, also called root entity or primary

entity. Additionally, it can have multiple child entities and value objects, with all entities and objects

working together to implement required behavior and transactions.

The purpose of an aggregate root is to ensure the consistency of the aggregate; it should be the only

entry point for updates to the aggregate through methods or operations in the aggregate root class.

You should make changes to entities within the aggregate only via the aggregate root. It is the

aggregate’s consistency guardian, considering all the invariants and consistency rules you might need

to comply with in your aggregate. If you change a child entity or value object independently, the

aggregate root cannot ensure that the aggregate is in a valid state. It would be like a table with a

loose leg. Maintaining consistency is the main purpose of the aggregate root.

In Figure 7-9, you can see sample aggregates like the buyer aggregate, which contains a single entity

(the aggregate root Buyer). The order aggregate contains multiple entities and a value object.

https://martinfowler.com/bliki/ValueObject.html
https://deviq.com/value-object/
https://leanpub.com/tdd-ebook/read#leanpub-auto-value-objects
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/

199 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-9. Example of aggregates with multiple or single entities

Note that the Buyer aggregate could have additional child entities, depending on your domain, as it

does in the ordering microservice in the eShopOnContainers reference application. Figure 7-9 just

illustrates a case in which the buyer has a single entity, as an example of an aggregate that contains

only an aggregate root.

In order to maintain separation of aggregates and keep clear boundaries between them, it is a good

practice in a DDD domain model to disallow direct navigation between aggregates and only having

the foreign key (FK) field, as implemented in the Ordering microservice domain model in

eShopOnContainers. The Order entity only has a FK field for the buyer, but not an EF Core navigation

property, as shown in the following code:

public class Order : Entity, IAggregateRoot
{
 private DateTime _orderDate;
 public Address Address { get; private set; }
 private int? _buyerId; //FK pointing to a different aggregate root
 public OrderStatus OrderStatus { get; private set; }
 private readonly List<OrderItem> _orderItems;
 public IReadOnlyCollection<OrderItem> OrderItems => _orderItems;
 // ... Additional code
}

Identifying and working with aggregates requires research and experience. For more information, see

the following Additional resources list.

Additional resources

• Vaughn Vernon. Effective Aggregate Design - Part I: Modeling a Single Aggregate (from

http://dddcommunity.org/)

http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_1.pdf

https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Order.cs
http://dddcommunity.org/
http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_1.pdf

200 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Vaughn Vernon. Effective Aggregate Design - Part II: Making Aggregates Work Together

(from http://dddcommunity.org/)

http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf

• Vaughn Vernon. Effective Aggregate Design - Part III: Gaining Insight Through Discovery

(from http://dddcommunity.org/)

http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_3.pdf

• Sergey Grybniak. DDD Tactical Design Patterns

https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-

Patterns-Part

• Chris Richardson. Developing Transactional Microservices Using Aggregates

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

• DevIQ. The Aggregate pattern

https://deviq.com/aggregate-pattern/

Implement a microservice domain model with .NET

Core
In the previous section, the fundamental design principles and patterns for designing a domain model

were explained. Now it is time to explore possible ways to implement the domain model by using

.NET Core (plain C# code) and EF Core. Note that your domain model will be composed simply of your

code. It will have just the EF Core model requirements, but not real dependencies on EF. You should

not have hard dependencies or references to EF Core or any other ORM in your domain model.

Domain model structure in a custom .NET Standard Library

The folder organization used for the eShopOnContainers reference application demonstrates the DDD

model for the application. You might find that a different folder organization more clearly

communicates the design choices made for your application. As you can see in Figure 7-10, in the

ordering domain model there are two aggregates, the order aggregate and the buyer aggregate. Each

aggregate is a group of domain entities and value objects, although you could have an aggregate

composed of a single domain entity (the aggregate root or root entity) as well.

http://dddcommunity.org/
http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf
http://dddcommunity.org/
http://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_3.pdf
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://deviq.com/aggregate-pattern/

201 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-10. Domain model structure for the ordering microservice in eShopOnContainers

Additionally, the domain model layer includes the repository contracts (interfaces) that are the

infrastructure requirements of your domain model. In other words, these interfaces express what

repositories and the methods the infrastructure layer must implement. It is critical that the

implementation of the repositories be placed outside of the domain model layer, in the infrastructure

layer library, so the domain model layer is not “contaminated” by API or classes from infrastructure

technologies, like Entity Framework.

You can also see a SeedWork folder that contains custom base classes that you can use as a base for

your domain entities and value objects, so you do not have redundant code in each domain’s object

class.

Structure aggregates in a custom .NET Standard library

An aggregate refers to a cluster of domain objects grouped together to match transactional

consistency. Those objects could be instances of entities (one of which is the aggregate root or root

entity) plus any additional value objects.

Transactional consistency means that an aggregate is guaranteed to be consistent and up to date at

the end of a business action. For example, the order aggregate from the eShopOnContainers ordering

microservice domain model is composed as shown in Figure 7-11.

https://martinfowler.com/bliki/Seedwork.html

202 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-11. The order aggregate in Visual Studio solution

If you open any of the files in an aggregate folder, you can see how it is marked as either a custom

base class or interface, like entity or value object, as implemented in the SeedWork folder.

Implement domain entities as POCO classes

You implement a domain model in .NET by creating POCO classes that implement your domain

entities. In the following example, the Order class is defined as an entity and also as an aggregate

root. Because the Order class derives from the Entity base class, it can reuse common code related to

entities. Bear in mind that these base classes and interfaces are defined by you in the domain model

project, so it is your code, not infrastructure code from an ORM like EF.

// COMPATIBLE WITH ENTITY FRAMEWORK CORE 2.0
// Entity is a custom base class with the ID
public class Order : Entity, IAggregateRoot
{
 private DateTime _orderDate;
 public Address Address { get; private set; }
 private int? _buyerId;

 public OrderStatus OrderStatus { get; private set; }
 private int _orderStatusId;

 private string _description;
 private int? _paymentMethodId;

 private readonly List<OrderItem> _orderItems;
 public IReadOnlyCollection<OrderItem> OrderItems => _orderItems;

 public Order(string userId, Address address, int cardTypeId, string cardNumber, string
cardSecurityNumber,
 string cardHolderName, DateTime cardExpiration, int? buyerId = null, int?
paymentMethodId = null)
 {
 _orderItems = new List<OrderItem>();
 _buyerId = buyerId;
 _paymentMethodId = paymentMethodId;
 _orderStatusId = OrderStatus.Submitted.Id;
 _orderDate = DateTime.UtcNow;
 Address = address;

https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Services/Ordering/Ordering.Domain/SeedWork

203 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 // ...Additional code ...
 }

 public void AddOrderItem(int productId, string productName,
 decimal unitPrice, decimal discount,
 string pictureUrl, int units = 1)
 {
 //...
 // Domain rules/logic for adding the OrderItem to the order
 // ...

 var orderItem = new OrderItem(productId, productName, unitPrice, discount,
pictureUrl, units);

 _orderItems.Add(orderItem);

 }
 // ...
 // Additional methods with domain rules/logic related to the Order aggregate
 // ...
}

It is important to note that this is a domain entity implemented as a POCO class. It does not have any

direct dependency on Entity Framework Core or any other infrastructure framework. This

implementation is as it should be in DDD, just C# code implementing a domain model.

In addition, the class is decorated with an interface named IAggregateRoot. That interface is an empty

interface, sometimes called a marker interface, that is used just to indicate that this entity class is also

an aggregate root.

A marker interface is sometimes considered as an anti-pattern; however, it is also a clean way to mark

a class, especially when that interface might be evolving. An attribute could be the other choice for

the marker, but it is quicker to see the base class (Entity) next to the IAggregate interface instead of

putting an Aggregate attribute marker above the class. It is a matter of preferences, in any case.

Having an aggregate root means that most of the code related to consistency and business rules of

the aggregate’s entities should be implemented as methods in the Order aggregate root class (for

example, AddOrderItem when adding an OrderItem object to the aggregate). You should not create

or update OrderItems objects independently or directly; the AggregateRoot class must keep control

and consistency of any update operation against its child entities.

Encapsulate data in the Domain Entities

A common problem in entity models is that they expose collection navigation properties as publicly

accessible list types. This allows any collaborator developer to manipulate the contents of these

collection types, which may bypass important business rules related to the collection, possibly leaving

the object in an invalid state. The solution to this is to expose read-only access to related collections

and explicitly provide methods that define ways in which clients can manipulate them.

In the previous code, note that many attributes are read-only or private and are only updatable by the

class methods, so any update considers business domain invariants and logic specified within the class

methods.

204 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

For example, following DDD patterns, you should not do the following from any command handler

method or application layer class (actually, it should be impossible for you to do so):

// WRONG ACCORDING TO DDD PATTERNS – CODE AT THE APPLICATION LAYER OR
// COMMAND HANDLERS
// Code in command handler methods or Web API controllers
//... (WRONG) Some code with business logic out of the domain classes ...
OrderItem myNewOrderItem = new OrderItem(orderId, productId, productName,
 pictureUrl, unitPrice, discount, units);

//... (WRONG) Accessing the OrderItems collection directly from the application layer // or
command handlers
myOrder.OrderItems.Add(myNewOrderItem);
//...

In this case, the Add method is purely an operation to add data, with direct access to the OrderItems

collection. Therefore, most of the domain logic, rules, or validations related to that operation with the

child entities will be spread across the application layer (command handlers and Web API controllers).

If you go around the aggregate root, the aggregate root cannot guarantee its invariants, its validity, or

its consistency. Eventually you will have spaghetti code or transactional script code.

To follow DDD patterns, entities must not have public setters in any entity property. Changes in an

entity should be driven by explicit methods with explicit ubiquitous language about the change they

are performing in the entity.

Furthermore, collections within the entity (like the order items) should be read-only properties (the

AsReadOnly method explained later). You should be able to update it only from within the aggregate

root class methods or the child entity methods.

As you can see in the code for the Order aggregate root, all setters should be private or at least read-

only externally, so that any operation against the entity’s data or its child entities has to be performed

through methods in the entity class. This maintains consistency in a controlled and object-oriented

way instead of implementing transactional script code.

The following code snippet shows the proper way to code the task of adding an OrderItem object to

the Order aggregate.

// RIGHT ACCORDING TO DDD--CODE AT THE APPLICATION LAYER OR COMMAND HANDLERS
// The code in command handlers or WebAPI controllers, related only to application stuff
// There is NO code here related to OrderItem object’s business logic
myOrder.AddOrderItem(productId, productName, pictureUrl, unitPrice, discount, units);

// The code related to OrderItem params validations or domain rules should
// be WITHIN the AddOrderItem method.

//...

In this snippet, most of the validations or logic related to the creation of an OrderItem object will be

under the control of the Order aggregate root—in the AddOrderItem method—especially validations

and logic related to other elements in the aggregate. For instance, you might get the same product

item as the result of multiple calls to AddOrderItem. In that method, you could examine the product

items and consolidate the same product items into a single OrderItem object with several units.

Additionally, if there are different discount amounts but the product ID is the same, you would likely

apply the higher discount. This principle applies to any other domain logic for the OrderItem object.

205 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

In addition, the new OrderItem(params) operation will also be controlled and performed by the

AddOrderItem method from the Order aggregate root. Therefore, most of the logic or validations

related to that operation (especially anything that impacts the consistency between other child

entities) will be in a single place within the aggregate root. That is the ultimate purpose of the

aggregate root pattern.

When you use Entity Framework Core 1.1 or later, a DDD entity can be better expressed because it

allows mapping to fields in addition to properties. This is useful when protecting collections of child

entities or value objects. With this enhancement, you can use simple private fields instead of

properties and you can implement any update to the field collection in public methods and provide

read-only access through the AsReadOnly method.

In DDD you want to update the entity only through methods in the entity (or the constructor) in order

to control any invariant and the consistency of the data, so properties are defined only with a get

accessor. The properties are backed by private fields. Private members can only be accessed from

within the class. However, there one exception: EF Core needs to set these fields as well (so it can

return the object with the proper values).

Map properties with only get accessors to the fields in the database table

Mapping properties to database table columns is not a domain responsibility but part of the

infrastructure and persistence layer. We mention this here just so you are aware of the new

capabilities in EF Core 1.1 or later related to how you can model entities. Additional details on this

topic are explained in the infrastructure and persistence section.

When you use EF Core 1.0 or later, within the DbContext you need to map the properties that are

defined only with getters to the actual fields in the database table. This is done with the HasField

method of the PropertyBuilder class.

Map fields without properties

With the feature in EF Core 1.1 or later to map columns to fields, it is also possible to not use

properties. Instead, you can just map columns from a table to fields. A common use case for this is

private fields for an internal state that does not need to be accessed from outside the entity.

For example, in the preceding OrderAggregate code example, there are several private fields, like the

_paymentMethodId field, that have no related property for either a setter or getter. That field could

also be calculated within the order’s business logic and used from the order’s methods, but it needs

to be persisted in the database as well. So in EF Core (since v1.1) there is a way to map a field without

a related property to a column in the database. This is also explained in the Infrastructure layer section

of this guide.

Additional resources

• Vaughn Vernon. Modeling Aggregates with DDD and Entity Framework. Note that this is

not Entity Framework Core.

https://kalele.io/blog-posts/modeling-aggregates-with-ddd-and-entity-framework/

• Julie Lerman. Data Points - Coding for Domain-Driven Design: Tips for Data-Focused Devs

https://msdn.microsoft.com/magazine/dn342868.aspx

https://docs.microsoft.com/ef/core/modeling/backing-field
https://kalele.io/blog-posts/modeling-aggregates-with-ddd-and-entity-framework/
https://msdn.microsoft.com/magazine/dn342868.aspx

206 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Udi Dahan. How to create fully encapsulated Domain Models

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

Seedwork (reusable base classes and interfaces for

your domain model)
The solution folder contains a SeedWork folder. This folder contains custom base classes that you can

use as a base for your domain entities and value objects. Use these base classes so you do not have

redundant code in each domain’s object class. The folder for these types of classes is called SeedWork

and not something like Framework. It’s called SeedWork because the folder contains just a small

subset of reusable classes which cannot really be considered a framework. Seedwork is a term

introduced by Michael Feathers and popularized by Martin Fowler but you could also name that

folder Common, SharedKernel, or similar.

Figure 7-12 shows the classes that form the seedwork of the domain model in the ordering

microservice. It has a few custom base classes like Entity, ValueObject, and Enumeration, plus a few

interfaces. These interfaces (IRepository and IUnitOfWork) inform the infrastructure layer about what

needs to be implemented. Those interfaces are also used through Dependency Injection from the

application layer.

Figure 7-12. A sample set of domain model “seedwork” base classes and interfaces

This is the type of copy and paste reuse that many developers share between projects, not a formal

framework. You can have seedworks in any layer or library. However, if the set of classes and

interfaces gets big enough, you might want to create a single class library.

The custom Entity base class

The following code is an example of an Entity base class where you can place code that can be used

the same way by any domain entity, such as the entity ID, equality operators, a domain event list per

entity, etc.

// COMPATIBLE WITH ENTITY FRAMEWORK CORE (1.1 and later)
public abstract class Entity
{
 int? _requestedHashCode;
 int _Id;
 private List<INotification> _domainEvents;
 public virtual int Id
 {
 get
 {
 return _Id;

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/
https://www.artima.com/forums/flat.jsp?forum=106&thread=8826
https://martinfowler.com/bliki/Seedwork.html

207 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 }
 protected set
 {
 _Id = value;
 }
 }

 public List<INotification> DomainEvents => _domainEvents;
 public void AddDomainEvent(INotification eventItem)
 {
 _domainEvents = _domainEvents ?? new List<INotification>();
 _domainEvents.Add(eventItem);
 }
 public void RemoveDomainEvent(INotification eventItem)
 {
 if (_domainEvents is null) return;
 _domainEvents.Remove(eventItem);
 }

 public bool IsTransient()
 {
 return this.Id == default(Int32);
 }

 public override bool Equals(object obj)
 {
 if (obj == null || !(obj is Entity))
 return false;
 if (Object.ReferenceEquals(this, obj))
 return true;
 if (this.GetType() != obj.GetType())
 return false;
 Entity item = (Entity)obj;
 if (item.IsTransient() || this.IsTransient())
 return false;
 else
 return item.Id == this.Id;
 }

 public override int GetHashCode()
 {
 if (!IsTransient())
 {
 if (!_requestedHashCode.HasValue)
 _requestedHashCode = this.Id.GetHashCode() ^ 31;
 // XOR for random distribution. See:
 // https://blogs.msdn.microsoft.com/ericlippert/2011/02/28/guidelines-and-
rules-for-gethashcode/
 return _requestedHashCode.Value;
 }
 else
 return base.GetHashCode();
 }
 public static bool operator ==(Entity left, Entity right)
 {
 if (Object.Equals(left, null))
 return (Object.Equals(right, null));
 else
 return left.Equals(right);
 }
 public static bool operator !=(Entity left, Entity right)

208 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 {
 return !(left == right);
 }
}

The previous code using a domain event list per entity will be explained in the next sections when

focusing on domain events.

Repository contracts (interfaces) in the domain model layer

Repository contracts are simply .NET interfaces that express the contract requirements of the

repositories to be used for each aggregate.

The repositories themselves, with EF Core code or any other infrastructure dependencies and code

(Linq, SQL, etc.), must not be implemented within the domain model; the repositories should only

implement the interfaces you define in the domain model.

A pattern related to this practice (placing the repository interfaces in the domain model layer) is the

Separated Interface pattern. As explained by Martin Fowler, “Use Separated Interface to define an

interface in one package but implement it in another. This way a client that needs the dependency to

the interface can be completely unaware of the implementation.”

Following the Separated Interface pattern enables the application layer (in this case, the Web API

project for the microservice) to have a dependency on the requirements defined in the domain model,

but not a direct dependency to the infrastructure/persistence layer. In addition, you can use

Dependency Injection to isolate the implementation, which is implemented in the infrastructure/

persistence layer using repositories.

For example, the following example with the IOrderRepository interface defines what operations the

OrderRepository class will need to implement at the infrastructure layer. In the current

implementation of the application, the code just needs to add or update orders to the database, since

queries are split following the simplified CQRS approach.

// Defined at IOrderRepository.cs
public interface IOrderRepository : IRepository<Order>
{
 Order Add(Order order);

 void Update(Order order);

 Task<Order> GetAsync(int orderId);
}

// Defined at IRepository.cs (Part of the Domain Seedwork)
public interface IRepository<T> where T : IAggregateRoot
{
 IUnitOfWork UnitOfWork { get; }
}

Additional resources

• Martin Fowler. Separated Interface.

https://www.martinfowler.com/eaaCatalog/separatedInterface.html

https://www.martinfowler.com/eaaCatalog/separatedInterface.html
https://www.martinfowler.com/eaaCatalog/separatedInterface.html

209 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Implement value objects
As discussed in earlier sections about entities and aggregates, identity is fundamental for entities.

However, there are many objects and data items in a system that do not require an identity and

identity tracking, such as value objects.

A value object can reference other entities. For example, in an application that generates a route that

describes how to get from one point to another, that route would be a value object. It would be a

snapshot of points on a specific route, but this suggested route would not have an identity, even

though internally it might refer to entities like City, Road, etc.

Figure 7-13 shows the Address value object within the Order aggregate.

Figure 7-13. Address value object within the Order aggregate

As shown in Figure 7-13, an entity is usually composed of multiple attributes. For example, the Order

entity can be modeled as an entity with an identity and composed internally of a set of attributes such

as OrderId, OrderDate, OrderItems, etc. But the address, which is simply a complex-value composed of

210 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

country/region, street, city, etc. and has no identity in this domain, must be modeled and treated as a

value object.

Important characteristics of value objects

There are two main characteristics for value objects:

• They have no identity.

• They are immutable.

The first characteristic was already discussed. Immutability is an important requirement. The values of

a value object must be immutable once the object is created. Therefore, when the object is

constructed, you must provide the required values, but you must not allow them to change during the

object’s lifetime.

Value objects allow you to perform certain tricks for performance, thanks to their immutable nature.

This is especially true in systems where there may be thousands of value object instances, many of

which have the same values. Their immutable nature allows them to be reused; they can be

interchangeable objects, since their values are the same and they have no identity. This type of

optimization can sometimes make a difference between software that runs slowly and software with

good performance. Of course, all these cases depend on the application environment and deployment

context.

Value object implementation in C#

In terms of implementation, you can have a value object base class that has basic utility methods like

equality based on comparison between all the attributes (since a value object must not be based on

identity) and other fundamental characteristics. The following example shows a value object base class

used in the ordering microservice from eShopOnContainers.

public abstract class ValueObject
{
 protected static bool EqualOperator(ValueObject left, ValueObject right)
 {
 if (ReferenceEquals(left, null) ^ ReferenceEquals(right, null))
 {
 return false;
 }
 return ReferenceEquals(left, null) || left.Equals(right);
 }

 protected static bool NotEqualOperator(ValueObject left, ValueObject right)
 {
 return !(EqualOperator(left, right));
 }

 protected abstract IEnumerable<object> GetAtomicValues();

 public override bool Equals(object obj)
 {
 if (obj == null || obj.GetType() != GetType())
 {
 return false;
 }

211 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 ValueObject other = (ValueObject)obj;
 IEnumerator<object> thisValues = GetAtomicValues().GetEnumerator();
 IEnumerator<object> otherValues = other.GetAtomicValues().GetEnumerator();
 while (thisValues.MoveNext() && otherValues.MoveNext())
 {
 if (ReferenceEquals(thisValues.Current, null) ^
 ReferenceEquals(otherValues.Current, null))
 {
 return false;
 }

 if (thisValues.Current != null &&
 !thisValues.Current.Equals(otherValues.Current))
 {
 return false;
 }
 }
 return !thisValues.MoveNext() && !otherValues.MoveNext();
 }

 public override int GetHashCode()
 {
 return GetAtomicValues()
 .Select(x => x != null ? x.GetHashCode() : 0)
 .Aggregate((x, y) => x ^ y);
 }
 // Other utility methods
}

You can use this class when implementing your actual value object, as with the Address value object

shown in the following example:

public class Address : ValueObject
{
 public String Street { get; private set; }
 public String City { get; private set; }
 public String State { get; private set; }
 public String Country { get; private set; }
 public String ZipCode { get; private set; }

 private Address() { }

 public Address(string street, string city, string state, string country, string
zipcode)
 {
 Street = street;
 City = city;
 State = state;
 Country = country;
 ZipCode = zipcode;
 }

 protected override IEnumerable<object> GetAtomicValues()
 {
 // Using a yield return statement to return each element one at a time
 yield return Street;
 yield return City;
 yield return State;
 yield return Country;
 yield return ZipCode;

212 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 }
}

You can see how this value object implementation of Address has no identity and therefore, no ID

field, neither at the Address class not even at the ValueObject class.

Having no ID field in a class to be used by Entity Framework was not possible until EF Core 2.0, which

greatly helps to implement better value objects with no ID. That is precisely the explanation of the

next section.

It could be argued that value objects, being immutable, should be read-only (i.e. get-only properties),

and that’s indeed true. However, value objects are usually serialized and deserialized to go through

message queues, and being read-only stops the deserializer from assigning values, so we just leave

them as private set which is read-only enough to be practical.

How to persist value objects in the database with EF Core 2.0

You just saw how to define a value object in your domain model. But, how can you actually persist it

into the database through Entity Framework (EF) Core which usually targets entities with identity?

Background and older approaches using EF Core 1.1

As background, a limitation when using EF Core 1.0 and 1.1 was that you could not use complex types

as defined in EF 6.x in the traditional .NET Framework. Therefore, if using EF Core 1.0 or 1.1, you

needed to store your value object as an EF entity with an ID field. Then, so it looked more like a value

object with no identity, you could hide its ID so you make clear that the identity of a value object is

not important in the domain model. You could hide that ID by using the ID as a shadow property.

Since that configuration for hiding the ID in the model is set up in the EF infrastructure level, it would

be kind of transparent for your domain model.

In the initial version of eShopOnContainers (.NET Core 1.1), the hidden ID needed by EF Core

infrastructure was implemented in the following way in the DbContext level, using Fluent API at the

infrastructure project. Therefore, the ID was hidden from the domain model point of view, but still

present in the infrastructure.

// Old approach with EF Core 1.1
// Fluent API within the OrderingContext:DbContext in the Infrastructure project
void ConfigureAddress(EntityTypeBuilder<Address> addressConfiguration)
{
 addressConfiguration.ToTable("address", DEFAULT_SCHEMA);

 addressConfiguration.Property<int>("Id") // Id is a shadow property
 .IsRequired();
 addressConfiguration.HasKey("Id"); // Id is a shadow property
}

However, the persistence of that value object into the database was performed like a regular entity in

a different table.

With EF Core 2.0, there are new and better ways to persist value objects.

xref:System.ComponentModel.DataAnnotations.Schema.ComplexTypeAttribute
https://docs.microsoft.com/ef/core/modeling/shadow-properties

213 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Persist value objects as owned entity types in EF Core 2.0

Even with some gaps between the canonical value object pattern in DDD and the owned entity type in

EF Core, it’s currently the best way to persist value objects with EF Core 2.0. You can see limitations at

the end of this section.

The owned entity type feature was added to EF Core since version 2.0.

An owned entity type allows you to map types that do not have their own identity explicitly defined in

the domain model and are used as properties, such as a value object, within any of your entities. An

owned entity type shares the same CLR type with another entity type (that is, it’s just a regular class).

The entity containing the defining navigation is the owner entity. When querying the owner, the

owned types are included by default.

Just by looking at the domain model, an owned type looks like it doesn’t have any identity. However,

under the covers, owned types do have identity, but the owner navigation property is part of this

identity.

The identity of instances of owned types is not completely their own. It consists of three components:

• The identity of the owner

• The navigation property pointing to them

• In the case of collections of owned types, an independent component (not yet supported in EF

Core 2.0, coming up on 2.2).

For example, in the Ordering domain model at eShopOnContainers, as part of the Order entity, the

Address value object is implemented as an owned entity type within the owner entity, which is the

Order entity. Address is a type with no identity property defined in the domain model. It is used as a

property of the Order type to specify the shipping address for a particular order.

By convention, a shadow primary key is created for the owned type and it will be mapped to the same

table as the owner by using table splitting. This allows to use owned types similarly to how complex

types are used in EF6 in the traditional .NET Framework.

It is important to note that owned types are never discovered by convention in EF Core, so you have

to declare them explicitly.

In eShopOnContainers, at the OrderingContext.cs, within the OnModelCreating() method, there are

multiple infrastructure configuration being applied. One of them is related to the Order entity.

// Part of the OrderingContext.cs class at the Ordering.Infrastructure project
//
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.ApplyConfiguration(new ClientRequestEntityTypeConfiguration());
 modelBuilder.ApplyConfiguration(new PaymentMethodEntityTypeConfiguration());
 modelBuilder.ApplyConfiguration(new OrderEntityTypeConfiguration());
 modelBuilder.ApplyConfiguration(new OrderItemEntityTypeConfiguration());
 //...Additional type configurations
}

In the following code, the persistence infrastructure is defined for the Order entity:

214 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

// Part of the OrderEntityTypeConfiguration.cs class
//
public void Configure(EntityTypeBuilder<Order> orderConfiguration)
{
 orderConfiguration.ToTable("orders", OrderingContext.DEFAULT_SCHEMA);
 orderConfiguration.HasKey(o => o.Id);
 orderConfiguration.Ignore(b => b.DomainEvents);
 orderConfiguration.Property(o => o.Id)
 .ForSqlServerUseSequenceHiLo("orderseq", OrderingContext.DEFAULT_SCHEMA);

 //Address value object persisted as owned entity in EF Core 2.0
 orderConfiguration.OwnsOne(o => o.Address);

 orderConfiguration.Property<DateTime>("OrderDate").IsRequired();

 //...Additional validations, constraints and code...
 //...
}

In the previous code, the orderConfiguration.OwnsOne(o => o.Address) method specifies that the

Address property is an owned entity of the Order type.

By default, EF Core conventions name the database columns for the properties of the owned entity

type as EntityProperty_OwnedEntityProperty. Therefore, the internal properties of Address will

appear in the Orders table with the names Address_Street, Address_City (and so on for State,

Country and ZipCode).

You can append the Property().HasColumnName() fluent method to rename those columns. In the

case where Address is a public property, the mappings would be like the following:

orderConfiguration.OwnsOne(p => p.Address)
 .Property(p=>p.Street).HasColumnName("ShippingStreet");

orderConfiguration.OwnsOne(p => p.Address)
 .Property(p=>p.City).HasColumnName("ShippingCity");

It is possible to chain the OwnsOne method in a fluent mapping. In the following hypothetical example,

OrderDetails owns BillingAddress and ShippingAddress, which are both Address types. Then

OrderDetails is owned by the Order type.

orderConfiguration.OwnsOne(p => p.OrderDetails, cb =>
 {
 cb.OwnsOne(c => c.BillingAddress);
 cb.OwnsOne(c => c.ShippingAddress);
 });
//...
//...
public class Order
{
 public int Id { get; set; }
 public OrderDetails OrderDetails { get; set; }
}

public class OrderDetails
{
 public Address BillingAddress { get; set; }
 public Address ShippingAddress { get; set; }
}

215 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

public class Address
{
 public string Street { get; set; }
 public string City { get; set; }
}

Additional details on owned entity types

• Owned types are defined when you configure a navigation property to a particular type using

the OwnsOne fluent API.

• The definition of an owned type in our metadata model is a composite of: the owner type, the

navigation property, and the CLR type of the owned type.

• The identity (key) of an owned type instance in our stack is a composite of the identity of the

owner type and the definition of the owned type.

Owned entities capabilities:

• Owned types can reference other entities, either owned (nested owned types) or non-owned

(regular reference navigation properties to other entities).

• You can map the same CLR type as different owned types in the same owner entity through

separate navigation properties.

• Table splitting is setup by convention, but you can opt out by mapping the owned type to a

different table using ToTable.

• Eager loading is performed automatically on owned types, i.e. no need to call Include() on the

query.

• Can be configured with attribute [Owned], as of EF Core 2.1

Owned entities limitations:

• You cannot create a DbSet<T> of an owned type (by design).

• You cannot call ModelBuilder.Entity<T>() on owned types (currently by design).

• No collections of owned types yet (as of EF Core 2.1, but they will be supported in 2.2).

• No support for optional (that is, nullable) owned types that are mapped with the owner in the

same table (i.e. using table splitting). This is because mapping is done for each property, we

don’t have a separate sentinel for the null complex value a as whole.

• No inheritance mapping support for owned types, but you should be able to map two leaf types

of the same inheritance hierarchies as different owned types. EF Core will not reason about the

fact that they are part of the same hierarchy.

Main differences with EF6’s complex types

• Table splitting is optional, i.e. they can optionally be mapped to a separate table and still be

owned types.

216 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• They can reference other entities (i.e. they can act as the dependent side on relationships to

other non-owned types).

Additional resources

• Martin Fowler. ValueObject pattern

https://martinfowler.com/bliki/ValueObject.html

• Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. (Book;

includes a discussion of value objects)

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-

Software/dp/0321125215/

• Vaughn Vernon. Implementing Domain-Driven Design. (Book; includes a discussion of value

objects)

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-

Vernon/dp/0321834577/

• Shadow Properties

https://docs.microsoft.com/ef/core/modeling/shadow-properties

• Complex types and/or value objects. Discussion in the EF Core GitHub repo (Issues tab)

https://github.com/aspnet/EntityFramework/issues/246

• ValueObject.cs. Base value object class in eShopOnContainers.

https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/

ValueObject.cs

• Address class. Sample value object class in eShopOnContainers.

https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/Aggregates

Model/OrderAggregate/Address.cs

Use enumeration classes instead of enum types
Enumerations (or enum types for short) are a thin language wrapper around an integral type. You

might want to limit their use to when you are storing one value from a closed set of values.

Classification based on sizes (small, medium, large) is a good example. Using enums for control flow

or more robust abstractions can be a code smell. This type of usage leads to fragile code with many

control flow statements checking values of the enum.

Instead, you can create Enumeration classes that enable all the rich features of an object-oriented

language.

However, this isn’t a critical topic and in many cases, for simplicity, you can still use regular enum

types if that’s your preference. Anyway, the use of enumeration classes is more related to business-

related concepts.

https://martinfowler.com/bliki/ValueObject.html
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577/
https://docs.microsoft.com/ef/core/modeling/shadow-properties
https://github.com/aspnet/EntityFramework/issues/246
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/ValueObject.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Address.cs
https://docs.microsoft.com/docs/csharp/language-reference/keywords/enum
https://deviq.com/code-smells/
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/enum

217 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Implement an Enumeration base class

The ordering microservice in eShopOnContainers provides a sample Enumeration base class

implementation, as shown in the following example:

public abstract class Enumeration : IComparable
{
 public string Name { get; private set; }

 public int Id { get; private set; }

 protected Enumeration(int id, string name)
 {
 Id = id;
 Name = name;
 }

 public override string ToString() => Name;

 public static IEnumerable<T> GetAll<T>() where T : Enumeration
 {
 var fields = typeof(T).GetFields(BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.DeclaredOnly);

 return fields.Select(f => f.GetValue(null)).Cast<T>();
 }

 public override bool Equals(object obj)
 {
 var otherValue = obj as Enumeration;

 if (otherValue == null)
 return false;

 var typeMatches = GetType().Equals(obj.GetType());
 var valueMatches = Id.Equals(otherValue.Id);

 return typeMatches && valueMatches;
 }

 public int CompareTo(object other) => Id.CompareTo(((Enumeration)other).Id);

 // Other utility methods ...
}

You can use this class as a type in any entity or value object, as for the following CardType :

Enumeration class:

public class CardType : Enumeration
{
 public static CardType Amex = new CardType(1, "Amex");
 public static CardType Visa = new CardType(2, "Visa");
 public static CardType MasterCard = new CardType(3, "MasterCard");

 public CardType(int id, string name)
 : base(id, name)
 {
 }
}

218 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

• Enum’s are evil—update

https://www.planetgeek.ch/2009/07/01/enums-are-evil/

• Daniel Hardman. How Enums Spread Disease — And How To Cure It

https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/

• Jimmy Bogard. Enumeration classes

https://lostechies.com/jimmybogard/2008/08/12/enumeration-classes/

• Steve Smith. Enum Alternatives in C#

https://ardalis.com/enum-alternatives-in-c

• Enumeration.cs. Base Enumeration class in eShopOnContainers

https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/E

numeration.cs

• CardType.cs. Sample Enumeration class in eShopOnContainers.

https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/Aggregates

Model/BuyerAggregate/CardType.cs

• SmartEnum. Ardalis - Classes to help produce strongly typed smarter enums in .NET.

https://www.nuget.org/packages/Ardalis.SmartEnum/

Design validations in the domain model layer
In DDD, validation rules can be thought as invariants. The main responsibility of an aggregate is to

enforce invariants across state changes for all the entities within that aggregate.

Domain entities should always be valid entities. There are a certain number of invariants for an object

that should always be true. For example, an order item object always has to have a quantity that must

be a positive integer, plus an article name and price. Therefore, invariants enforcement is the

responsibility of the domain entities (especially of the aggregate root) and an entity object should not

be able to exist without being valid. Invariant rules are simply expressed as contracts, and exceptions

or notifications are raised when they are violated.

The reasoning behind this is that many bugs occur because objects are in a state they should never

have been in. The following is a good explanation from Greg Young in an online discussion:

Let’s propose we now have a SendUserCreationEmailService that takes a UserProfile … how can we

rationalize in that service that Name is not null? Do we check it again? Or more likely … you just don’t

bother to check and “hope for the best”—you hope that someone bothered to validate it before

sending it to you. Of course, using TDD one of the first tests we should be writing is that if I send a

customer with a null name that it should raise an error. But once we start writing these kinds of tests

over and over again we realize … “wait if we never allowed name to become null we wouldn’t have all

of these tests”

https://www.planetgeek.ch/2009/07/01/enums-are-evil/
https://codecraft.co/2012/10/29/how-enums-spread-disease-and-how-to-cure-it/
https://lostechies.com/jimmybogard/2008/08/12/enumeration-classes/
https://ardalis.com/enum-alternatives-in-c
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/SeedWork/Enumeration.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/BuyerAggregate/CardType.cs
https://www.nuget.org/packages/Ardalis.SmartEnum/
https://jeffreypalermo.com/2009/05/the-fallacy-of-the-always-valid-entity/

219 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Implement validations in the domain model layer

Validations are usually implemented in domain entity constructors or in methods that can update the

entity. There are multiple ways to implement validations, such as verifying data and raising exceptions

if the validation fails. There are also more advanced patterns such as using the Specification pattern

for validations, and the Notification pattern to return a collection of errors instead of returning an

exception for each validation as it occurs.

Validate conditions and throw exceptions

The following code example shows the simplest approach to validation in a domain entity by raising

an exception. In the references table at the end of this section you can see links to more advanced

implementations based on the patterns we have discussed previously.

public void SetAddress(Address address)
{
 _shippingAddress = address?? throw new ArgumentNullException(nameof(address));
}

A better example would demonstrate the need to ensure that either the internal state did not change,

or that all the mutations for a method occurred. For example, the following implementation would

leave the object in an invalid state:

public void SetAddress(string line1, string line2,
 string city, string state, int zip)
{
 _shippingAddress.line1 = line1 ?? throw new ...
 _shippingAddress.line2 = line2;
 _shippingAddress.city = city ?? throw new ...
 _shippingAddress.state = (IsValid(state) ? state : throw new …);
}

If the value of the state is invalid, the first address line and the city have already been changed. That

might make the address invalid.

A similar approach can be used in the entity’s constructor, raising an exception to make sure that the

entity is valid once it is created.

Use validation attributes in the model based on data annotations

Data annotations, like the Required or MaxLength attributes, can be used to configure EF Core

database field properties, as explained in detail in the Table mapping section, but they no longer work

for entity validation in EF Core (neither does the

System.ComponentModel.DataAnnotations.IValidatableObject.Validate method), as they have done

since EF 4.x in .NET Framework.

Data annotations and the System.ComponentModel.DataAnnotations.IValidatableObject interface can

still be used for model validation during model binding, prior to the controller’s actions invocation as

usual, but that model is meant to be a ViewModel or DTO and that’s an MVC or API concern not a

domain model concern.

Having made the conceptual difference clear, you can still use data annotations and

IValidatableObject in the entity class for validation, if your actions receive an entity class object

parameter, which is not recommended. In that case, validation will occur upon model binding, just

https://github.com/aspnet/EntityFrameworkCore/issues/3680
https://github.com/aspnet/EntityFrameworkCore/issues/3680

220 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

before invoking the action and you can check the controller’s ModelState.IsValid property to check

the result, but then again, it happens in the controller, not before persisting the entity object in the

DbContext, as it had done since EF 4.x.

You can still implement custom validation in the entity class using data annotations and the

IValidatableObject.Validate method, by overriding the DbContext’s SaveChanges method.

You can see a sample implementation for validating IValidatableObject entities in this comment on

GitHub. That sample doesn’t do attribute-based validations, but they should be easy to implement

using reflection in the same override.

However, from a DDD point of view, the domain model is best kept lean with the use of exceptions in

your entity’s behavior methods, or by implementing the Specification and Notification patterns to

enforce validation rules.

It can make sense to use data annotations at the application layer in ViewModel classes (instead of

domain entities) that will accept input, to allow for model validation within the UI layer. However, this

should not be done at the exclusion of validation within the domain model.

Validate entities by implementing the Specification pattern and the Notification pattern

Finally, a more elaborate approach to implementing validations in the domain model is by

implementing the Specification pattern in conjunction with the Notification pattern, as explained in

some of the additional resources listed later.

It is worth mentioning that you can also use just one of those patterns—for example, validating

manually with control statements, but using the Notification pattern to stack and return a list of

validation errors.

Use deferred validation in the domain

There are various approaches to deal with deferred validations in the domain. In his book

Implementing Domain-Driven Design, Vaughn Vernon discusses these in the section on validation.

Two-step validation

Also consider two-step validation. Use field-level validation on your command Data Transfer Objects

(DTOs) and domain-level validation inside your entities. You can do this by returning a result object

instead of exceptions in order to make it easier to deal with the validation errors.

Using field validation with data annotations, for example, you do not duplicate the validation

definition. The execution, though, can be both server-side and client-side in the case of DTOs

(commands and ViewModels, for instance).

Additional resources

• Rachel Appel. Introduction to model validation in ASP.NET Core MVC

https://docs.microsoft.com/aspnet/core/mvc/models/validation

• Rick Anderson. Adding validation

https://docs.microsoft.com/aspnet/core/tutorials/first-mvc-app/validation

https://github.com/aspnet/EntityFrameworkCore/issues/3680#issuecomment-155502539
https://github.com/aspnet/EntityFrameworkCore/issues/3680#issuecomment-155502539
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://docs.microsoft.com/aspnet/core/mvc/models/validation
https://docs.microsoft.com/aspnet/core/tutorials/first-mvc-app/validation

221 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Martin Fowler. Replacing Throwing Exceptions with Notification in Validations

https://martinfowler.com/articles/replaceThrowWithNotification.html

• Specification and Notification Patterns

https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns

• Lev Gorodinski. Validation in Domain-Driven Design (DDD)

http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/

• Colin Jack. Domain Model Validation

https://colinjack.blogspot.com/2008/03/domain-model-validation.html

• Jimmy Bogard. Validation in a DDD world

https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

Client-side validation (validation in the presentation

layers)
Even when the source of truth is the domain model and ultimately you must have validation at the

domain model level, validation can still be handled at both the domain model level (server side) and

the UI (client side).

Client-side validation is a great convenience for users. It saves time they would otherwise spend

waiting for a round trip to the server that might return validation errors. In business terms, even a few

fractions of seconds multiplied hundreds of times each day adds up to a lot of time, expense, and

frustration. Straightforward and immediate validation enables users to work more efficiently and

produce better quality input and output.

Just as the view model and the domain model are different, view model validation and domain model

validation might be similar but serve a different purpose. If you are concerned about DRY (the Don’t

Repeat Yourself principle), consider that in this case code reuse might also mean coupling, and in

enterprise applications it is more important not to couple the server side to the client side than to

follow the DRY principle.

Even when using client-side validation, you should always validate your commands or input DTOs in

server code, because the server APIs are a possible attack vector. Usually, doing both is your best bet

because if you have a client application, from a UX perspective, it is best to be proactive and not allow

the user to enter invalid information.

Therefore, in client-side code you typically validate the ViewModels. You could also validate the client

output DTOs or commands before you send them to the services.

The implementation of client-side validation depends on what kind of client application you are

building. It will be different if you are validating data in a web MVC web application with most of the

code in .NET, a SPA web application with that validation being coded in JavaScript or TypeScript, or a

mobile app coded with Xamarin and C#.

https://martinfowler.com/articles/replaceThrowWithNotification.html
https://www.codeproject.com/Tips/790758/Specification-and-Notification-Patterns
http://gorodinski.com/blog/2012/05/19/validation-in-domain-driven-design-ddd/
https://colinjack.blogspot.com/2008/03/domain-model-validation.html
https://lostechies.com/jimmybogard/2009/02/15/validation-in-a-ddd-world/

222 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

Validation in Xamarin mobile apps

• Validate Text Input and Show Errors

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/

• Validation Callback

https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/

Validation in ASP.NET Core apps

• Rick Anderson. Adding validation

https://docs.microsoft.com/aspnet/core/tutorials/first-mvc-app/validation

Validation in SPA Web apps (Angular 2, TypeScript, JavaScript)

• Ado Kukic. Angular 2 Form Validation

https://scotch.io/tutorials/angular-2-form-validation

• Form Validation

https://angular.io/guide/form-validation

• Validation. Breeze documentation.

https://breeze.github.io/doc-js/validation.html

In summary, these are the most important concepts in regards to validation:

• Entities and aggregates should enforce their own consistency and be “always valid”. Aggregate

roots are responsible for multi-entity consistency within the same aggregate.

• If you think that an entity needs to enter an invalid state, consider using a different object

model—for example, using a temporary DTO until you create the final domain entity.

• If you need to create several related objects, such as an aggregate, and they are only valid once

all of them have been created, consider using the Factory pattern.

• In most of the cases, having redundant validation in the client side is good, because the

application can be proactive.

Domain events: design and implementation
Use domain events to explicitly implement side effects of changes within your domain. In other words,

and using DDD terminology, use domain events to explicitly implement side effects across multiple

aggregates. Optionally, for better scalability and less impact in database locks, use eventual

consistency between aggregates within the same domain.

https://developer.xamarin.com/recipes/ios/standard_controls/text_field/validate_input/
https://developer.xamarin.com/samples/xamarin-forms/XAML/ValidationCallback/
https://docs.microsoft.com/aspnet/core/tutorials/first-mvc-app/validation
https://scotch.io/tutorials/angular-2-form-validation
https://angular.io/guide/form-validation
https://breeze.github.io/doc-js/validation.html

223 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

What is a domain event?

An event is something that has happened in the past. A domain event is, something that happened in

the domain that you want other parts of the same domain (in-process) to be aware of. The notified

parts usually react somehow to the events.

An important benefit of domain events is that side effects can be expressed explicitly.

For example, if you’re just using Entity Framework and there has to be a reaction to some event, you

would probably code whatever you need close to what triggers the event. So the rule gets coupled,

implicitly, to the code, and you have to look into the code to, hopefully, realize the rule is

implemented there.

On the other hand, using domain events makes the concept explicit, because there is a DomainEvent

and at least one DomainEventHandler involved.

For example, in the eShopOnContainers application, when an order is created, the user becomes a

buyer, so an OrderStartedDomainEvent is raised and handled in the

ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler, so the underlying concept is

evident.

In short, domain events help you to express, explicitly, the domain rules, based in the ubiquitous

language provided by the domain experts. Domain events also enable a better separation of concerns

among classes within the same domain.

It’s important to ensure that, just like a database transaction, either all the operations related to a

domain event finish successfully or none of them do.

Domain events are similar to messaging-style events, with one important difference. With real

messaging, message queuing, message brokers, or a service bus using AMQP, a message is always

sent asynchronously and communicated across processes and machines. This is useful for integrating

multiple Bounded Contexts, microservices, or even different applications. However, with domain

events, you want to raise an event from the domain operation you are currently running, but you want

any side effects to occur within the same domain.

The domain events and their side effects (the actions triggered afterwards that are managed by event

handlers) should occur almost immediately, usually in-process, and within the same domain. Thus,

domain events could be synchronous or asynchronous. Integration events, however, should always be

asynchronous.

Domain events versus integration events

Semantically, domain and integration events are the same thing: notifications about something that

just happened. However, their implementation must be different. Domain events are just messages

pushed to a domain event dispatcher, which could be implemented as an in-memory mediator based

on an IoC container or any other method.

On the other hand, the purpose of integration events is to propagate committed transactions and

updates to additional subsystems, whether they are other microservices, Bounded Contexts or even

external applications. Hence, they should occur only if the entity is successfully persisted, otherwise it’s

as if the entire operation never happened.

224 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

As mentioned before, integration events must be based on asynchronous communication between

multiple microservices (other Bounded Contexts) or even external systems/applications.

Thus, the event bus interface needs some infrastructure that allows inter-process and distributed

communication between potentially remote services. It can be based on a commercial service bus,

queues, a shared database used as a mailbox, or any other distributed and ideally push based

messaging system.

Domain events as a preferred way to trigger side effects across

multiple aggregates within the same domain

If executing a command related to one aggregate instance requires additional domain rules to be run

on one or more additional aggregates, you should design and implement those side effects to be

triggered by domain events. As shown in Figure 7-14, and as one of the most important use cases, a

domain event should be used to propagate state changes across multiple aggregates within the same

domain model.

Figure 7-14. Domain events to enforce consistency between multiple aggregates within the same domain

In the figure, when the user initiates an order, the OrderStarted domain event triggers creation of a

Buyer object in the ordering microservice, based on the original user info from the identity

microservice (with information provided in the CreateOrder command). The domain event is

generated by the order aggregate when it is created in the first place.

Alternately, you can have the aggregate root subscribed for events raised by members of its

aggregates (child entities). For instance, each OrderItem child entity can raise an event when the item

price is higher than a specific amount, or when the product item amount is too high. The aggregate

root can then receive those events and perform a global calculation or aggregation.

It is important to understand that this event-based communication is not implemented directly within

the aggregates; you need to implement domain event handlers.

225 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Handling the domain events is an application concern. The domain model layer should only focus on

the domain logic—things that a domain expert would understand, not application infrastructure like

handlers and side-effect persistence actions using repositories. Therefore, the application layer level is

where you should have domain event handlers triggering actions when a domain event is raised.

Domain events can also be used to trigger any number of application actions, and what is more

important, must be open to increase that number in the future in a decoupled way. For instance, when

the order is started, you might want to publish a domain event to propagate that info to other

aggregates or even to raise application actions like notifications.

The key point is the open number of actions to be executed when a domain event occurs. Eventually,

the actions and rules in the domain and application will grow. The complexity or number of side-

effect actions when something happens will grow, but if your code were coupled with “glue” (that is,

creating specific objects with new), then every time you needed to add a new action you would also

need to change working and tested code.

This change could result in new bugs and this approach also goes against the Open/Closed principle

from SOLID. Not only that, the original class that was orchestrating the operations would grow and

grow, which goes against the Single Responsibility Principle (SRP).

On the other hand, if you use domain events, you can create a fine-grained and decoupled

implementation by segregating responsibilities using this approach:

39. Send a command (for example, CreateOrder).

40. Receive the command in a command handler.

– Execute a single aggregate’s transaction.

– (Optional) Raise domain events for side effects (for example, OrderStartedDomainEvent).

41. Handle domain events (within the current process) that will execute an open number of side

effects in multiple aggregates or application actions. For example:

– Verify or create buyer and payment method.

– Create and send a related integration event to the event bus to propagate states across

microservices or trigger external actions like sending an email to the buyer.

– Handle other side effects.

As shown in Figure 7-15, starting from the same domain event, you can handle multiple actions

related to other aggregates in the domain or additional application actions you need to perform

across microservices connecting with integration events and the event bus.

https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Single_responsibility_principle

226 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Figure 7-15. Handling multiple actions per domain

The event handlers are typically in the application layer, because you will use infrastructure objects

like repositories or an application API for the microservice’s behavior. In that sense, event handlers are

similar to command handlers, so both are part of the application layer. The important difference is

that a command should be processed only once. A domain event could be processed zero or n times,

because it can be received by multiple receivers or event handlers with a different purpose for each

handler.

Having an open number of handlers per domain event allows you to add as many domain rules

without as needed, without affecting current code. For instance, implementing the following business

rule might be as easy as adding a few event handlers (or even just one):

When the total amount purchased by a customer in the store, across any number of orders, exceeds

$6,000, apply a 10% off discount to every new order and notify the customer with an email about that

discount for future orders.

Implement domain events

In C#, a domain event is simply a data-holding structure or class, like a DTO, with all the information

related to what just happened in the domain, as shown in the following example:

public class OrderStartedDomainEvent : INotification
{
 public string UserId { get; }
 public int CardTypeId { get; }
 public string CardNumber { get; }
 public string CardSecurityNumber { get; }
 public string CardHolderName { get; }
 public DateTime CardExpiration { get; }
 public Order Order { get; }

227 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 public OrderStartedDomainEvent(Order order,
 int cardTypeId, string cardNumber,
 string cardSecurityNumber, string cardHolderName,
 DateTime cardExpiration)
 {
 Order = order;
 CardTypeId = cardTypeId;
 CardNumber = cardNumber;
 CardSecurityNumber = cardSecurityNumber;
 CardHolderName = cardHolderName;
 CardExpiration = cardExpiration;
 }
}

This is essentially a class that holds all the data related to the OrderStarted event.

In terms of the ubiquitous language of the domain, since an event is something that happened in the

past, the class name of the event should be represented as a past-tense verb, like

OrderStartedDomainEvent or OrderShippedDomainEvent. That’s how the domain event is

implemented in the ordering microservice in eShopOnContainers.

As noted earlier, an important characteristic of events is that since an event is something that

happened in the past, it should not change. Therefore, it must be an immutable class. You can see in

the previous code that the properties are read-only. There’s no way to update the object, you can only

set values when you create it.

It’s important to highlight here that if domain events were to be handled asynchronously, using a

queue that required serializing and deserializing the event objects, the properties would have to be

“private set” instead of read-only, so the deserializer would be able to assign the values upon

dequeuing. This is not an issue in the Ordering microservice, as the domain event pub/sub is

implemented synchronously using MediatR.

Raise domain events

The next question is how to raise a domain event so it reaches its related event handlers. You can use

multiple approaches.

Udi Dahan originally proposed (for example, in several related posts, such as Domain Events – Take 2)

using a static class for managing and raising the events. This might include a static class named

DomainEvents that would raise domain events immediately when it is called, using syntax like

DomainEvents.Raise(Event myEvent). Jimmy Bogard wrote a blog post (Strengthening your domain:

Domain Events) that recommends a similar approach.

However, when the domain events class is static, it also dispatches to handlers immediately. This

makes testing and debugging more difficult, because the event handlers with side-effects logic are

executed immediately after the event is raised. When you are testing and debugging, you want to

focus on and just what is happening in the current aggregate classes; you do not want to suddenly be

redirected to other event handlers for side effects related to other aggregates or application logic.

This is why other approaches have evolved, as explained in the next section.

The deferred approach to raise and dispatch events

Instead of dispatching to a domain event handler immediately, a better approach is to add the

domain events to a collection and then to dispatch those domain events right before or right after

http://udidahan.com/2008/08/25/domain-events-take-2/
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/

228 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

committing the transaction (as with SaveChanges in EF). (This approach was described by Jimmy

Bogard in this post A better domain events pattern.)

Deciding if you send the domain events right before or right after committing the transaction is

important, since it determines whether you will include the side effects as part of the same transaction

or in different transactions. In the latter case, you need to deal with eventual consistency across

multiple aggregates. This topic is discussed in the next section.

The deferred approach is what eShopOnContainers uses. First, you add the events happening in your

entities into a collection or list of events per entity. That list should be part of the entity object, or

even better, part of your base entity class, as shown in the following example of the Entity base class:

public abstract class Entity
{
 //...
 private List<INotification> _domainEvents;
 public List<INotification> DomainEvents => _domainEvents;

 public void AddDomainEvent(INotification eventItem)
 {
 _domainEvents = _domainEvents ?? new List<INotification>();
 _domainEvents.Add(eventItem);
 }

 public void RemoveDomainEvent(INotification eventItem)
 {
 _domainEvents?.Remove(eventItem);
 }
 //... Additional code
}

When you want to raise an event, you just add it to the event collection from code at any method of

the aggregate-root entity.

The following code, part of the Order aggregate-root at eShopOnContainers, shows an example:

var orderStartedDomainEvent = new OrderStartedDomainEvent(this, //Order object
 cardTypeId, cardNumber,
 cardSecurityNumber,
 cardHolderName,
 cardExpiration);
this.AddDomainEvent(orderStartedDomainEvent);

Notice that the only thing that the AddDomainEvent method is doing is adding an event to the list.

No event is dispatched yet, and no event handler is invoked yet.

You actually want to dispatch the events later on, when you commit the transaction to the database. If

you are using Entity Framework Core, that means in the SaveChanges method of your EF DbContext,

as in the following code:

// EF Core DbContext
public class OrderingContext : DbContext, IUnitOfWork
{
 // ...
 public async Task<bool> SaveEntitiesAsync(CancellationToken cancellationToken =
default(CancellationToken))
 {
 // Dispatch Domain Events collection.

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.Domain/AggregatesModel/OrderAggregate/Order.cs

229 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 // Choices:
 // A) Right BEFORE committing data (EF SaveChanges) into the DB. This makes
 // a single transaction including side effects from the domain event
 // handlers that are using the same DbContext with Scope lifetime
 // B) Right AFTER committing data (EF SaveChanges) into the DB. This makes
 // multiple transactions. You will need to handle eventual consistency and
 // compensatory actions in case of failures.
 await _mediator.DispatchDomainEventsAsync(this);

 // After this line runs, all the changes (from the Command Handler and Domain
 // event handlers) performed through the DbContext will be committed
 var result = await base.SaveChangesAsync();
 }
}

With this code, you dispatch the entity events to their respective event handlers.

The overall result is that you have decoupled the raising of a domain event (a simple add into a list in

memory) from dispatching it to an event handler. In addition, depending on what kind of dispatcher

you are using, you could dispatch the events synchronously or asynchronously.

Be aware that transactional boundaries come into significant play here. If your unit of work and

transaction can span more than one aggregate (as when using EF Core and a relational database), this

can work well. But if the transaction cannot span aggregates, such as when you are using a NoSQL

database like Azure CosmosDB, you have to implement additional steps to achieve consistency. This is

another reason why persistence ignorance is not universal; it depends on the storage system you use.

Single transaction across aggregates versus eventual consistency across aggregates

The question of whether to perform a single transaction across aggregates versus relying on eventual

consistency across those aggregates is a controversial one. Many DDD authors like Eric Evans and

Vaughn Vernon advocate the rule that one transaction = one aggregate and therefore argue for

eventual consistency across aggregates. For example, in his book Domain-Driven Design, Eric Evans

says this:

Any rule that spans Aggregates will not be expected to be up-to-date at all times. Through event

processing, batch processing, or other update mechanisms, other dependencies can be resolved

within some specific time. (page 128)

Vaughn Vernon says the following in Effective Aggregate Design. Part II: Making Aggregates Work

Together:

Thus, if executing a command on one aggregate instance requires that additional business rules

execute on one or more aggregates, use eventual consistency […] There is a practical way to support

eventual consistency in a DDD model. An aggregate method publishes a domain event that is in time

delivered to one or more asynchronous subscribers.

This rationale is based on embracing fine-grained transactions instead of transactions spanning many

aggregates or entities. The idea is that in the second case, the number of database locks will be

substantial in large-scale applications with high scalability needs. Embracing the fact that highly

scalable applications need not have instant transactional consistency between multiple aggregates

helps with accepting the concept of eventual consistency. Atomic changes are often not needed by

the business, and it is in any case the responsibility of the domain experts to say whether particular

operations need atomic transactions or not. If an operation always needs an atomic transaction

https://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf
https://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf

230 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

between multiple aggregates, you might ask whether your aggregate should be larger or was not

correctly designed.

However, other developers and architects like Jimmy Bogard are okay with spanning a single

transaction across several aggregates—but only when those additional aggregates are related to side

effects for the same original command. For instance, in A better domain events pattern, Bogard says

this:

Typically, I want the side effects of a domain event to occur within the same logical transaction, but

not necessarily in the same scope of raising the domain event […] Just before we commit our

transaction, we dispatch our events to their respective handlers.

If you dispatch the domain events right before committing the original transaction, it is because you

want the side effects of those events to be included in the same transaction. For example, if the EF

DbContext SaveChanges method fails, the transaction will roll back all changes, including the result of

any side effect operations implemented by the related domain event handlers. This is because the

DbContext life scope is by default defined as “scoped.” Therefore, the DbContext object is shared

across multiple repository objects being instantiated within the same scope or object graph. This

coincides with the HttpRequest scope when developing Web API or MVC apps.

Actually, both approaches (single atomic transaction and eventual consistency) can be right. It really

depends on your domain or business requirements and what the domain experts tell you. It also

depends on how scalable you need the service to be (more granular transactions have less impact

with regard to database locks). And it depends on how much investment you are willing to make in

your code, since eventual consistency requires more complex code in order to detect possible

inconsistencies across aggregates and the need to implement compensatory actions. Consider that if

you commit changes to the original aggregate and afterwards, when the events are being dispatched,

if there is an issue and the event handlers cannot commit their side effects, you will have

inconsistencies between aggregates.

A way to allow compensatory actions would be to store the domain events in additional database

tables so they can be part of the original transaction. Afterwards, you could have a batch process that

detects inconsistencies and runs compensatory actions by comparing the list of events with the

current state of the aggregates. The compensatory actions are part of a complex topic that will require

deep analysis from your side, which includes discussing it with the business user and domain experts.

In any case, you can choose the approach you need. But the initial deferred approach—raising the

events before committing, so you use a single transaction—is the simplest approach when using EF

Core and a relational database. It is easier to implement and valid in many business cases. It is also the

approach used in the ordering microservice in eShopOnContainers.

But how do you actually dispatch those events to their respective event handlers? What’s the

_mediator object you see in the previous example? It has to do with the techniques and artifacts you

use to map between events and their event handlers.

The domain event dispatcher: mapping from events to event handlers

Once you’re able to dispatch or publish the events, you need some kind of artifact that will publish the

event, so that every related handler can get it and process side effects based on that event.

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/

231 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

One approach is a real messaging system or even an event bus, possibly based on a service bus as

opposed to in-memory events. However, for the first case, real messaging would be overkill for

processing domain events, since you just need to process those events within the same process (that

is, within the same domain and application layer).

Another way to map events to multiple event handlers is by using types registration in an IoC

container so you can dynamically infer where to dispatch the events. In other words, you need to

know what event handlers need to get a specific event. Figure 7-16 shows a simplified approach for

this approach.

Figure 7-16. Domain event dispatcher using IoC

You can build all the plumbing and artifacts to implement that approach by yourself. However, you

can also use available libraries like MediatR that uses your IoC container under the covers. You can

therefore directly use the predefined interfaces and the mediator object’s publish/dispatch methods.

In code, you first need to register the event handler types in your IoC container, as shown in the

following example at eShopOnContainers Ordering microservice:

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {
 // Other registrations ...
 // Register the DomainEventHandler classes (they implement
IAsyncNotificationHandler<>)
 // in assembly holding the Domain Events

builder.RegisterAssemblyTypes(typeof(ValidateOrAddBuyerAggregateWhenOrderStartedDomainEvent
Handler)
 .GetTypeInfo().Assembly)

.AsClosedTypesOf(typeof(IAsyncNotificationHandler<>));
 // Other registrations ...

https://github.com/jbogard/MediatR
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Infrastructure/AutofacModules/MediatorModule.cs

232 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 }
}

The code first identifies the assembly that contains the domain event handlers by locating the

assembly that holds any of the handlers (using typeof(ValidateOrAddBuyerAggregateWhenXxxx), but

you could have chosen any other event handler to locate the assembly). Since all the event handlers

implement the IAsyncNotificationHandler interface, the code then just searches for those types and

registers all the event handlers.

How to subscribe to domain events

When you use MediatR, each event handler must use an event type that is provided on the generic

parameter of the INotificationHandler interface, as you can see in the following code:

public class ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler
 : IAsyncNotificationHandler<OrderStartedDomainEvent>

Based on the relationship between event and event handler, which can be considered the

subscription, the MediatR artifact can discover all the event handlers for each event and trigger each

one of those event handlers.

How to handle domain events

Finally, the event handler usually implements application layer code that uses infrastructure

repositories to obtain the required additional aggregates and to execute side-effect domain logic. The

following domain event handler code at eShopOnContainers, shows an implementation example.

public class ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler
 : INotificationHandler<OrderStartedDomainEvent>
{
 private readonly ILoggerFactory _logger;
 private readonly IBuyerRepository<Buyer> _buyerRepository;
 private readonly IIdentityService _identityService;

 public ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler(
 ILoggerFactory logger,
 IBuyerRepository<Buyer> buyerRepository,
 IIdentityService identityService)
 {
 // ...Parameter validations...
 }

 public async Task Handle(OrderStartedDomainEvent orderStartedEvent)
 {
 var cardTypeId = (orderStartedEvent.CardTypeId != 0) ? orderStartedEvent.CardTypeId
: 1;
 var userGuid = _identityService.GetUserIdentity();
 var buyer = await _buyerRepository.FindAsync(userGuid);
 bool buyerOriginallyExisted = (buyer == null) ? false : true;

 if (!buyerOriginallyExisted)
 {
 buyer = new Buyer(userGuid);
 }

 buyer.VerifyOrAddPaymentMethod(cardTypeId,
 $"Payment Method on {DateTime.UtcNow}",
 orderStartedEvent.CardNumber,

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/DomainEventHandlers/OrderStartedEvent/ValidateOrAddBuyerAggregateWhenOrderStartedDomainEventHandler.cs

233 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 orderStartedEvent.CardSecurityNumber,
 orderStartedEvent.CardHolderName,
 orderStartedEvent.CardExpiration,
 orderStartedEvent.Order.Id);

 var buyerUpdated = buyerOriginallyExisted ? _buyerRepository.Update(buyer)
 :
_buyerRepository.Add(buyer);

 await _buyerRepository.UnitOfWork
 .SaveEntitiesAsync();

 // Logging code using buyerUpdated info, etc.
 }
}

The previous domain event handler code is considered application layer code because it uses

infrastructure repositories, as explained in the next section on the infrastructure-persistence layer.

Event handlers could also use other infrastructure components.

Domain events can generate integration events to be published outside of the microservice

boundaries

Finally, it’s important to mention that you might sometimes want to propagate events across multiple

microservices. That propagation is an integration event, and it could be published through an event

bus from any specific domain event handler.

Conclusions on domain events

As stated, use domain events to explicitly implement side effects of changes within your domain. To

use DDD terminology, use domain events to explicitly implement side effects across one or multiple

aggregates. Additionally, and for better scalability and less impact on database locks, use eventual

consistency between aggregates within the same domain.

Additional resources

• Greg Young. What is a Domain Event?

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf#page=25

• Jan Stenberg. Domain Events and Eventual Consistency

https://www.infoq.com/news/2015/09/domain-events-consistency

• Jimmy Bogard. A better domain events pattern

https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/

• Vaughn Vernon. Effective Aggregate Design Part II: Making Aggregates Work Together

https://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf

• Jimmy Bogard. Strengthening your domain: Domain Events

https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/

• Tony Truong. Domain Events Pattern Example

https://www.tonytruong.net/domain-events-pattern-example/

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf#page=25
https://www.infoq.com/news/2015/09/domain-events-consistency
https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/
https://dddcommunity.org/wp-content/uploads/files/pdf_articles/Vernon_2011_2.pdf
https://lostechies.com/jimmybogard/2010/04/08/strengthening-your-domain-domain-events/
https://www.tonytruong.net/domain-events-pattern-example/

234 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Udi Dahan. How to create fully encapsulated Domain Models

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/

• Udi Dahan. Domain Events – Take 2

http://udidahan.com/2008/08/25/domain-events-take-2/

• Udi Dahan. Domain Events – Salvation

http://udidahan.com/2009/06/14/domain-events-salvation/

• Jan Kronquist. Don’t publish Domain Events, return them!

https://blog.jayway.com/2013/06/20/dont-publish-domain-events-return-them/

• Cesar de la Torre. Domain Events vs. Integration Events in DDD and microservices

architectures

https://blogs.msdn.microsoft.com/cesardelatorre/2017/02/07/domain-events-vs-integration-

events-in-domain-driven-design-and-microservices-architectures/

Design the infrastructure persistence layer
Data persistence components provide access to the data hosted within the boundaries of a

microservice (that is, a microservice’s database). They contain the actual implementation of

components such as repositories and Unit of Work classes, like custom Entity Framework (EF)

Microsoft.EntityFrameworkCore.DbContext objects. EF DbContext implements both, the Repository

and the Unit of Work patterns.

The Repository pattern

Repositories are classes or components that encapsulate the logic required to access data sources.

They centralize common data access functionality, providing better maintainability and decoupling

the infrastructure or technology used to access databases from the domain model layer. If you use an

Object-Relational Mapper (ORM) like Entity Framework, the code that must be implemented is

simplified, thanks to LINQ and strong typing. This lets you focus on the data persistence logic rather

than on data access plumbing.

The Repository pattern is a well-documented way of working with a data source. In the book Patterns

of Enterprise Application Architecture, Martin Fowler describes a repository as follows:

A repository performs the tasks of an intermediary between the domain model layers and data

mapping, acting in a similar way to a set of domain objects in memory. Client objects declaratively

build queries and send them to the repositories for answers. Conceptually, a repository encapsulates a

set of objects stored in the database and operations that can be performed on them, providing a way

that is closer to the persistence layer. Repositories, also, support the purpose of separating, clearly

and in one direction, the dependency between the work domain and the data allocation or mapping.

Define one repository per aggregate

For each aggregate or aggregate root, you should create one repository class. In a microservice based

on Domain-Driven Design (DDD) patterns, the only channel you should use to update the database

should be the repositories. This is because they have a one-to-one relationship with the aggregate

root, which controls the aggregate’s invariants and transactional consistency. It’s okay to query the

http://udidahan.com/2008/02/29/how-to-create-fully-encapsulated-domain-models/
http://udidahan.com/2008/08/25/domain-events-take-2/
http://udidahan.com/2009/06/14/domain-events-salvation/
https://blog.jayway.com/2013/06/20/dont-publish-domain-events-return-them/
https://blogs.msdn.microsoft.com/cesardelatorre/2017/02/07/domain-events-vs-integration-events-in-domain-driven-design-and-microservices-architectures/
https://blogs.msdn.microsoft.com/cesardelatorre/2017/02/07/domain-events-vs-integration-events-in-domain-driven-design-and-microservices-architectures/
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420/
https://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420/

235 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

database through other channels (as you can do following a CQRS approach), because queries don’t

change the state of the database. However, the transactional area (that is, the updates) must always

be controlled by the repositories and the aggregate roots.

Basically, a repository allows you to populate data in memory that comes from the database in the

form of the domain entities. Once the entities are in memory, they can be changed and then persisted

back to the database through transactions.

As noted earlier, if you’re using the CQS/CQRS architectural pattern, the initial queries are performed

by side queries out of the domain model, performed by simple SQL statements using Dapper. This

approach is much more flexible than repositories because you can query and join any tables you

need, and these queries aren’t restricted by rules from the aggregates. That data goes to the

presentation layer or client app.

If the user makes changes, the data to be updated comes from the client app or presentation layer to

the application layer (such as a Web API service). When you receive a command in a command

handler, you use repositories to get the data you want to update from the database. You update it in

memory with the data passed with the commands, and you then add or update the data (domain

entities) in the database through a transaction.

It’s important to emphasize again that you should only define one repository for each aggregate root,

as shown in Figure 7-17. To achieve the goal of the aggregate root to maintain transactional

consistency between all the objects within the aggregate, you should never create a repository for

each table in the database.

Figure 7-17. The relationship between repositories, aggregates, and database tables

236 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Enforce one aggregate root per repository

It can be valuable to implement your repository design in such a way that it enforces the rule that only

aggregate roots should have repositories. You can create a generic or base repository type that

constrains the type of entities it works with to ensure they have the IAggregateRoot marker interface.

Thus, each repository class implemented at the infrastructure layer implements its own contract or

interface, as shown in the following code:

namespace Microsoft.eShopOnContainers.Services.Ordering.Infrastructure.Repositories
{
 public class OrderRepository : IOrderRepository
 {
 // ...
 }
}

Each specific repository interface implements the generic IRepository interface:

public interface IOrderRepository : IRepository<Order>
{
 Order Add(Order order);
 // ...
}

However, a better way to have the code enforce the convention that each repository is related to a

single aggregate is to implement a generic repository type. That way, it’s explicit that you’re using a

repository to target a specific aggregate. That can be easily done by implementing a generic

IRepository base interface, as in the following code:

public interface IRepository<T> where T : IAggregateRoot
{
 //....
}

The Repository pattern makes it easier to test your application logic

The Repository pattern allows you to easily test your application with unit tests. Remember that unit

tests only test your code, not infrastructure, so the repository abstractions make it easier to achieve

that goal.

As noted in an earlier section, it’s recommended that you define and place the repository interfaces in

the domain model layer so the application layer, such as your Web API microservice, doesn’t depend

directly on the infrastructure layer where you’ve implemented the actual repository classes. By doing

this and using Dependency Injection in the controllers of your Web API, you can implement mock

repositories that return fake data instead of data from the database. This decoupled approach allows

you to create and run unit tests that focus the logic of your application without requiring connectivity

to the database.

Connections to databases can fail and, more importantly, running hundreds of tests against a

database is bad for two reasons. First, it can take a long time because of the large number of tests.

Second, the database records might change and impact the results of your tests, so that they might

not be consistent. Testing against the database isn’t a unit test but an integration test. You should

have many unit tests running fast, but fewer integration tests against the databases.

237 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

In terms of separation of concerns for unit tests, your logic operates on domain entities in memory. It

assumes the repository class has delivered those. Once your logic modifies the domain entities, it

assumes the repository class will store them correctly. The important point here is to create unit tests

against your domain model and its domain logic. Aggregate roots are the main consistency

boundaries in DDD.

The repositories implemented in eShopOnContainers rely on EF Core’s DbContext implementation of

the Repository and Unit of Work patterns using its change tracker, so they don’t duplicate this

functionality.

The difference between the Repository pattern and the legacy Data Access class (DAL

class) pattern

A data access object directly performs data access and persistence operations against storage. A

repository marks the data with the operations you want to perform in the memory of a unit of work

object (as in EF when using the Microsoft.EntityFrameworkCore.DbContext class), but these updates

aren’t performed immediately to the database.

A unit of work is referred to as a single transaction that involves multiple insert, update, or delete

operations. In simple terms, it means that for a specific user action, such as a registration on a website,

all the insert, update, and delete operations are handled in a single transaction. This is more efficient

than handling multiple database transactions in a chattier way.

These multiple persistence operations are performed later in a single action when your code from the

application layer commands it. The decision about applying the in-memory changes to the actual

database storage is typically based on the Unit of Work pattern. In EF, the Unit of Work pattern is

implemented as the Microsoft.EntityFrameworkCore.DbContext.

In many cases, this pattern or way of applying operations against the storage can increase application

performance and reduce the possibility of inconsistencies. It also reduces transaction blocking in the

database tables, because all the intended operations are committed as part of one transaction. This is

more efficient in comparison to executing many isolated operations against the database. Therefore,

the selected ORM can optimize the execution against the database by grouping several update

actions within the same transaction, as opposed to many small and separate transaction executions.

Repositories shouldn’t be mandatory

Custom repositories are useful for the reasons cited earlier, and that is the approach for the ordering

microservice in eShopOnContainers. However, it isn’t an essential pattern to implement in a DDD

design or even in general .NET development.

For instance, Jimmy Bogard, when providing direct feedback for this guide, said the following:

This’ll probably be my biggest feedback. I’m really not a fan of repositories, mainly because they hide

the important details of the underlying persistence mechanism. It’s why I go for MediatR for

commands, too. I can use the full power of the persistence layer, and push all that domain behavior

into my aggregate roots. I don’t usually want to mock my repositories – I still need to have that

integration test with the real thing. Going CQRS meant that we didn’t really have a need for

repositories any more.

https://martinfowler.com/eaaCatalog/unitOfWork.html

238 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Repositories might be useful, but they are not critical for your DDD design, in the way that the

Aggregate pattern and rich domain model are. Therefore, use the Repository pattern or not, as you

see fit. Anyway, you’ll be using the repository pattern whenever you use EF Core although, in this case,

the repository covers the whole microservice or bounded context.

Additional resources

Repository pattern

• The Repository pattern

https://deviq.com/repository-pattern/

• Edward Hieatt and Rob Mee. Repository pattern.

https://martinfowler.com/eaaCatalog/repository.html

• The Repository pattern

https://docs.microsoft.com/previous-versions/msp-n-p/ff649690(v=pandp.10)

• Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. (Book;

includes a discussion of the Repository pattern)

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-

Software/dp/0321125215/

Unit of Work pattern

• Martin Fowler. Unit of Work pattern.

https://martinfowler.com/eaaCatalog/unitOfWork.html

• Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-

using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-

application

Implement the infrastructure persistence layer with

Entity Framework Core
When you use relational databases such as SQL Server, Oracle, or PostgreSQL, a recommended

approach is to implement the persistence layer based on Entity Framework (EF). EF supports LINQ and

provides strongly typed objects for your model, as well as simplified persistence into your database.

Entity Framework has a long history as part of the .NET Framework. When you use .NET Core, you

should also use Entity Framework Core, which runs on Windows or Linux in the same way as .NET

Core. EF Core is a complete rewrite of Entity Framework, implemented with a much smaller footprint

and important improvements in performance.

Introduction to Entity Framework Core

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular

Entity Framework data access technology. It was introduced with .NET Core in mid-2016.

https://deviq.com/repository-pattern/
https://martinfowler.com/eaaCatalog/repository.html
https://docs.microsoft.com/previous-versions/msp-n-p/ff649690(v=pandp.10)
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

239 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Since an introduction to EF Core is already available in Microsoft documentation, here we simply

provide links to that information.

Additional resources

• Entity Framework Core

https://docs.microsoft.com/ef/core/

• Getting started with ASP.NET Core and Entity Framework Core using Visual Studio

https://docs.microsoft.com/aspnet/core/data/ef-mvc/

• DbContext Class

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext

• Compare EF Core & EF6.x

https://docs.microsoft.com/ef/efcore-and-ef6/index

Infrastructure in Entity Framework Core from a DDD perspective

From a DDD point of view, an important capability of EF is the ability to use POCO domain entities,

also known in EF terminology as POCO code-first entities. If you use POCO domain entities, your

domain model classes are persistence-ignorant, following the Persistence Ignorance and the

Infrastructure Ignorance principles.

Per DDD patterns, you should encapsulate domain behavior and rules within the entity class itself, so

it can control invariants, validations, and rules when accessing any collection. Therefore, it is not a

good practice in DDD to allow public access to collections of child entities or value objects. Instead,

you want to expose methods that control how and when your fields and property collections can be

updated, and what behavior and actions should occur when that happens.

Since EF Core 1.1, to satisfy those DDD requirements, you can have plain fields in your entities instead

of public properties. If you do not want an entity field to be externally accessible, you can just create

the attribute or field instead of a property. You can also use private property setters.

In a similar way, you can now have read-only access to collections by using a public property typed as

IReadOnlyCollection, which is backed by a private field member for the collection (like a List) in

your entity that relies on EF for persistence. Previous versions of Entity Framework required collection

properties to support ICollection, which meant that any developer using the parent entity class

could add or remove items through its property collections. That possibility would be against the

recommended patterns in DDD.

You can use a private collection while exposing a read-only IReadOnlyCollection object, as shown in

the following code example:

public class Order : Entity
{
 // Using private fields, allowed since EF Core 1.1
 private DateTime _orderDate;
 // Other fields ...

 private readonly List<OrderItem> _orderItems;
 public IReadOnlyCollection<OrderItem> OrderItems => _orderItems;

https://docs.microsoft.com/ef/core/
https://docs.microsoft.com/aspnet/core/data/ef-mvc/
xref:Microsoft.EntityFrameworkCore.DbContext
https://docs.microsoft.com/ef/efcore-and-ef6/index
https://deviq.com/persistence-ignorance/
https://ayende.com/blog/3137/infrastructure-ignorance

240 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 protected Order() { }

 public Order(int buyerId, int paymentMethodId, Address address)
 {
 // Initializations ...
 }

 public void AddOrderItem(int productId, string productName,
 decimal unitPrice, decimal discount,
 string pictureUrl, int units = 1)
 {
 // Validation logic...

 var orderItem = new OrderItem(productId, productName,
 unitPrice, discount,
 pictureUrl, units);
 _orderItems.Add(orderItem);
 }
}

Note that the OrderItems property can only be accessed as read-only using IReadOnlyCollection.

This type is read-only so it is protected against regular external updates.

EF Core provides a way to map the domain model to the physical database without “contaminating”

the domain model. It is pure .NET POCO code, because the mapping action is implemented in the

persistence layer. In that mapping action, you need to configure the fields-to-database mapping. In

the following example of the OnModelCreating method from OrderingContext and the

OrderEntityTypeConfiguration class, the call to SetPropertyAccessMode tells EF Core to access the

OrderItems property through its field.

// At OrderingContext.cs from eShopOnContainers
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // ...
 modelBuilder.ApplyConfiguration(new OrderEntityTypeConfiguration());
 // Other entities’ configuration ...
}

// At OrderEntityTypeConfiguration.cs from eShopOnContainers
class OrderEntityTypeConfiguration : IEntityTypeConfiguration<Order>
{
 public void Configure(EntityTypeBuilder<Order> orderConfiguration)
 {
 orderConfiguration.ToTable("orders", OrderingContext.DEFAULT_SCHEMA);
 // Other configuration

 var navigation =
 orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));

 //EF access the OrderItem collection property through its backing field
 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 // Other configuration
 }
}

When you use fields instead of properties, the OrderItem entity is persisted just as if it had a List

property. However, it exposes a single accessor, the AddOrderItem method, for adding new items to

241 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

the order. As a result, behavior and data are tied together and will be consistent throughout any

application code that uses the domain model.

Implement custom repositories with Entity Framework Core

At the implementation level, a repository is simply a class with data persistence code coordinated by a

unit of work (DBContext in EF Core) when performing updates, as shown in the following class:

// using statements...
namespace Microsoft.eShopOnContainers.Services.Ordering.Infrastructure.Repositories
{
 public class BuyerRepository : IBuyerRepository
 {
 private readonly OrderingContext _context;
 public IUnitOfWork UnitOfWork
 {
 get
 {
 return _context;
 }
 }

 public BuyerRepository(OrderingContext context)
 {
 _context = context ?? throw new ArgumentNullException(nameof(context));
 }

 public Buyer Add(Buyer buyer)
 {
 return _context.Buyers.Add(buyer).Entity;
 }

 public async Task<Buyer> FindAsync(string BuyerIdentityGuid)
 {
 var buyer = await _context.Buyers
 .Include(b => b.Payments)
 .Where(b => b.FullName == BuyerIdentityGuid)
 .SingleOrDefaultAsync();

 return buyer;
 }
 }
}

Note that the IBuyerRepository interface comes from the domain model layer as a contract. However,

the repository implementation is done at the persistence and infrastructure layer.

The EF DbContext comes through the constructor through Dependency Injection. It is shared between

multiple repositories within the same HTTP request scope, thanks to its default lifetime

(ServiceLifetime.Scoped) in the IoC container (which can also be explicitly set with

services.AddDbContext<>).

Methods to implement in a repository (updates or transactions versus queries)

Within each repository class, you should put the persistence methods that update the state of entities

contained by its related aggregate. Remember there is one-to-one relationship between an aggregate

and its related repository. Consider that an aggregate root entity object might have embedded child

242 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

entities within its EF graph. For example, a buyer might have multiple payment methods as related

child entities.

Since the approach for the ordering microservice in eShopOnContainers is also based on CQS/CQRS,

most of the queries are not implemented in custom repositories. Developers have the freedom to

create the queries and joins they need for the presentation layer without the restrictions imposed by

aggregates, custom repositories per aggregate, and DDD in general. Most of the custom repositories

suggested by this guide have several update or transactional methods but just the query methods

needed to get data to be updated. For example, the BuyerRepository repository implements a

FindAsync method, because the application needs to know whether a particular buyer exists before

creating a new buyer related to the order.

However, the real query methods to get data to send to the presentation layer or client apps are

implemented, as mentioned, in the CQRS queries based on flexible queries using Dapper.

Using a custom repository versus using EF DbContext directly

The Entity Framework DbContext class is based on the Unit of Work and Repository patterns, and can

be used directly from your code, such as from an ASP.NET Core MVC controller. That is the way you

can create the simplest code, as in the CRUD catalog microservice in eShopOnContainers. In cases

where you want the simplest code possible, you might want to directly use the DbContext class, as

many developers do.

However, implementing custom repositories provides several benefits when implementing more

complex microservices or applications. The Unit of Work and Repository patterns are intended to

encapsulate the infrastructure persistence layer so it is decoupled from the application and domain

model layers. Implementing these patterns can facilitate the use of mock repositories simulating

access to the database.

In Figure 7-18 you can see the differences between not using repositories (directly using the EF

DbContext) versus using repositories which make it easier to mock those repositories.

Figure 7-18. Using custom repositories versus a plain DbContext

243 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

There are multiple alternatives when mocking. You could mock just repositories or you could mock a

whole unit of work. Usually mocking just the repositories is enough, and the complexity to abstract

and mock a whole unit of work is usually not needed.

Later, when we focus on the application layer, you will see how Dependency Injection works in

ASP.NET Core and how it is implemented when using repositories.

In short, custom repositories allow you to test code more easily with unit tests that are not impacted

by the data tier state. If you run tests that also access the actual database through the Entity

Framework, they are not unit tests but integration tests, which are a lot slower.

If you were using DbContext directly, you would have to mock it or to run unit tests by using an in-

memory SQL Server with predictable data for unit tests. But mocking the DbContext or controlling

fake data requires more work than mocking at the repository level. Of course, you could always test

the MVC controllers.

EF DbContext and IUnitOfWork instance lifetime in your IoC container

The DbContext object (exposed as an IUnitOfWork object) should be shared among multiple

repositories within the same HTTP request scope. For example, this is true when the operation being

executed must deal with multiple aggregates, or simply because you are using multiple repository

instances. It is also important to mention that the IUnitOfWork interface is part of your domain layer,

not an EF Core type.

In order to do that, the instance of the DbContext object has to have its service lifetime set to

ServiceLifetime.Scoped. This is the default lifetime when registering a DbContext with

services.AddDbContext in your IoC container from the ConfigureServices method of the Startup.cs

file in your ASP.NET Core Web API project. The following code illustrates this.

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc(options =>
 {
 options.Filters.Add(typeof(HttpGlobalExceptionFilter));
 }).AddControllersAsServices();

 services.AddEntityFrameworkSqlServer()
 .AddDbContext<OrderingContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlOptions =>
sqlOptions.MigrationsAssembly(typeof(Startup).GetTypeInfo().

Assembly.GetName().Name));
 },
 ServiceLifetime.Scoped // Note that Scoped is the default choice
 // in AddDbContext. It is shown here only for
 // pedagogic purposes.
);
}

The DbContext instantiation mode should not be configured as ServiceLifetime.Transient or

ServiceLifetime.Singleton.

244 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The repository instance lifetime in your IoC container

In a similar way, repository’s lifetime should usually be set as scoped (InstancePerLifetimeScope in

Autofac). It could also be transient (InstancePerDependency in Autofac), but your service will be more

efficient in regards memory when using the scoped lifetime.

// Registering a Repository in Autofac IoC container
builder.RegisterType<OrderRepository>()
 .As<IOrderRepository>()
 .InstancePerLifetimeScope();

Note that using the singleton lifetime for the repository could cause you serious concurrency

problems when your DbContext is set to scoped (InstancePerLifetimeScope) lifetime (the default

lifetimes for a DBContext).

Additional resources

• Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-

4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

• Jonathan Allen. Implementation Strategies for the Repository Pattern with Entity

Framework, Dapper, and Chain

https://www.infoq.com/articles/repository-implementation-strategies

• Cesar de la Torre. Comparing ASP.NET Core IoC container service lifetimes with Autofac

IoC container instance scopes

https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-

and-autofac-ioc-instance-scopes/

Table mapping

Table mapping identifies the table data to be queried from and saved to the database. Previously you

saw how domain entities (for example, a product or order domain) can be used to generate a related

database schema. EF is strongly designed around the concept of conventions. Conventions address

questions like “What will the name of a table be?” or “What property is the primary key?” Conventions

are typically based on conventional names—for example, it is typical for the primary key to be a

property that ends with Id.

By convention, each entity will be set up to map to a table with the same name as the DbSet property

that exposes the entity on the derived context. If no DbSet value is provided for the given entity, the

class name is used.

Data Annotations versus Fluent API

There are many additional EF Core conventions, and most of them can be changed by using either

data annotations or Fluent API, implemented within the OnModelCreating method.

Data annotations must be used on the entity model classes themselves, which is a more intrusive way

from a DDD point of view. This is because you are contaminating your model with data annotations

related to the infrastructure database. On the other hand, Fluent API is a convenient way to change

https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://www.infoq.com/articles/repository-implementation-strategies
https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-instance-scopes/
https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-instance-scopes/

245 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

most conventions and mappings within your data persistence infrastructure layer, so the entity model

will be clean and decoupled from the persistence infrastructure.

Fluent API and the OnModelCreating method

As mentioned, in order to change conventions and mappings, you can use the OnModelCreating

method in the DbContext class.

The ordering microservice in eShopOnContainers implements explicit mapping and configuration,

when needed, as shown in the following code.

// At OrderingContext.cs from eShopOnContainers
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // ...
 modelBuilder.ApplyConfiguration(new OrderEntityTypeConfiguration());
 // Other entities’ configuration ...
}

// At OrderEntityTypeConfiguration.cs from eShopOnContainers
class OrderEntityTypeConfiguration : IEntityTypeConfiguration<Order>
{
 public void Configure(EntityTypeBuilder<Order> orderConfiguration)
 {
 orderConfiguration.ToTable("orders", OrderingContext.DEFAULT_SCHEMA);

 orderConfiguration.HasKey(o => o.Id);

 orderConfiguration.Ignore(b => b.DomainEvents);

 orderConfiguration.Property(o => o.Id)
 .ForSqlServerUseSequenceHiLo("orderseq", OrderingContext.DEFAULT_SCHEMA);

 //Address Value Object persisted as owned entity type supported since EF Core
2.0
 orderConfiguration.OwnsOne(o => o.Address);

 orderConfiguration.Property<DateTime>("OrderDate").IsRequired();
 orderConfiguration.Property<int?>("BuyerId").IsRequired(false);
 orderConfiguration.Property<int>("OrderStatusId").IsRequired();
 orderConfiguration.Property<int?>("PaymentMethodId").IsRequired(false);
 orderConfiguration.Property<string>("Description").IsRequired(false);

 var navigation =
orderConfiguration.Metadata.FindNavigation(nameof(Order.OrderItems));

 // DDD Patterns comment:
 //Set as field (New since EF 1.1) to access the OrderItem collection property
through its field
 navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

 orderConfiguration.HasOne<PaymentMethod>()
 .WithMany()
 .HasForeignKey("PaymentMethodId")
 .IsRequired(false)
 .OnDelete(DeleteBehavior.Restrict);

 orderConfiguration.HasOne<Buyer>()
 .WithMany()

246 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 .IsRequired(false)
 .HasForeignKey("BuyerId");

 orderConfiguration.HasOne(o => o.OrderStatus)
 .WithMany()
 .HasForeignKey("OrderStatusId");
 }
}

You could set all the Fluent API mappings within the same OnModelCreating method, but it is

advisable to partition that code and have multiple configuration classes, one per entity, as shown in

the example. Especially for particularly large models, it is advisable to have separate configuration

classes for configuring different entity types.

The code in the example shows a few explicit declarations and mapping. However, EF Core

conventions do many of those mappings automatically, so the actual code you would need in your

case might be smaller.

The Hi/Lo algorithm in EF Core

An interesting aspect of code in the preceding example is that it uses the Hi/Lo algorithm as the key

generation strategy.

The Hi/Lo algorithm is useful when you need unique keys before committing changes. As a summary,

the Hi-Lo algorithm assigns unique identifiers to table rows while not depending on storing the row in

the database immediately. This lets you start using the identifiers right away, as happens with regular

sequential database IDs.

The Hi/Lo algorithm describes a mechanism for getting a batch of unique IDs from a related database

sequence. These IDs are safe to use because the database guarantees the uniqueness, so there will be

no collisions between users. This algorithm is interesting for these reasons:

• It does not break the Unit of Work pattern.

• It gets sequence IDs in batches, to minimize round trips to the database.

• It generates a human readable identifier, unlike techniques that use GUIDs.

EF Core supports HiLo with the ForSqlServerUseSequenceHiLo method, as shown in the preceding

example.

Map fields instead of properties

With this feature, available since EF Core 1.1, you can directly map columns to fields. It is possible to

not use properties in the entity class, and just to map columns from a table to fields. A common use

for that would be private fields for any internal state that do not need to be accessed from outside the

entity.

You can do this with single fields or also with collections, like a List<> field. This point was mentioned

earlier when we discussed modeling the domain model classes, but here you can see how that

mapping is performed with the PropertyAccessMode.Field configuration highlighted in the previous

code.

https://vladmihalcea.com/the-hilo-algorithm/
https://stackoverflow.com/questions/282099/whats-the-hi-lo-algorithm

247 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Use shadow properties in EF Core, hidden at the infrastructure level

Shadow properties in EF Core are properties that do not exist in your entity class model. The values

and states of these properties are maintained purely in the ChangeTracker class at the infrastructure

level.

Implement the Query Specification pattern

As introduced earlier in the design section, the Query Specification pattern is a Domain-Driven Design

pattern designed as the place where you can put the definition of a query with optional sorting and

paging logic.

The Query Specification pattern defines a query in an object. For example, in order to encapsulate a

paged query that searches for some products you can create a PagedProduct specification that takes

the necessary input parameters (pageNumber, pageSize, filter, etc.). Then, within any Repository

method (usually a List() overload) it would accept an IQuerySpecification and run the expected query

based on that specification.

An example of a generic Specification interface is the following code from eShopOnWeb.

// GENERIC SPECIFICATION INTERFACE
// https://github.com/dotnet-architecture/eShopOnWeb

public interface ISpecification<T>
{
 Expression<Func<T, bool>> Criteria { get; }
 List<Expression<Func<T, object>>> Includes { get; }
 List<string> IncludeStrings { get; }
}

Then, the implementation of a generic specification base class is the following.

// GENERIC SPECIFICATION IMPLEMENTATION (BASE CLASS)
// https://github.com/dotnet-architecture/eShopOnWeb

public abstract class BaseSpecification<T> : ISpecification<T>
{
 public BaseSpecification(Expression<Func<T, bool>> criteria)
 {
 Criteria = criteria;
 }
 public Expression<Func<T, bool>> Criteria { get; }

 public List<Expression<Func<T, object>>> Includes { get; } =
 new List<Expression<Func<T, object>>>();

 public List<string> IncludeStrings { get; } = new List<string>();

 protected virtual void AddInclude(Expression<Func<T, object>> includeExpression)
 {
 Includes.Add(includeExpression);
 }

 // string-based includes allow for including children of children
 // e.g. Basket.Items.Product
 protected virtual void AddInclude(string includeString)
 {
 IncludeStrings.Add(includeString);

https://docs.microsoft.com/ef/core/api/microsoft.entityframeworkcore.changetracking.changetracker
https://github.com/dotnet-architecture/eShopOnWeb

248 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 }
}

The following specification loads a single basket entity given either the basket’s ID or the ID of the

buyer to whom the basket belongs. It will eagerly load the basket’s Items collection.

// SAMPLE QUERY SPECIFICATION IMPLEMENTATION

public class BasketWithItemsSpecification : BaseSpecification<Basket>
{
 public BasketWithItemsSpecification(int basketId)
 : base(b => b.Id == basketId)
 {
 AddInclude(b => b.Items);
 }
 public BasketWithItemsSpecification(string buyerId)
 : base(b => b.BuyerId == buyerId)
 {
 AddInclude(b => b.Items);
 }
}

And finally, you can see below how a generic EF Repository can use such a specification to filter and

eager-load data related to a given entity type T.

// GENERIC EF REPOSITORY WITH SPECIFICATION
// https://github.com/dotnet-architecture/eShopOnWeb

public IEnumerable<T> List(ISpecification<T> spec)
{
 // fetch a Queryable that includes all expression-based includes
 var queryableResultWithIncludes = spec.Includes
 .Aggregate(_dbContext.Set<T>().AsQueryable(),
 (current, include) => current.Include(include));

 // modify the IQueryable to include any string-based include statements
 var secondaryResult = spec.IncludeStrings
 .Aggregate(queryableResultWithIncludes,
 (current, include) => current.Include(include));

 // return the result of the query using the specification's criteria expression
 return secondaryResult
 .Where(spec.Criteria)
 .AsEnumerable();
}

In addition to encapsulating filtering logic, the specification can specify the shape of the data to be

returned, including which properties to populate.

Although we don’t recommend to return IQueryable from a repository, it’s perfectly fine to use them

within the repository to build up a set of results. You can see this approach used in the List method

above, which uses intermediate IQueryable expressions to build up the query’s list of includes before

executing the query with the specification’s criteria on the last line.

Additional resources

• Table Mapping

https://docs.microsoft.com/ef/core/modeling/relational/tables

https://docs.microsoft.com/ef/core/querying/related-data
https://docs.microsoft.com/ef/core/modeling/relational/tables

249 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• Use HiLo to generate keys with Entity Framework Core

https://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/

• Backing Fields

https://docs.microsoft.com/ef/core/modeling/backing-field

• Steve Smith. Encapsulated Collections in Entity Framework Core

https://ardalis.com/encapsulated-collections-in-entity-framework-core

• Shadow Properties

https://docs.microsoft.com/ef/core/modeling/shadow-properties

• The Specification pattern

https://deviq.com/specification-pattern/

Use NoSQL databases as a persistence infrastructure
When you use NoSQL databases for your infrastructure data tier, you typically do not use an ORM like

Entity Framework Core. Instead you use the API provided by the NoSQL engine, such as Azure Cosmos

DB, MongoDB, Cassandra, RavenDB, CouchDB, or Azure Storage Tables.

However, when you use a NoSQL database, especially a document-oriented database like Azure

Cosmos DB, CouchDB, or RavenDB, the way you design your model with DDD aggregates is partially

similar to how you can do it in EF Core, in regards to the identification of aggregate roots, child entity

classes, and value object classes. But, ultimately, the database selection will impact in your design.

When you use a document-oriented database, you implement an aggregate as a single document,

serialized in JSON or another format. However, the use of the database is transparent from a domain

model code point of view. When using a NoSQL database, you still are using entity classes and

aggregate root classes, but with more flexibility than when using EF Core because the persistence is

not relational.

The difference is in how you persist that model. If you implemented your domain model based on

POCO entity classes, agnostic to the infrastructure persistence, it might look like you could move to a

different persistence infrastructure, even from relational to NoSQL. However, that should not be your

goal. There are always constraints and trade-offs in the different database technologies, so you will

not be able to have the same model for relational or NoSQL databases. Changing persistence models

is not a trivial task, because transactions and persistence operations will be very different.

For example, in a document-oriented database, it is okay for an aggregate root to have multiple child

collection properties. In a relational database, querying multiple child collection properties is not

easily optimized, because you get a UNION ALL SQL statement back from EF. Having the same

domain model for relational databases or NoSQL databases is not simple, and you should not try to

do it. You really have to design your model with an understanding of how the data is going to be

used in each particular database.

A benefit when using NoSQL databases is that the entities are more denormalized, so you do not set a

table mapping. Your domain model can be more flexible than when using a relational database.

https://www.talkingdotnet.com/use-hilo-to-generate-keys-with-entity-framework-core/
https://docs.microsoft.com/ef/core/modeling/backing-field
https://ardalis.com/encapsulated-collections-in-entity-framework-core
https://docs.microsoft.com/ef/core/modeling/shadow-properties
https://deviq.com/specification-pattern/

250 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

When you design your domain model based on aggregates, moving to NoSQL and document-

oriented databases might be even easier than using a relational database, because the aggregates

you design are similar to serialized documents in a document-oriented database. Then you can

include in those “bags” all the information you might need for that aggregate.

For instance, the following JSON code is a sample implementation of an order aggregate when using

a document-oriented database. It is similar to the order aggregate we implemented in the

eShopOnContainers sample, but without using EF Core underneath.

{
 "id": "2017001",
 "orderDate": "2/25/2017",
 "buyerId": "1234567",
 "address": [
 {
 "street": "100 One Microsoft Way",
 "city": "Redmond",
 "state": "WA",
 "zip": "98052",
 "country": "U.S."
 }
],
 "orderItems": [
 {"id": 20170011, "productId": "123456", "productName": ".NET T-Shirt",
 "unitPrice": 25, "units": 2, "discount": 0},
 {"id": 20170012, "productId": "123457", "productName": ".NET Mug",
 "unitPrice": 15, "units": 1, "discount": 0}
]
}

Introduction to Azure Cosmos DB and the native Cosmos DB API

Azure Cosmos DB is Microsoft’s globally distributed database service for mission-critical applications.

Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and storage

worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency

levels, and guaranteed high availability, all backed by industry-leading SLAs. Azure Cosmos DB

automatically indexes data without requiring you to deal with schema and index management. It is

multi-model and supports document, key-value, graph, and columnar data models.

https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

251 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

:::{custom-style=Figure-Caption} Figure 7-19. Azure Cosmos DB global distribution :::

When you use a C# model to implement the aggregate to be used by the Azure Cosmos DB API, the

aggregate can be similar to the C# POCO classes used with EF Core. The difference is in the way to

use them from the application and infrastructure layers, as in the following code:

// C# EXAMPLE OF AN ORDER AGGREGATE BEING PERSISTED WITH AZURE COSMOS DB API
// *** Domain Model Code ***
// Aggregate: Create an Order object with its child entities and/or value objects.
// Then, use AggregateRoot’s methods to add the nested objects so invariants and
// logic is consistent across the nested properties (value objects and entities).

Order orderAggregate = new Order
{
 Id = "2017001",
 OrderDate = new DateTime(2005, 7, 1),
 BuyerId = "1234567",
 PurchaseOrderNumber = "PO18009186470"
}

Address address = new Address
{
 Street = "100 One Microsoft Way",
 City = "Redmond",
 State = "WA",
 Zip = "98052",
 Country = "U.S."
}

orderAggregate.UpdateAddress(address);

OrderItem orderItem1 = new OrderItem
{
 Id = 20170011,

252 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 ProductId = "123456",
 ProductName = ".NET T-Shirt",
 UnitPrice = 25,
 Units = 2,
 Discount = 0;
};

//Using methods with domain logic within the entity. No anemic-domain model
orderAggregate.AddOrderItem(orderItem1);
// *** End of Domain Model Code ***

// *** Infrastructure Code using Cosmos DB Client API ***
Uri collectionUri = UriFactory.CreateDocumentCollectionUri(databaseName,
 collectionName);

await client.CreateDocumentAsync(collectionUri, orderAggregate);

// As your app evolves, let's say your object has a new schema. You can insert
// OrderV2 objects without any changes to the database tier.
Order2 newOrder = GetOrderV2Sample("IdForSalesOrder2");
await client.CreateDocumentAsync(collectionUri, newOrder);

You can see that the way you work with your domain model can be similar to the way you use it in

your domain model layer when the infrastructure is EF. You still use the same aggregate root methods

to ensure consistency, invariants, and validations within the aggregate.

However, when you persist your model into the NoSQL database, the code and API change

dramatically compared to EF Core code or any other code related to relational databases.

Implement .NET code targeting MongoDB and Azure Cosmos DB

Use Azure Cosmos DB from .NET containers

You can access Azure Cosmos DB databases from .NET code running in containers, like from any other

.NET application. For instance, the Locations.API and Marketing.API microservices in

eShopOnContainers are implemented so they can consume Azure Cosmos DB databases.

However, there’s a limitation in Azure Cosmos DB from a Docker development environment point of

view. Even when there’s a on-premises Azure Cosmos DB Emulator able to run in a local development

machine (like a PC), as of late 2017, it just supports Windows, not Linux.

There is also the possibility to run this emulator on Docker, but just on Windows Containers, not with

Linux Containers. That is an initial handicap for the development environment if your application is

deployed as Linux containers, since, currently, you cannot deploy Linux and Windows Containers on

Docker for Windows at the same time. Either all containers being deployed have to be for Linux or for

Windows.

The ideal and more straightforward deployment for a dev/test solution is to be able to deploy your

database systems as containers along with your custom containers so your dev/test environments are

always consistent.

Use MongoDB API for local dev/test Linux/Windows containers plus Azure Cosmos DB

Cosmos DB databases support MongoDB API for .NET as well as the native MongoDB wire protocol.

This means that by using existing drivers, your application written for MongoDB can now

https://docs.microsoft.com/azure/cosmos-db/local-emulator

253 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

communicate with Cosmos DB and use Cosmos DB databases instead of MongoDB databases, as

shown in Figure 7-20.

:::{custom-style=Figure-Caption} Figure 7-20. Using MongoDB API and protocol to access Azure

Cosmos DB :::

This is a very convenient approach for proof of concepts in Docker environments with Linux

containers because the MongoDB Docker image is a multi-arch image that supports Docker Linux

containers and Docker Windows containers.

As shown in the following image, by using the MongoDB API, eShopOnContainers supports MongoDB

Linux and Windows containers for the local development environment but then, you can move to a

scalable, PaaS cloud solution as Azure Cosmos DB by simply changing the MongoDB connection

string to point to Azure Cosmos DB.

https://hub.docker.com/r/_/mongo/
https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account
https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account

254 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

:::{custom-style=Figure-Caption} Figure 7-21. eShopOnContainers using MongoDB containers for

dev-env or Azure Cosmos DB for production :::

The production Azure Cosmos DB would be running in Azure’s cloud as a PaaS and scalable service.

Your custom .NET Core containers can run on a local development Docker host (that is using Docker

for Windows in a Windows 10 machine) or be deployed into a production environment, like

Kubernetes in Azure AKS or Azure Service Fabric. In this second environment, you would deploy only

the .NET Core custom containers but not the MongoDB container since you’d be using Azure Cosmos

DB in the cloud for handling the data in production.

A clear benefit of using the MongoDB API is that your solution could run in both database engines,

MongoDB or Azure Cosmos DB, so migrations to different environments should be easy. However,

sometimes it is worthwhile to use a native API (that is the native Cosmos DB API) in order to take full

advantage of the capabilities of a specific database engine.

For further comparison between simply using MongoDB versus Cosmos DB in the cloud, see the

Benefits of using Azure Cosmos DB in this page.

https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction

255 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Analyze your approach for production applications: MongoDB API vs. Cosmos DB API

In eShopOnContainers, we’re using MongoDB API because our priority was fundamentally to have a

consistent dev/test environment using a NoSQL database that could also work with Azure Cosmos DB.

However, if you planning to use MongoDB API to access Azure Cosmos DB in Azure for production

applications, you should analyze the differences in capabilities and performance when using

MongoDB API to access Azure Cosmos DB databases compared to using the native Azure Cosmos DB

API. If it is similar you can use MongoDB API and you get the benefit of supporting two NoSQL

database engines at the same time.

You could also use MongoDB clusters as the production database in Azure’s cloud, too, with

MongoDB Azure Service. But that is not a PaaS service provided by Microsoft. In this case, Azure is just

hosting that solution coming from MongoDB.

Basically, this is just a disclaimer stating that you shouldn’t always use MongoDB API against Azure

Cosmos DB, as we did in eShopOnContainers because it was a convenient choice for Linux containers.

The decision should be based on the specific needs and tests you need to do for your production

application.

The code: Use MongoDB API in .NET Core applications

MongoDB API for .NET is based on NuGet packages that you need to add to your projects, like in the

Locations.API project shown in the following figure.

Figure 7-22. MongoDB API NuGet packages references in a .NET Core project

Let’s investigate the code in the following sections.

https://www.mongodb.com/scale/mongodb-azure-service

256 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

A Model used by MongoDB API

First, you need to define a model that will hold the data coming from the database in your

application’s memory space. Here’s an example of the model used for Locations at

eShopOnContainers.

using MongoDB.Bson;
using MongoDB.Bson.Serialization.Attributes;
using MongoDB.Driver.GeoJsonObjectModel;
using System.Collections.Generic;

public class Locations
{
 [BsonId]
 [BsonRepresentation(BsonType.ObjectId)]
 public string Id { get; set; }
 public int LocationId { get; set; }
 public string Code { get; set; }
 [BsonRepresentation(BsonType.ObjectId)]
 public string Parent_Id { get; set; }
 public string Description { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public GeoJsonPoint<GeoJson2DGeographicCoordinates> Location
 { get; private set; }
 public GeoJsonPolygon<GeoJson2DGeographicCoordinates> Polygon
 { get; private set; }
 public void SetLocation(double lon, double lat) => SetPosition(lon, lat);
 public void SetArea(List<GeoJson2DGeographicCoordinates> coordinatesList)
 => SetPolygon(coordinatesList);

 private void SetPosition(double lon, double lat)
 {
 Latitude = lat;
 Longitude = lon;
 Location = new GeoJsonPoint<GeoJson2DGeographicCoordinates>(
 new GeoJson2DGeographicCoordinates(lon, lat));
 }

 private void SetPolygon(List<GeoJson2DGeographicCoordinates> coordinatesList)
 {
 Polygon = new GeoJsonPolygon<GeoJson2DGeographicCoordinates>(
 new GeoJsonPolygonCoordinates<GeoJson2DGeographicCoordinates>(
 new GeoJsonLinearRingCoordinates<GeoJson2DGeographicCoordinates>(
 coordinatesList)));
 }
}

You can see there are a few attributes and types coming from the MongoDB NuGet packages.

NoSQL databases are usually very well suited for working with non-relational hierarchical data. In this

example, we are using MongoDB types especially made for geo-locations, like

GeoJson2DGeographicCoordinates.

Retrieve the database and the collection

In eShopOnContainers, we have created a custom database context where we implement the code to

retrieve the database and the MongoCollections, as in the following code.

257 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

public class LocationsContext
{
 private readonly IMongoDatabase _database = null;

 public LocationsContext(IOptions<LocationSettings> settings)
 {
 var client = new MongoClient(settings.Value.ConnectionString);
 if (client != null)
 _database = client.GetDatabase(settings.Value.Database);
 }

 public IMongoCollection<Locations> Locations
 {
 get
 {
 return _database.GetCollection<Locations>("Locations");
 }
 }
}

Retrieve the data

In C# code, like Web API controllers or custom Repositories implementation, you can write similar

code to the following when querying through the MongoDB API. Note that the _context object is an

instance of the previous LocationsContext class.

public async Task<Locations> GetAsync(int locationId)
{
 var filter = Builders<Locations>.Filter.Eq("LocationId", locationId);
 return await _context.Locations
 .Find(filter)
 .FirstOrDefaultAsync();
}

Use an env-var in the docker-compose.override.yml file for the MongoDB connection string

When creating a MongoClient object, it needs a fundamental parameter which is precisely the

ConnectionString parameter pointing to the right database. In the case of eShopOnContainers, the

connection string can point to a local MongoDB Docker container or to a “production” Azure Cosmos

DB database. That connection string comes from the environment variables defined in the docker-

compose.override.yml files used when deploying with docker-compose or Visual Studio, as in the

following yml code.

docker-compose.override.yml
version: '3.4'
services:
 # Other services
 locations.api:
 environment:
 # Other settings
 - ConnectionString=${ESHOP_AZURE_COSMOSDB:-mongodb://nosql.data}

The ConnectionString environment variable is resolved this way: If the ESHOP_AZURE_COSMOSDB

global variable is defined in the .env file with the Azure Cosmos DB connection string, it will use it to

access the Azure Cosmos DB database in the cloud. If it’s not defined, it will take the

mongodb://nosql.data value and use the development mongodb container.

258 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The following code shows the .env file with the Azure Cosmos DB connection string global

environment variable, as implemented in eShopOnContainers:

.env file, in eShopOnContainers root folder
Other Docker environment variables

ESHOP_EXTERNAL_DNS_NAME_OR_IP=localhost
ESHOP_PROD_EXTERNAL_DNS_NAME_OR_IP=<YourDockerHostIP>

#ESHOP_AZURE_COSMOSDB=<YourAzureCosmosDBConnData>

#Other environment variables for additional Azure infrastructure assets
#ESHOP_AZURE_REDIS_BASKET_DB=<YourAzureRedisBasketInfo>
#ESHOP_AZURE_STORAGE_CATALOG_URL=<YourAzureStorage_Catalog_BLOB_URL>
#ESHOP_AZURE_SERVICE_BUS=<YourAzureServiceBusInfo>

You should uncomment the ESHOP_AZURE_COSMOSDB line and update it with your Azure Cosmos

DB connection string obtained from the Azure portal as explained in Connect a MongoDB application

to Azure Cosmos DB.

If the ESHOP_AZURE_COSMOSDB global variable is empty, meaning that it is commented out in the .env

file, then the container uses a default MongoDB connection string pointing to the local MongoDB

container deployed in eShopOnContainers which is named nosql.data and was defined at the

docker-compose file, as shown in the following .yml code.

docker-compose.yml
version: '3.4'
services:
 # ...Other services...
 nosql.data:
 image: mongo

Additional resources

• Modeling document data for NoSQL databases

https://docs.microsoft.com/azure/cosmos-db/modeling-data

• Vaughn Vernon. The Ideal Domain-Driven Design Aggregate Store?

https://kalele.io/blog-posts/the-ideal-domain-driven-design-aggregate-store/

• Introduction to Azure Cosmos DB: API for MongoDB

https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction

• Azure Cosmos DB: Build a MongoDB API web app with .NET and the Azure portal

https://docs.microsoft.com/azure/cosmos-db/create-mongodb-dotnet

• Use the Azure Cosmos DB Emulator for local development and testing

https://docs.microsoft.com/azure/cosmos-db/local-emulator

• Connect a MongoDB application to Azure Cosmos DB

https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account

• The Cosmos DB Emulator Docker image (Windows Container)

https://hub.docker.com/r/microsoft/azure-cosmosdb-emulator/

https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account
https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account
https://docs.microsoft.com/azure/cosmos-db/modeling-data
https://kalele.io/blog-posts/the-ideal-domain-driven-design-aggregate-store/
https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-dotnet
https://docs.microsoft.com/azure/cosmos-db/local-emulator
https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account
https://hub.docker.com/r/microsoft/azure-cosmosdb-emulator/

259 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

• The MongoDB Docker image (Linux and Windows Container)

https://hub.docker.com/_/mongo/

• Use MongoChef (Studio 3T) with an Azure Cosmos DB: API for MongoDB account

https://docs.microsoft.com/azure/cosmos-db/mongodb-mongochef

Design the microservice application layer and Web

API

Use SOLID principles and Dependency Injection

SOLID principles are critical techniques to be used in any modern and mission-critical application,

such as developing a microservice with DDD patterns. SOLID is an acronym that groups five

fundamental principles:

• Single Responsibility principle

• Open/closed principle

• Liskov substitution principle

• Interface Segregation principle

• Dependency Inversion principle

SOLID is more about how you design your application or microservice internal layers and about

decoupling dependencies between them. It is not related to the domain, but to the application’s

technical design. The final principle, the Dependency Inversion principle, allows you to decouple the

infrastructure layer from the rest of the layers, which allows a better decoupled implementation of the

DDD layers.

Dependency Injection (DI) is one way to implement the Dependency Inversion principle. It is a

technique for achieving loose coupling between objects and their dependencies. Rather than directly

instantiating collaborators, or using static references (that is, using new…), the objects that a class

needs in order to perform its actions are provided to (or “injected into”) the class. Most often, classes

will declare their dependencies via their constructor, allowing them to follow the Explicit

Dependencies principle. Dependency Injection is usually based on specific Inversion of Control (IoC)

containers. ASP.NET Core provides a simple built-in IoC container, but you can also use your favorite

IoC container, like Autofac or Ninject.

By following the SOLID principles, your classes will tend naturally to be small, well-factored, and easily

tested. But how can you know if too many dependencies are being injected into your classes? If you

use DI through the constructor, it will be easy to detect that by just looking at the number of

parameters for your constructor. If there are too many dependencies, this is generally a sign (a code

smell) that your class is trying to do too much, and is probably violating the Single Responsibility

principle.

It would take another guide to cover SOLID in detail. Therefore, this guide requires you to have only a

minimum knowledge of these topics.

https://hub.docker.com/_/mongo/
https://docs.microsoft.com/azure/cosmos-db/mongodb-mongochef
https://deviq.com/code-smells/
https://deviq.com/code-smells/

260 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

• SOLID: Fundamental OOP Principles

https://deviq.com/solid/

• Inversion of Control Containers and the Dependency Injection pattern

https://martinfowler.com/articles/injection.html

• Steve Smith. New is Glue

https://ardalis.com/new-is-glue

Implement the microservice application layer using

the Web API

Use Dependency Injection to inject infrastructure objects into your

application layer

As mentioned previously, the application layer can be implemented as part of the artifact (assembly)

you are building, such as within a Web API project or an MVC web app project. In the case of a

microservice built with ASP.NET Core, the application layer will usually be your Web API library. If you

want to separate what is coming from ASP.NET Core (its infrastructure plus your controllers) from your

custom application layer code, you could also place your application layer in a separate class library,

but that is optional.

For instance, the application layer code of the ordering microservice is directly implemented as part of

the Ordering.API project (an ASP.NET Core Web API project), as shown in Figure 7-23.

Figure 7-23. The application layer in the Ordering.API ASP.NET Core Web API project

ASP.NET Core includes a simple built-in IoC container (represented by the IServiceProvider interface)

that supports constructor injection by default, and ASP.NET makes certain services available through

https://deviq.com/solid/
https://martinfowler.com/articles/injection.html
https://ardalis.com/new-is-glue
https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection

261 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

DI. ASP.NET Core uses the term service for any of the types you register that will be injected through

DI. You configure the built-in container’s services in the ConfigureServices method in your

application’s Startup class. Your dependencies are implemented in the services that a type needs and

that you register in the IoC container.

Typically, you want to inject dependencies that implement infrastructure objects. A very typical

dependency to inject is a repository. But you could inject any other infrastructure dependency that

you may have. For simpler implementations, you could directly inject your Unit of Work pattern object

(the EF DbContext object), because the DBContext is also the implementation of your infrastructure

persistence objects.

In the following example, you can see how .NET Core is injecting the required repository objects

through the constructor. The class is a command handler, which we will cover in the next section.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IOrderRepository _orderRepository;
 private readonly IIdentityService _identityService;
 private readonly IMediator _mediator;

 // Using DI to inject infrastructure persistence Repositories
 public CreateOrderCommandHandler(IMediator mediator,
 IOrderRepository orderRepository,
 IIdentityService identityService)
 {
 _orderRepository = orderRepository ??
 throw new ArgumentNullException(nameof(orderRepository));
 _identityService = identityService ??
 throw new ArgumentNullException(nameof(identityService));
 _mediator = mediator ??
 throw new ArgumentNullException(nameof(mediator));
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 // Create the Order AggregateRoot
 // Add child entities and value objects through the Order aggregate root
 // methods and constructor so validations, invariants, and business logic
 // make sure that consistency is preserved across the whole aggregate
 var address = new Address(message.Street, message.City, message.State,
 message.Country, message.ZipCode);
 var order = new Order(message.UserId, address, message.CardTypeId,
 message.CardNumber, message.CardSecurityNumber,
 message.CardHolderName, message.CardExpiration);

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 _orderRepository.Add(order);

 return await _orderRepository.UnitOfWork
 .SaveEntitiesAsync();
 }
}

262 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The class uses the injected repositories to execute the transaction and persist the state changes. It

does not matter whether that class is a command handler, an ASP.NET Core Web API controller

method, or a DDD Application Service. It is ultimately a simple class that uses repositories, domain

entities, and other application coordination in a fashion similar to a command handler. Dependency

Injection works the same way for all the mentioned classes, as in the example using DI based on the

constructor.

Register the dependency implementation types and interfaces or abstractions

Before you use the objects injected through constructors, you need to know where to register the

interfaces and classes that produce the objects injected into your application classes through DI. (Like

DI based on the constructor, as shown previously.)

Use the built-in IoC container provided by ASP.NET Core

When you use the built-in IoC container provided by ASP.NET Core, you register the types you want

to inject in the ConfigureServices method in the Startup.cs file, as in the following code:

// Registration of types into ASP.NET Core built-in container
public void ConfigureServices(IServiceCollection services)
{
 // Register out-of-the-box framework services.
 services.AddDbContext<CatalogContext>(c =>
 {
 c.UseSqlServer(Configuration["ConnectionString"]);
 },
 ServiceLifetime.Scoped
);
 services.AddMvc();
 // Register custom application dependencies.
 services.AddScoped<IMyCustomRepository, MyCustomSQLRepository>();
}

The most common pattern when registering types in an IoC container is to register a pair of types—an

interface and its related implementation class. Then when you request an object from the IoC

container through any constructor, you request an object of a certain type of interface. For instance, in

the previous example, the last line states that when any of your constructors have a dependency on

IMyCustomRepository (interface or abstraction), the IoC container will inject an instance of the

MyCustomSQLServerRepository implementation class.

Use the Scrutor library for automatic types registration

When using DI in .NET Core, you might want to be able to scan an assembly and automatically

register its types by convention. This feature is not currently available in ASP.NET Core. However, you

can use the Scrutor library for that. This approach is convenient when you have dozens of types that

need to be registered in your IoC container.

Additional resources

• Matthew King. Registering services with Scrutor

https://www.mking.net/blog/registering-services-with-scrutor

• Kristian Hellang. Scrutor. GitHub repo.

https://github.com/khellang/Scrutor

https://lostechies.com/jimmybogard/2008/08/21/services-in-domain-driven-design/
https://github.com/khellang/Scrutor
https://www.mking.net/blog/registering-services-with-scrutor
https://github.com/khellang/Scrutor

263 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Use Autofac as an IoC container

You can also use additional IoC containers and plug them into the ASP.NET Core pipeline, as in the

ordering microservice in eShopOnContainers, which uses Autofac. When using Autofac you typically

register the types via modules, which allow you to split the registration types between multiple files

depending on where your types are, just as you could have the application types distributed across

multiple class libraries.

For example, the following is the Autofac application module for the Ordering.API Web API project

with the types you will want to inject.

public class ApplicationModule : Autofac.Module
{
 public string QueriesConnectionString { get; }
 public ApplicationModule(string qconstr)
 {
 QueriesConnectionString = qconstr;
 }

 protected override void Load(ContainerBuilder builder)
 {
 builder.Register(c => new OrderQueries(QueriesConnectionString))
 .As<IOrderQueries>()
 .InstancePerLifetimeScope();
 builder.RegisterType<BuyerRepository>()
 .As<IBuyerRepository>()
 .InstancePerLifetimeScope();
 builder.RegisterType<OrderRepository>()
 .As<IOrderRepository>()
 .InstancePerLifetimeScope();
 builder.RegisterType<RequestManager>()
 .As<IRequestManager>()
 .InstancePerLifetimeScope();
 }
}

Autofac also has a feature to scan assemblies and register types by name conventions.

The registration process and concepts are very similar to the way you can register types with the built-

in ASP.NET Core IoC container, but the syntax when using Autofac is a bit different.

In the example code, the abstraction IOrderRepository is registered along with the implementation

class OrderRepository. This means that whenever a constructor is declaring a dependency through the

IOrderRepository abstraction or interface, the IoC container will inject an instance of the

OrderRepository class.

The instance scope type determines how an instance is shared between requests for the same service

or dependency. When a request is made for a dependency, the IoC container can return the following:

• A single instance per lifetime scope (referred to in the ASP.NET Core IoC container as scoped).

• A new instance per dependency (referred to in the ASP.NET Core IoC container as transient).

• A single instance shared across all objects using the IoC container (referred to in the ASP.NET

Core IoC container as singleton).

https://autofac.org/
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Infrastructure/AutofacModules/ApplicationModule.cs
https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Services/Ordering/Ordering.API
https://autofac.readthedocs.io/en/latest/register/scanning.html

264 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Additional resources

• Introduction to Dependency Injection in ASP.NET Core

https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection

• Autofac. Official documentation.

https://docs.autofac.org/en/latest/

• Comparing ASP.NET Core IoC container service lifetimes with Autofac IoC container

instance scopes - Cesar de la Torre.

https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-

and-autofac-ioc-instance-scopes/

Implement the Command and Command Handler patterns

In the DI-through-constructor example shown in the previous section, the IoC container was injecting

repositories through a constructor in a class. But exactly where were they injected? In a simple Web

API (for example, the catalog microservice in eShopOnContainers), you inject them at the MVC

controllers’ level, in a controller constructor, as part of the request pipeline of ASP.NET Core. However,

in the initial code of this section (the CreateOrderCommandHandler class from the Ordering.API

service in eShopOnContainers), the injection of dependencies is done through the constructor of a

particular command handler. Let us explain what a command handler is and why you would want to

use it.

The Command pattern is intrinsically related to the CQRS pattern that was introduced earlier in this

guide. CQRS has two sides. The first area is queries, using simplified queries with the Dapper micro

ORM, which was explained previously. The second area is commands, which are the starting point for

transactions, and the input channel from outside the service.

As shown in Figure 7-24, the pattern is based on accepting commands from the client side, processing

them based on the domain model rules, and finally persisting the states with transactions.

Figure 7-24. High-level view of the commands or “transactional side” in a CQRS pattern

https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection
https://docs.autofac.org/en/latest/
https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-instance-scopes/
https://devblogs.microsoft.com/cesardelatorre/comparing-asp-net-core-ioc-service-life-times-and-autofac-ioc-instance-scopes/
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Application/Commands/CreateOrderCommandHandler.cs
https://github.com/StackExchange/dapper-dot-net

265 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The command class

A command is a request for the system to perform an action that changes the state of the system.

Commands are imperative, and should be processed just once.

Since commands are imperatives, they are typically named with a verb in the imperative mood (for

example, “create” or “update”), and they might include the aggregate type, such as

CreateOrderCommand. Unlike an event, a command is not a fact from the past; it is only a request,

and thus may be refused.

Commands can originate from the UI as a result of a user initiating a request, or from a process

manager when the process manager is directing an aggregate to perform an action.

An important characteristic of a command is that it should be processed just once by a single receiver.

This is because a command is a single action or transaction you want to perform in the application.

For example, the same order creation command should not be processed more than once. This is an

important difference between commands and events. Events may be processed multiple times,

because many systems or microservices might be interested in the event.

In addition, it is important that a command be processed only once in case the command is not

idempotent. A command is idempotent if it can be executed multiple times without changing the

result, either because of the nature of the command, or because of the way the system handles the

command.

It is a good practice to make your commands and updates idempotent when it makes sense under

your domain’s business rules and invariants. For instance, to use the same example, if for any reason

(retry logic, hacking, etc.) the same CreateOrder command reaches your system multiple times, you

should be able to identify it and ensure that you do not create multiple orders. To do so, you need to

attach some kind of identity in the operations and identify whether the command or update was

already processed.

You send a command to a single receiver; you do not publish a command. Publishing is for events

that state a fact—that something has happened and might be interesting for event receivers. In the

case of events, the publisher has no concerns about which receivers get the event or what they do it.

But domain or integration events are a different story already introduced in previous sections.

A command is implemented with a class that contains data fields or collections with all the

information that is needed in order to execute that command. A command is a special kind of Data

Transfer Object (DTO), one that is specifically used to request changes or transactions. The command

itself is based on exactly the information that is needed for processing the command, and nothing

more.

The following example shows the simplified CreateOrderCommand class. This is an immutable

command that is used in the ordering microservice in eShopOnContainers.

// DDD and CQRS patterns comment
// Note that we recommend that you implement immutable commands
// In this case, immutability is achieved by having all the setters as private
// plus being able to update the data just once, when creating the object
// through the constructor.
// References on immutable commands:
// http://cqrs.nu/Faq
// https://docs.spine3.org/motivation/immutability.html

266 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

// http://blog.gauffin.org/2012/06/griffin-container-introducing-command-support/
// https://msdn.microsoft.com/library/bb383979.aspx
[DataContract]
public class CreateOrderCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 private readonly List<OrderItemDTO> _orderItems;
 [DataMember]
 public string City { get; private set; }
 [DataMember]
 public string Street { get; private set; }
 [DataMember]
 public string State { get; private set; }
 [DataMember]
 public string Country { get; private set; }
 [DataMember]
 public string ZipCode { get; private set; }
 [DataMember]
 public string CardNumber { get; private set; }
 [DataMember]
 public string CardHolderName { get; private set; }
 [DataMember]
 public DateTime CardExpiration { get; private set; }
 [DataMember]
 public string CardSecurityNumber { get; private set; }
 [DataMember]
 public int CardTypeId { get; private set; }
 [DataMember]
 public IEnumerable<OrderItemDTO> OrderItems => _orderItems;

 public CreateOrderCommand()
 {
 _orderItems = new List<OrderItemDTO>();
 }

 public CreateOrderCommand(List<BasketItem> basketItems, string city,
 string street,
 string state, string country, string zipcode,
 string cardNumber, string cardHolderName, DateTime cardExpiration,
 string cardSecurityNumber, int cardTypeId) : this()
 {
 _orderItems = MapToOrderItems(basketItems);
 City = city;
 Street = street;
 State = state;
 Country = country;
 ZipCode = zipcode;
 CardNumber = cardNumber;
 CardHolderName = cardHolderName;
 CardSecurityNumber = cardSecurityNumber;
 CardTypeId = cardTypeId;
 CardExpiration = cardExpiration;
 }

 public class OrderItemDTO
 {
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public decimal UnitPrice { get; set; }
 public decimal Discount { get; set; }

267 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 public int Units { get; set; }
 public string PictureUrl { get; set; }
 }
}

Basically, the command class contains all the data you need for performing a business transaction by

using the domain model objects. Thus, commands are simply data structures that contain read-only

data, and no behavior. The command’s name indicates its purpose. In many languages like C#,

commands are represented as classes, but they are not true classes in the real object-oriented sense.

As an additional characteristic, commands are immutable, because the expected usage is that they are

processed directly by the domain model. They do not need to change during their projected lifetime.

In a C# class, immutability can be achieved by not having any setters or other methods that change

internal state.

Bear in mind that if you intend or expect commands will be going through a serializing/deserializing

process, the properties must have private setter, and the [DataMember] (or [JsonProperty]) attribute,

otherwise the deserializer will not be able to reconstruct the object at destination with the required

values.

For example, the command class for creating an order is probably similar in terms of data to the order

you want to create, but you probably do not need the same attributes. For instance,

CreateOrderCommand does not have an order ID, because the order has not been created yet.

Many command classes can be simple, requiring only a few fields about some state that needs to be

changed. That would be the case if you are just changing the status of an order from “in process” to

“paid” or “shipped” by using a command similar to the following:

[DataContract]
public class UpdateOrderStatusCommand
 :IAsyncRequest<bool>
{
 [DataMember]
 public string Status { get; private set; }

 [DataMember]
 public string OrderId { get; private set; }

 [DataMember]
 public string BuyerIdentityGuid { get; private set; }
}

Some developers make their UI request objects separate from their command DTOs, but that is just a

matter of preference. It is a tedious separation with not much added value, and the objects are almost

exactly the same shape. For instance, in eShopOnContainers, some commands come directly from the

client side.

The Command Handler class

You should implement a specific command handler class for each command. That is how the pattern

works, and it is where you will use the command object, the domain objects, and the infrastructure

repository objects. The command handler is in fact the heart of the application layer in terms of CQRS

and DDD. However, all the domain logic should be contained within the domain classes—within the

aggregate roots (root entities), child entities, or domain services, but not within the command handler,

which is a class from the application layer.

https://lostechies.com/jimmybogard/2008/08/21/services-in-domain-driven-design/

268 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The command handler class offers a strong stepping stone in the way to achieve the Single

Responsibility Principle (SRP) mentioned in a previous section.

A command handler receives a command and obtains a result from the aggregate that is used. The

result should be either successful execution of the command, or an exception. In the case of an

exception, the system state should be unchanged.

The command handler usually takes the following steps:

• It receives the command object, like a DTO (from the mediator or other infrastructure object).

• It validates that the command is valid (if not validated by the mediator).

• It instantiates the aggregate root instance that is the target of the current command.

• It executes the method on the aggregate root instance, getting the required data from the

command.

• It persists the new state of the aggregate to its related database. This last operation is the actual

transaction.

Typically, a command handler deals with a single aggregate driven by its aggregate root (root entity).

If multiple aggregates should be impacted by the reception of a single command, you could use

domain events to propagate states or actions across multiple aggregates.

The important point here is that when a command is being processed, all the domain logic should be

inside the domain model (the aggregates), fully encapsulated and ready for unit testing. The

command handler just acts as a way to get the domain model from the database, and as the final

step, to tell the infrastructure layer (repositories) to persist the changes when the model is changed.

The advantage of this approach is that you can refactor the domain logic in an isolated, fully

encapsulated, rich, behavioral domain model without changing code in the application or

infrastructure layers, which are the plumbing level (command handlers, Web API, repositories, etc.).

When command handlers get complex, with too much logic, that can be a code smell. Review them,

and if you find domain logic, refactor the code to move that domain behavior to the methods of the

domain objects (the aggregate root and child entity).

As an example of a command handler class, the following code shows the same

CreateOrderCommandHandler class that you saw at the beginning of this chapter. In this case, we

want to highlight the Handle method and the operations with the domain model objects/aggregates.

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IOrderRepository _orderRepository;
 private readonly IIdentityService _identityService;
 private readonly IMediator _mediator;

 // Using DI to inject infrastructure persistence Repositories
 public CreateOrderCommandHandler(IMediator mediator,
 IOrderRepository orderRepository,
 IIdentityService identityService)
 {
 _orderRepository = orderRepository ??
 throw new ArgumentNullException(nameof(orderRepository));

https://en.wikipedia.org/wiki/Mediator_pattern

269 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 _identityService = identityService ??
 throw new ArgumentNullException(nameof(identityService));
 _mediator = mediator ??
 throw new ArgumentNullException(nameof(mediator));
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 // Create the Order AggregateRoot
 // Add child entities and value objects through the Order aggregate root
 // methods and constructor so validations, invariants, and business logic
 // make sure that consistency is preserved across the whole aggregate
 var address = new Address(message.Street, message.City, message.State,
 message.Country, message.ZipCode);
 var order = new Order(message.UserId, address, message.CardTypeId,
 message.CardNumber, message.CardSecurityNumber,
 message.CardHolderName, message.CardExpiration);

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,
 item.Discount, item.PictureUrl, item.Units);
 }

 _orderRepository.Add(order);

 return await _orderRepository.UnitOfWork
 .SaveEntitiesAsync();
 }
}

These are additional steps a command handler should take:

• Use the command’s data to operate with the aggregate root’s methods and behavior.

• Internally within the domain objects, raise domain events while the transaction is executed, but

that is transparent from a command handler point of view.

• If the aggregate’s operation result is successful and after the transaction is finished, raise

integration events. (These might also be raised by infrastructure classes like repositories.)

Additional resources

• Mark Seemann. At the Boundaries, Applications are Not Object-Oriented

https://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/

• Commands and events

http://cqrs.nu/Faq/commands-and-events

• What does a command handler do?

http://cqrs.nu/Faq/command-handlers

• Jimmy Bogard. Domain Command Patterns – Handlers

https://jimmybogard.com/domain-command-patterns-handlers/

• Jimmy Bogard. Domain Command Patterns – Validation

https://jimmybogard.com/domain-command-patterns-validation/

https://blog.ploeh.dk/2011/05/31/AttheBoundaries,ApplicationsareNotObject-Oriented/
http://cqrs.nu/Faq/commands-and-events
http://cqrs.nu/Faq/command-handlers
https://jimmybogard.com/domain-command-patterns-handlers/
https://jimmybogard.com/domain-command-patterns-validation/

270 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

The Command process pipeline: how to trigger a command handler

The next question is how to invoke a command handler. You could manually call it from each related

ASP.NET Core controller. However, that approach would be too coupled and is not ideal.

The other two main options, which are the recommended options, are:

• Through an in-memory Mediator pattern artifact.

• With an asynchronous message queue, in between controllers and handlers.

Use the Mediator pattern (in-memory) in the command pipeline

As shown in Figure 7-25, in a CQRS approach you use an intelligent mediator, similar to an in-memory

bus, which is smart enough to redirect to the right command handler based on the type of the

command or DTO being received. The single black arrows between components represent the

dependencies between objects (in many cases, injected through DI) with their related interactions.

Figure 7-25. Using the Mediator pattern in process in a single CQRS microservice

The reason that using the Mediator pattern makes sense is that in enterprise applications, the

processing requests can get complicated. You want to be able to add an open number of cross-

cutting concerns like logging, validations, audit, and security. In these cases, you can rely on a

mediator pipeline (see Mediator pattern) to provide a means for these extra behaviors or cross-

cutting concerns.

A mediator is an object that encapsulates the “how” of this process: it coordinates execution based on

state, the way a command handler is invoked, or the payload you provide to the handler. With a

mediator component you can apply cross-cutting concerns in a centralized and transparent way by

applying decorators (or pipeline behaviors since MediatR 3). For more information, see the Decorator

pattern.

Decorators and behaviors are similar to Aspect Oriented Programming (AOP), only applied to a

specific process pipeline managed by the mediator component. Aspects in AOP that implement cross-

cutting concerns are applied based on aspect weavers injected at compilation time or based on object

https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/jbogard/MediatR/wiki/Behaviors
https://www.nuget.org/packages/MediatR/3.0.0
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Aspect-oriented_programming

271 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

call interception. Both typical AOP approaches are sometimes said to work “like magic,” because it is

not easy to see how AOP does its work. When dealing with serious issues or bugs, AOP can be difficult

to debug. On the other hand, these decorators/behaviors are explicit and applied only in the context

of the mediator, so debugging is much more predictable and easy.

For example, in the eShopOnContainers ordering microservice, we implemented two sample

behaviors, a LogBehavior class and a ValidatorBehavior class. The implementation of the behaviors is

explained in the next section by showing how eShopOnContainers uses MediatR 3 behaviors.

Use message queues (out-of-proc) in the command’s pipeline

Another choice is to use asynchronous messages based on brokers or message queues, as shown in

Figure 7-26. That option could also be combined with the mediator component right before the

command handler.

Figure 7-26. Using message queues (out of process and inter-process communication) with CQRS commands

Using message queues to accept the commands can further complicate your command’s pipeline,

because you will probably need to split the pipeline into two processes connected through the

external message queue. Still, it should be used if you need to have improved scalability and

performance based on asynchronous messaging. Consider that in the case of Figure 7-26, the

controller just posts the command message into the queue and returns. Then the command handlers

process the messages at their own pace. That is a great benefit of queues: the message queue can act

as a buffer in cases when hyper scalability is needed, such as for stocks or any other scenario with a

high volume of ingress data.

However, because of the asynchronous nature of message queues, you need to figure out how to

communicate with the client application about the success or failure of the command’s process. As a

rule, you should never use “fire and forget” commands. Every business application needs to know if a

command was processed successfully, or at least validated and accepted.

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Behaviors/LoggingBehavior.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Behaviors/ValidatorBehavior.cs
https://www.nuget.org/packages/MediatR/3.0.0
https://github.com/jbogard/MediatR/wiki/Behaviors

272 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Thus, being able to respond to the client after validating a command message that was submitted to

an asynchronous queue adds complexity to your system, as compared to an in-process command

process that returns the operation’s result after running the transaction. Using queues, you might

need to return the result of the command process through other operation result messages, which will

require additional components and custom communication in your system.

Additionally, async commands are one-way commands, which in many cases might not be needed, as

is explained in the following interesting exchange between Burtsev Alexey and Greg Young in an

online conversation:

[Burtsev Alexey] I find lots of code where people use async command handling or one way command

messaging without any reason to do so (they are not doing some long operation, they are not

executing external async code, they do not even cross application boundary to be using message

bus). Why do they introduce this unnecessary complexity? And actually, I haven’t seen a CQRS code

example with blocking command handlers so far, though it will work just fine in most cases.

[Greg Young] […] an asynchronous command doesn’t exist; it’s actually another event. If I must accept

what you send me and raise an event if I disagree, it’s no longer you telling me to do something [that

is, it’s not a command]. It’s you telling me something has been done. This seems like a slight

difference at first, but it has many implications.

Asynchronous commands greatly increase the complexity of a system, because there is no simple way

to indicate failures. Therefore, asynchronous commands are not recommended other than when

scaling requirements are needed or in special cases when communicating the internal microservices

through messaging. In those cases, you must design a separate reporting and recovery system for

failures.

In the initial version of eShopOnContainers, we decided to use synchronous command processing,

started from HTTP requests and driven by the Mediator pattern. That easily allows you to return the

success or failure of the process, as in the CreateOrderCommandHandler implementation.

In any case, this should be a decision based on your application’s or microservice’s business

requirements.

Implement the command process pipeline with a mediator pattern

(MediatR)

As a sample implementation, this guide proposes using the in-process pipeline based on the Mediator

pattern to drive command ingestion and route commands, in memory, to the right command

handlers. The guide also proposes applying behaviors in order to separate cross-cutting concerns.

For implementation in .NET Core, there are multiple open-source libraries available that implement

the Mediator pattern. The library used in this guide is the MediatR open-source library (created by

Jimmy Bogard), but you could use another approach. MediatR is a small and simple library that allows

you to process in-memory messages like a command, while applying decorators or behaviors.

Using the Mediator pattern helps you to reduce coupling and to isolate the concerns of the requested

work, while automatically connecting to the handler that performs that work—in this case, to

command handlers.

https://groups.google.com/forum/#!msg/dddcqrs/xhJHVxDx2pM/WP9qP8ifYCwJ
https://github.com/dotnet-architecture/eShopOnContainers/blob/master/src/Services/Ordering/Ordering.API/Application/Commands/CreateOrderCommandHandler.cs
https://github.com/jbogard/MediatR/wiki/Behaviors
https://github.com/jbogard/MediatR

273 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Another good reason to use the Mediator pattern was explained by Jimmy Bogard when reviewing

this guide:

I think it might be worth mentioning testing here – it provides a nice consistent window into the

behavior of your system. Request-in, response-out. We’ve found that aspect quite valuable in building

consistently behaving tests.

First, let’s look at a sample WebAPI controller where you actually would use the mediator object. If

you were not using the mediator object, you would need to inject all the dependencies for that

controller, things like a logger object and others. Therefore, the constructor would be quite

complicated. On the other hand, if you use the mediator object, the constructor of your controller can

be a lot simpler, with just a few dependencies instead of many dependencies if you had one per cross-

cutting operation, as in the following example:

public class MyMicroserviceController : Controller
{
 public MyMicroserviceController(IMediator mediator,
 IMyMicroserviceQueries microserviceQueries)
 // ...

You can see that the mediator provides a clean and lean Web API controller constructor. In addition,

within the controller methods, the code to send a command to the mediator object is almost one line:

[Route("new")]
[HttpPost]
public async Task<IActionResult> ExecuteBusinessOperation([FromBody]RunOpCommand
 runOperationCommand)
{
 var commandResult = await _mediator.SendAsync(runOperationCommand);

 return commandResult ? (IActionResult)Ok() : (IActionResult)BadRequest();
}

Implement idempotent Commands

In eShopOnContainers, a more advanced example than the above is submitting a

CreateOrderCommand object from the Ordering microservice. But since the Ordering business

process is a bit more complex and, in our case, it actually starts in the Basket microservice, this action

of submitting the CreateOrderCommand object is performed from an integration-event handler

named >UserCheckoutAcceptedIntegrationEvent.cs](https://github.com/dotnet-

architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Integratio

nEvents/EventHandling/UserCheckoutAcceptedIntegrationEventHandler.cs) instead of a simple

WebAPI controller called from the client App as in the previous simpler example.

Nevertheless, the action of submitting the Command to MediatR is pretty similar, as shown in the

following code.

var createOrderCommand = new CreateOrderCommand(eventMsg.Basket.Items,
 eventMsg.UserId, eventMsg.City,
 eventMsg.Street, eventMsg.State,
 eventMsg.Country, eventMsg.ZipCode,
 eventMsg.CardNumber,
 eventMsg.CardHolderName,
 eventMsg.CardExpiration,
 eventMsg.CardSecurityNumber,

274 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 eventMsg.CardTypeId);

var requestCreateOrder = new IdentifiedCommand<CreateOrderCommand,bool>(createOrderCommand,

eventMsg.RequestId);
result = await _mediator.Send(requestCreateOrder);

However, this case is also a little bit more advanced because we’re also implementing idempotent

commands. The CreateOrderCommand process should be idempotent, so if the same message comes

duplicated through the network, because of any reason, like retries, the same business order will be

processed just once.

This is implemented by wrapping the business command (in this case CreateOrderCommand) and

embedding it into a generic IdentifiedCommand which is tracked by an ID of every message coming

through the network that has to be idempotent.

In the code below, you can see that the IdentifiedCommand is nothing more than a DTO with and ID

plus the wrapped business command object.

public class IdentifiedCommand<T, R> : IRequest<R>
 where T : IRequest<R>
{
 public T Command { get; }
 public Guid Id { get; }
 public IdentifiedCommand(T command, Guid id)
 {
 Command = command;
 Id = id;
 }
}

Then the CommandHandler for the IdentifiedCommand named IdentifiedCommandHandler.cs will

basically check if the ID coming as part of the message already exists in a table. If it already exists, that

command won’t be processed again, so it behaves as an idempotent command. That infrastructure

code is performed by the _requestManager.ExistAsync method call below.

// IdentifiedCommandHandler.cs
public class IdentifiedCommandHandler<T, R> :
 IAsyncRequestHandler<IdentifiedCommand<T, R>, R>
 where T : IRequest<R>
{
 private readonly IMediator _mediator;
 private readonly IRequestManager _requestManager;

 public IdentifiedCommandHandler(IMediator mediator,
 IRequestManager requestManager)
 {
 _mediator = mediator;
 _requestManager = requestManager;
 }

 protected virtual R CreateResultForDuplicateRequest()
 {
 return default(R);
 }

 public async Task<R> Handle(IdentifiedCommand<T, R> message)
 {

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Commands/IdentifiedCommandHandler.cs

275 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 var alreadyExists = await _requestManager.ExistAsync(message.Id);
 if (alreadyExists)
 {
 return CreateResultForDuplicateRequest();
 }
 else
 {
 await _requestManager.CreateRequestForCommandAsync<T>(message.Id);

 // Send the embedded business command to mediator
 // so it runs its related CommandHandler
 var result = await _mediator.Send(message.Command);

 return result;
 }
 }
}

Since the IdentifiedCommand acts like a business command’s envelope, when the business command

needs to be processed because it is not a repeated Id, then it takes that inner business command and

re-submits it to Mediator, as in the last part of the code shown above when running

_mediator.Send(message.Command), from the IdentifiedCommandHandler.cs.

When doing that, it will link and run the business command handler, in this case, the

CreateOrderCommandHandler which is running transactions against the Ordering database, as shown

in the following code.

// CreateOrderCommandHandler.cs
public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{
 private readonly IOrderRepository _orderRepository;
 private readonly IIdentityService _identityService;
 private readonly IMediator _mediator;

 // Using DI to inject infrastructure persistence Repositories
 public CreateOrderCommandHandler(IMediator mediator,
 IOrderRepository orderRepository,
 IIdentityService identityService)
 {
 _orderRepository = orderRepository ??
 throw new ArgumentNullException(nameof(orderRepository));
 _identityService = identityService ??
 throw new ArgumentNullException(nameof(identityService));
 _mediator = mediator ??
 throw new ArgumentNullException(nameof(mediator));
 }

 public async Task<bool> Handle(CreateOrderCommand message)
 {
 // Add/Update the Buyer AggregateRoot
 var address = new Address(message.Street, message.City, message.State,
 message.Country, message.ZipCode);
 var order = new Order(message.UserId, address, message.CardTypeId,
 message.CardNumber, message.CardSecurityNumber,
 message.CardHolderName, message.CardExpiration);

 foreach (var item in message.OrderItems)
 {
 order.AddOrderItem(item.ProductId, item.ProductName, item.UnitPrice,

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Commands/IdentifiedCommandHandler.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Commands/CreateOrderCommandHandler.cs

276 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 item.Discount, item.PictureUrl, item.Units);
 }

 _orderRepository.Add(order);

 return await _orderRepository.UnitOfWork
 .SaveEntitiesAsync();
 }
}

Register the types used by MediatR

In order for MediatR to be aware of your command handler classes, you need to register the mediator

classes and the command handler classes in your IoC container. By default, MediatR uses Autofac as

the IoC container, but you can also use the built-in ASP.NET Core IoC container or any other container

supported by MediatR.

The following code shows how to register Mediator’s types and commands when using Autofac

modules.

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {
 builder.RegisterAssemblyTypes(typeof(IMediator).GetTypeInfo().Assembly)
 .AsImplementedInterfaces();

 // Register all the Command classes (they implement IAsyncRequestHandler)
 // in assembly holding the Commands
 builder.RegisterAssemblyTypes(
 typeof(CreateOrderCommand).GetTypeInfo().Assembly).
 AsClosedTypesOf(typeof(IAsyncRequestHandler<,>));
 // Other types registration
 //...
 }
}

This is where “the magic happens” with MediatR.

Because each command handler implements the generic IAsyncRequestHandler interface, when

registering the assemblies, the code registers with RegisteredAssemblyTypes all the types marked as

IAsyncRequestHandler while relating the CommandHandlers with their Commands, thanks to the

relationship stated at the CommandHandler class, as in the following example:

public class CreateOrderCommandHandler
 : IAsyncRequestHandler<CreateOrderCommand, bool>
{

That is the code that correlates commands with command handlers. The handler is just a simple class,

but it inherits from RequestHandler, where T is the command type, and MediatR makes sure it is

invoked with the correct payload (the command).

277 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Apply cross-cutting concerns when processing commands with the

Behaviors in MediatR

There is one more thing: being able to apply cross-cutting concerns to the mediator pipeline. You can

also see at the end of the Autofac registration module code how it registers a behavior type,

specifically, a custom LoggingBehavior class and a ValidatorBehavior class. But you could add other

custom behaviors, too.

public class MediatorModule : Autofac.Module
{
 protected override void Load(ContainerBuilder builder)
 {
 builder.RegisterAssemblyTypes(typeof(IMediator).GetTypeInfo().Assembly)
 .AsImplementedInterfaces();

 // Register all the Command classes (they implement IAsyncRequestHandler)
 // in assembly holding the Commands
 builder.RegisterAssemblyTypes(
 typeof(CreateOrderCommand).GetTypeInfo().Assembly).
 AsClosedTypesOf(typeof(IAsyncRequestHandler<,>));
 // Other types registration
 //...
 builder.RegisterGeneric(typeof(LoggingBehavior<,>)).
 As(typeof(IPipelineBehavior<,>));
 builder.RegisterGeneric(typeof(ValidatorBehavior<,>)).
 As(typeof(IPipelineBehavior<,>));
 }
}

That LoggingBehavior class can be implemented as the following code, which logs information about

the command handler being executed and whether it was successful or not.

public class LoggingBehavior<TRequest, TResponse>
 : IPipelineBehavior<TRequest, TResponse>
{
 private readonly ILogger<LoggingBehavior<TRequest, TResponse>> _logger;
 public LoggingBehavior(ILogger<LoggingBehavior<TRequest, TResponse>> logger) =>
 _logger = logger;

 public async Task<TResponse> Handle(TRequest request,
 RequestHandlerDelegate<TResponse> next)
 {
 _logger.LogInformation($"Handling {typeof(TRequest).Name}");
 var response = await next();
 _logger.LogInformation($"Handled {typeof(TResponse).Name}");
 return response;
 }
}

Just by implementing this behavior class and by registering it in the pipeline (in the MediatorModule

above), all the commands processed through MediatR will be logging information about the

execution.

The eShopOnContainers ordering microservice also applies a second behavior for basic validations,

the ValidatorBehavior class that relies on the FluentValidation library, as shown in the following code:

public class ValidatorBehavior<TRequest, TResponse>
 : IPipelineBehavior<TRequest, TResponse>

https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Behaviors/LoggingBehavior.cs
https://github.com/dotnet-architecture/eShopOnContainers/blob/dev/src/Services/Ordering/Ordering.API/Application/Behaviors/ValidatorBehavior.cs
https://github.com/JeremySkinner/FluentValidation

278 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

{
 private readonly IValidator<TRequest>[] _validators;
 public ValidatorBehavior(IValidator<TRequest>[] validators) =>
 _validators = validators;

 public async Task<TResponse> Handle(TRequest request,
 RequestHandlerDelegate<TResponse> next)
 {
 var failures = _validators
 .Select(v => v.Validate(request))
 .SelectMany(result => result.Errors)
 .Where(error => error != null)
 .ToList();

 if (failures.Any())
 {
 throw new OrderingDomainException(
 $"Command Validation Errors for type {typeof(TRequest).Name}",
 new ValidationException("Validation exception", failures));
 }

 var response = await next();
 return response;
 }
}

The behavior here is raising an exception if validation fails, but you could also return a result object,

containing the command result if it succeeded or the validation messages in case it didn’t. This would

probably make it easier to display validation results to the user.

Then, based on the FluentValidation library, we created validation for the data passed with

CreateOrderCommand, as in the following code:

public class CreateOrderCommandValidator : AbstractValidator<CreateOrderCommand>
{
 public CreateOrderCommandValidator()
 {
 RuleFor(command => command.City).NotEmpty();
 RuleFor(command => command.Street).NotEmpty();
 RuleFor(command => command.State).NotEmpty();
 RuleFor(command => command.Country).NotEmpty();
 RuleFor(command => command.ZipCode).NotEmpty();
 RuleFor(command => command.CardNumber).NotEmpty().Length(12, 19);
 RuleFor(command => command.CardHolderName).NotEmpty();
 RuleFor(command =>
command.CardExpiration).NotEmpty().Must(BeValidExpirationDate).WithMessage("Please specify
a valid card expiration date");
 RuleFor(command => command.CardSecurityNumber).NotEmpty().Length(3);
 RuleFor(command => command.CardTypeId).NotEmpty();
 RuleFor(command => command.OrderItems).Must(ContainOrderItems).WithMessage("No
order items found");
 }

 private bool BeValidExpirationDate(DateTime dateTime)
 {
 return dateTime >= DateTime.UtcNow;
 }

 private bool ContainOrderItems(IEnumerable<OrderItemDTO> orderItems)
 {

https://github.com/JeremySkinner/FluentValidation

279 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

 return orderItems.Any();
 }
}

You could create additional validations. This is a very clean and elegant way to implement your

command validations.

In a similar way, you could implement other behaviors for additional aspects or cross-cutting concerns

that you want to apply to commands when handling them.

Additional resources

The mediator pattern

• Mediator pattern

https://en.wikipedia.org/wiki/Mediator_pattern

The decorator pattern

• Decorator pattern

https://en.wikipedia.org/wiki/Decorator_pattern

MediatR (Jimmy Bogard)

• MediatR. GitHub repo.

https://github.com/jbogard/MediatR

• CQRS with MediatR and AutoMapper

https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/

• Put your controllers on a diet: POSTs and commands.

https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-

commands/

• Tackling cross-cutting concerns with a mediator pipeline

https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-

mediator-pipeline/

• CQRS and REST: the perfect match

https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/

• MediatR Pipeline Examples

https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/

• Vertical Slice Test Fixtures for MediatR and ASP.NET Core

https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-

asp-net-core/

• MediatR Extensions for Microsoft Dependency Injection Released

https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-

dependency-injection-released/

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://github.com/jbogard/MediatR
https://lostechies.com/jimmybogard/2015/05/05/cqrs-with-mediatr-and-automapper/
https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/
https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/
https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/
https://lostechies.com/jimmybogard/2014/09/09/tackling-cross-cutting-concerns-with-a-mediator-pipeline/
https://lostechies.com/jimmybogard/2016/06/01/cqrs-and-rest-the-perfect-match/
https://lostechies.com/jimmybogard/2016/10/13/mediatr-pipeline-examples/
https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/
https://lostechies.com/jimmybogard/2016/10/24/vertical-slice-test-fixtures-for-mediatr-and-asp-net-core/
https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/
https://lostechies.com/jimmybogard/2016/07/19/mediatr-extensions-for-microsoft-dependency-injection-released/

280 Tackle Business Complexity in a Microservice with DDD and CQRS Patterns

Fluent validation

• Jeremy Skinner. FluentValidation. GitHub repo.

https://github.com/JeremySkinner/FluentValidation

https://github.com/JeremySkinner/FluentValidation

281 Implement Resilient Applications

S E C T I O N 8

Implement Resilient
Applications

Your microservice and cloud-based applications must embrace the partial failures that will certainly

occur eventually. You must design your application to be resilient to those partial failures.

Resiliency is the ability to recover from failures and continue to function. It isn’t about avoiding

failures but accepting the fact that failures will happen and responding to them in a way that avoids

downtime or data loss. The goal of resiliency is to return the application to a fully functioning state

after a failure.

It’s challenging enough to design and deploy a microservices-based application. But you also need to

keep your application running in an environment where some sort of failure is certain. Therefore, your

application should be resilient. It should be designed to cope with partial failures, like network

outages or nodes or VMs crashing in the cloud. Even microservices (containers) being moved to a

different node within a cluster can cause intermittent short failures within the application.

The many individual components of your application should also incorporate health monitoring

features. By following the guidelines in this chapter, you can create an application that can work

smoothly in spite of transient downtime or the normal hiccups that occur in complex and cloud-based

deployments.

Handle partial failure
In distributed systems like microservices-based applications, there’s an ever-present risk of partial

failure. For instance, a single microservice/container can fail or might not be available to respond for a

short time, or a single VM or server can crash. Since clients and services are separate processes, a

service might not be able to respond in a timely way to a client’s request. The service might be

overloaded and responding very slowly to requests or might simply not be accessible for a short time

because of network issues.

For example, consider the Order details page from the eShopOnContainers sample application. If the

ordering microservice is unresponsive when the user tries to submit an order, a bad implementation

of the client process (the MVC web application)—for example, if the client code were to use

synchronous RPCs with no timeout—would block threads indefinitely waiting for a response. Besides

creating a bad user experience, every unresponsive wait consumes or blocks a thread, and threads are

extremely valuable in highly scalable applications. If there are many blocked threads, eventually the

application’s runtime can run out of threads. In that case, the application can become globally

unresponsive instead of just partially unresponsive, as shown in Figure 8-1.

282 Implement Resilient Applications

Figure 8-1. Partial failures because of dependencies that impact service thread availability

In a large microservices-based application, any partial failure can be amplified, especially if most of

the internal microservices interaction is based on synchronous HTTP calls (which is considered an anti-

pattern). Think about a system that receives millions of incoming calls per day. If your system has a

bad design that’s based on long chains of synchronous HTTP calls, these incoming calls might result in

many more millions of outgoing calls (let’s suppose a ratio of 1:4) to dozens of internal microservices

as synchronous dependencies. This situation is shown in Figure 8-2, especially dependency #3.

Figure 8-2. The impact of having an incorrect design featuring long chains of HTTP requests

Intermittent failure is guaranteed in a distributed and cloud-based system, even if every dependency

itself has excellent availability. It’s a fact you need to consider.

283 Implement Resilient Applications

If you do not design and implement techniques to ensure fault tolerance, even small downtimes can

be amplified. As an example, 50 dependencies each with 99.99% of availability would result in several

hours of downtime each month because of this ripple effect. When a microservice dependency fails

while handling a high volume of requests, that failure can quickly saturate all available request threads

in each service and crash the whole application.

Figure 8-3. Partial failure amplified by microservices with long chains of synchronous HTTP calls

To minimize this problem, in the section Asynchronous microservice integration enforce microservice’s

autonomy, this guide encourages you to use asynchronous communication across the internal

microservices.

In addition, it’s essential that you design your microservices and client applications to handle partial

failures—that is, to build resilient microservices and client applications.

Strategies to handle partial failure
Strategies for dealing with partial failures include the following.

Use asynchronous communication (for example, message-based communication) across

internal microservices. It’s highly advisable not to create long chains of synchronous HTTP calls

across the internal microservices because that incorrect design will eventually become the main cause

of bad outages. On the contrary, except for the front-end communications between the client

applications and the first level of microservices or fine-grained API Gateways, it’s recommended to use

only asynchronous (message-based) communication once past the initial request/response cycle,

across the internal microservices. Eventual consistency and event-driven architectures will help to

minimize ripple effects. These approaches enforce a higher level of microservice autonomy and

therefore prevent against the problem noted here.

Use retries with exponential backoff. This technique helps to avoid short and intermittent failures

by performing call retries a certain number of times, in case the service was not available only for a

short time. This might occur due to intermittent network issues or when a microservice/container is

284 Implement Resilient Applications

moved to a different node in a cluster. However, if these retries are not designed properly with circuit

breakers, it can aggravate the ripple effects, ultimately even causing a Denial of Service (DoS).

Work around network timeouts. In general, clients should be designed not to block indefinitely and

to always use timeouts when waiting for a response. Using timeouts ensures that resources are never

tied up indefinitely.

Use the Circuit Breaker pattern. In this approach, the client process tracks the number of failed

requests. If the error rate exceeds a configured limit, a “circuit breaker” trips so that further attempts

fail immediately. (If a large number of requests are failing, that suggests the service is unavailable and

that sending requests is pointless.) After a timeout period, the client should try again and, if the new

requests are successful, close the circuit breaker.

Provide fallbacks. In this approach, the client process performs fallback logic when a request fails,

such as returning cached data or a default value. This is an approach suitable for queries, and is more

complex for updates or commands.

Limit the number of queued requests. Clients should also impose an upper bound on the number

of outstanding requests that a client microservice can send to a particular service. If the limit has been

reached, it’s probably pointless to make additional requests, and those attempts should fail

immediately. In terms of implementation, the Polly Bulkhead Isolation policy can be used to fulfill this

requirement. This approach is essentially a parallelization throttle with

System.Threading.SemaphoreSlim as the implementation. It also permits a “queue” outside the

bulkhead. You can proactively shed excess load even before execution (for example, because capacity

is deemed full). This makes its response to certain failure scenarios faster than a circuit breaker would

be, since the circuit breaker waits for the failures. The BulkheadPolicy object in Polly exposes how full

the bulkhead and queue are, and offers events on overflow so can also be used to drive automated

horizontal scaling.

Additional resources

• Resiliency patterns

https://docs.microsoft.com/azure/architecture/patterns/category/resiliency

• Adding Resilience and Optimizing Performance

https://docs.microsoft.com/previous-versions/msp-n-p/jj591574(v=pandp.10)

• Bulkhead. GitHub repo. Implementation with Polly policy.

https://github.com/App-vNext/Polly/wiki/Bulkhead

• Designing resilient applications for Azure

https://docs.microsoft.com/azure/architecture/resiliency/

• Transient fault handling

https://docs.microsoft.com/azure/architecture/best-practices/transient-faults

Implement retries with exponential backoff
Retries with exponential backoff is a technique that retries an operation, with an exponentially

increasing wait time, up to a maximum retry count has been reached (the exponential backoff). This

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://github.com/App-vNext/Polly/wiki/Bulkhead
http://www.thepollyproject.org/
https://docs.microsoft.com/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/previous-versions/msp-n-p/jj591574(v=pandp.10)
https://github.com/App-vNext/Polly/wiki/Bulkhead
https://docs.microsoft.com/azure/architecture/resiliency/
https://docs.microsoft.com/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/azure/architecture/patterns/retry
https://en.wikipedia.org/wiki/Exponential_backoff

285 Implement Resilient Applications

technique embraces the fact that cloud resources might intermittently be unavailable for more than a

few seconds for any reason. For example, an orchestrator might be moving a container to another

node in a cluster for load balancing. During that time, some requests might fail. Another example

could be a database like SQL Azure, where a database can be moved to another server for load

balancing, causing the database to be unavailable for a few seconds.

There are many approaches to implement retries logic with exponential backoff.

Implement resilient Entity Framework Core SQL

connections
For Azure SQL DB, Entity Framework (EF) Core already provides internal database connection resiliency

and retry logic. But you need to enable the Entity Framework execution strategy for each

Microsoft.EntityFrameworkCore.DbContext connection if you want to have resilient EF Core

connections.

For instance, the following code at the EF Core connection level enables resilient SQL connections that

are retried if the connection fails.

// Startup.cs from any ASP.NET Core Web API
public class Startup
{
 // Other code ...
 public IServiceProvider ConfigureServices(IServiceCollection services)
 {
 // ...
 services.AddDbContext<CatalogContext>(options =>
 {
 options.UseSqlServer(Configuration["ConnectionString"],
 sqlServerOptionsAction: sqlOptions =>
 {
 sqlOptions.EnableRetryOnFailure(
 maxRetryCount: 10,
 maxRetryDelay: TimeSpan.FromSeconds(30),
 errorNumbersToAdd: null);
 });
 });
 }
//...
}

Execution strategies and explicit transactions using BeginTransaction

and multiple DbContexts

When retries are enabled in EF Core connections, each operation you perform using EF Core becomes

its own retriable operation. Each query and each call to SaveChanges will be retried as a unit if a

transient failure occurs.

However, if your code initiates a transaction using BeginTransaction, you’re defining your own group

of operations that need to be treated as a unit. Everything inside the transaction has to be rolled back

if a failure occurs.

https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency
https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency

286 Implement Resilient Applications

If you try to execute that transaction when using an EF execution strategy (retry policy) and you call

SaveChanges from multiple DbContexts, you’ll get an exception like this one:

System.InvalidOperationException: The configured execution strategy

‘SqlServerRetryingExecutionStrategy’ does not support user initiated transactions. Use the execution

strategy returned by ‘DbContext.Database.CreateExecutionStrategy()’ to execute all the operations in

the transaction as a retriable unit.

The solution is to manually invoke the EF execution strategy with a delegate representing everything

that needs to be executed. If a transient failure occurs, the execution strategy will invoke the delegate

again. For example, the following code show how it’s implemented in eShopOnContainers with two

multiple DbContexts (_catalogContext and the IntegrationEventLogContext) when updating a product

and then saving the ProductPriceChangedIntegrationEvent object, which needs to use a different

DbContext.

public async Task<IActionResult> UpdateProduct(
 [FromBody]CatalogItem productToUpdate)
{
 // Other code ...

 var oldPrice = catalogItem.Price;
 var raiseProductPriceChangedEvent = oldPrice != productToUpdate.Price;

 // Update current product
 catalogItem = productToUpdate;

 // Save product's data and publish integration event through the Event Bus
 // if price has changed
 if (raiseProductPriceChangedEvent)
 {
 //Create Integration Event to be published through the Event Bus
 var priceChangedEvent = new ProductPriceChangedIntegrationEvent(
 catalogItem.Id, productToUpdate.Price, oldPrice);

 // Achieving atomicity between original Catalog database operation and the
 // IntegrationEventLog thanks to a local transaction
 await _catalogIntegrationEventService.SaveEventAndCatalogContextChangesAsync(
 priceChangedEvent);

 // Publish through the Event Bus and mark the saved event as published
 await _catalogIntegrationEventService.PublishThroughEventBusAsync(
 priceChangedEvent);
 }
 // Just save the updated product because the Product's Price hasn't changed.
 else
 {
 await _catalogContext.SaveChangesAsync();
 }
}

The first Microsoft.EntityFrameworkCore.DbContext is _catalogContext and the second DbContext is

within the _integrationEventLogService object. The Commit action is performed across all

DbContext objects using an EF execution strategy.

To achieve this multiple DbContext commit, the SaveEventAndCatalogContextChangesAsync uses a

ResilientTransaction class, as shown in the following code:

287 Implement Resilient Applications

public class CatalogIntegrationEventService : ICatalogIntegrationEventService
{
 //…
 public async Task SaveEventAndCatalogContextChangesAsync(
 IntegrationEvent evt)
 {
 // Use of an EF Core resiliency strategy when using multiple DbContexts
 // within an explicit BeginTransaction():
 // https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency
 await ResilientTransaction.New(_catalogContext).ExecuteAsync(async () =>
 {
 // Achieving atomicity between original catalog database
 // operation and the IntegrationEventLog thanks to a local transaction
 await _catalogContext.SaveChangesAsync();
 await _eventLogService.SaveEventAsync(evt,
 _catalogContext.Database.CurrentTransaction.GetDbTransaction());
 });
 }
}

The ResilientTransaction.ExecuteAsync method basically begins a transaction from the passed

DbContext (_catalogContext) and then makes the EventLogService use that transaction to save

changes from the IntegrationEventLogContext and then commits the whole transaction.

public class ResilientTransaction
{
 private DbContext _context;
 private ResilientTransaction(DbContext context) =>
 _context = context ?? throw new ArgumentNullException(nameof(context));

 public static ResilientTransaction New (DbContext context) =>
 new ResilientTransaction(context);

 public async Task ExecuteAsync(Func<Task> action)
 {
 // Use of an EF Core resiliency strategy when using multiple DbContexts
 // within an explicit BeginTransaction():
 // https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency
 var strategy = _context.Database.CreateExecutionStrategy();
 await strategy.ExecuteAsync(async () =>
 {
 using (var transaction = _context.Database.BeginTransaction())
 {
 await action();
 transaction.Commit();
 }
 });
 }
}

Additional resources

• Connection Resiliency and Command Interception with EF in an ASP.NET MVC Application

https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-

mvc/connection-resiliency-and-command-interception-with-the-entity-framework-in-an-asp-

net-mvc-application

https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/connection-resiliency-and-command-interception-with-the-entity-framework-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/connection-resiliency-and-command-interception-with-the-entity-framework-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/connection-resiliency-and-command-interception-with-the-entity-framework-in-an-asp-net-mvc-application

288 Implement Resilient Applications

• Cesar de la Torre. Using Resilient Entity Framework Core SQL Connections and

Transactions

https://devblogs.microsoft.com/cesardelatorre/using-resilient-entity-framework-core-sql-

connections-and-transactions-retries-with-exponential-backoff/

Explore custom HTTP call retries with exponential

backoff
To create resilient microservices, you need to handle possible HTTP failure scenarios. One way of

handling those failures, although not recommended, is to create your own implementation of retries

with exponential backoff.

Important note: This section shows you how you could create your own custom code to implement

HTTP call retries. However, it isn’t recommended to do it on your own but to use more powerful and

reliable while simpler to use mechanisms, such as HttpClientFactory with Polly, available since .NET

Core 2.1. Those recommended approaches are explained in the next sections.

As an initial exploration, you could implement your own code with a utility class for exponential

backoff as in RetryWithExponentialBackoff.cs, plus code like the following.

public sealed class RetryWithExponentialBackoff
{
 private readonly int maxRetries, delayMilliseconds, maxDelayMilliseconds;

 public RetryWithExponentialBackoff(int maxRetries = 50,
 int delayMilliseconds = 200,
 int maxDelayMilliseconds = 2000)
 {
 this.maxRetries = maxRetries;
 this.delayMilliseconds = delayMilliseconds;
 this.maxDelayMilliseconds = maxDelayMilliseconds;
 }

 public async Task RunAsync(Func<Task> func)
 {
 ExponentialBackoff backoff = new ExponentialBackoff(this.maxRetries,
 this.delayMilliseconds,
 this.maxDelayMilliseconds);
 retry:
 try
 {
 await func();
 }
 catch (Exception ex) when (ex is TimeoutException ||
 ex is System.Net.Http.HttpRequestException)
 {
 Debug.WriteLine("Exception raised is: " +
 ex.GetType().ToString() +
 " –Message: " + ex.Message +
 " -- Inner Message: " +
 ex.InnerException.Message);
 await backoff.Delay();
 goto retry;
 }
 }

https://devblogs.microsoft.com/cesardelatorre/using-resilient-entity-framework-core-sql-connections-and-transactions-retries-with-exponential-backoff/
https://devblogs.microsoft.com/cesardelatorre/using-resilient-entity-framework-core-sql-connections-and-transactions-retries-with-exponential-backoff/
https://gist.github.com/CESARDELATORRE/6d7f647b29e55fdc219ee1fd2babb260

289 Implement Resilient Applications

}

public struct ExponentialBackoff
{
 private readonly int m_maxRetries, m_delayMilliseconds, m_maxDelayMilliseconds;
 private int m_retries, m_pow;

 public ExponentialBackoff(int maxRetries, int delayMilliseconds,
 int maxDelayMilliseconds)
 {
 m_maxRetries = maxRetries;
 m_delayMilliseconds = delayMilliseconds;
 m_maxDelayMilliseconds = maxDelayMilliseconds;
 m_retries = 0;
 m_pow = 1;
 }

 public Task Delay()
 {
 if (m_retries == m_maxRetries)
 {
 throw new TimeoutException("Max retry attempts exceeded.");
 }
 ++m_retries;
 if (m_retries < 31)
 {
 m_pow = m_pow << 1; // m_pow = Pow(2, m_retries - 1)
 }
 int delay = Math.Min(m_delayMilliseconds * (m_pow - 1) / 2,
 m_maxDelayMilliseconds);
 return Task.Delay(delay);
 }
}

Using this code in a client C# application (another Web API client microservice, an ASP.NET MVC

application, or even a C# Xamarin application) is straightforward. The following example shows how,

using the HttpClient class.

public async Task<Catalog> GetCatalogItems(int page,int take, int? brand, int? type)
{
 _apiClient = new HttpClient();
 var itemsQs = $"items?pageIndex={page}&pageSize={take}";
 var filterQs = "";
 var catalogUrl =
$"{_remoteServiceBaseUrl}items{filterQs}?pageIndex={page}&pageSize={take}";
 var dataString = "";
 //
 // Using HttpClient with Retry and Exponential Backoff
 //
 var retry = new RetryWithExponentialBackoff();
 await retry.RunAsync(async () =>
 {
 // work with HttpClient call
 dataString = await _apiClient.GetStringAsync(catalogUrl);
 });
 return JsonConvert.DeserializeObject<Catalog>(dataString);
}

290 Implement Resilient Applications

Remember that this code is suitable only as a proof of concept. The next sections explain how to use

more sophisticated approaches while simpler, by using HttpClientFactory. HttpClientFactory is

available since .NET Core 2.1, with proven resiliency libraries like Polly.

Use HttpClientFactory to implement resilient HTTP

requests
HttpClientFactory is an opinionated factory, available since .NET Core 2.1, for creating

System.Net.Http.HttpClient instances to be used in your applications.

Issues with the original HttpClient class available in .NET Core

The original and well-known HttpClient class can be easily used, but in some cases, it isn’t being

properly used by many developers.

As a first issue, while this class is disposable, using it with the using statement is not the best choice

because even when you dispose HttpClient object, the underlying socket is not immediately released

and can cause a serious issue named ‘sockets exhaustion’. For more information about this issue, see

You’re using HttpClient wrong and it’s destabilizing your software blog post.

Therefore, HttpClient is intended to be instantiated once and reused throughout the life of an

application. Instantiating an HttpClient class for every request will exhaust the number of sockets

available under heavy loads. That issue will result in SocketException errors. Possible approaches to

solve that problem are based on the creation of the HttpClient object as singleton or static, as

explained in this Microsoft article on HttpClient usage.

But there’s a second issue with HttpClient that you can have when you use it as singleton or static

object. In this case, a singleton or static HttpClient doesn’t respect DNS changes, as explained in this

issue at the .NET Core GitHub repo.

To address those mentioned issues and make the management of HttpClient instances easier, .NET

Core 2.1 introduced a new HttpClientFactory that can also be used to implement resilient HTTP calls

by integrating Polly with it.

What is HttpClientFactory

HttpClientFactory is designed to:

• Provide a central location for naming and configuring logical HttpClients. For example, you may

configure a client (Service Agent) that’s pre-configured to access a specific microservice.

• Codify the concept of outgoing middleware via delegating handlers in HttpClient and

implementing Polly-based middleware to take advantage of Polly’s policies for resiliency.

• HttpClient already has the concept of delegating handlers that could be linked together for

outgoing HTTP requests. You register http clients into the factory plus you can use a Polly

handler that allows Polly policies to be used for Retry, CircuitBreakers, etc.

• Manage the lifetime of HttpClientMessageHandlers to avoid the mentioned problems/issues

that can occur when managing HttpClient lifetimes yourself.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/
https://docs.microsoft.com/dotnet/csharp/tutorials/console-webapiclient
https://github.com/dotnet/corefx/issues/11224

291 Implement Resilient Applications

Multiple ways to use HttpClientFactory

There are several ways that you can use HttpClientFactory in your application:

• Use HttpClientFactory Directly

• Use Named Clients

• Use Typed Clients

• Use Generated Clients

For the sake of brevity, this guidance shows the most structured way to use HttpClientFactory that’s

to use Typed Clients (Service Agent pattern), but all options are documented and are currently listed

in this article covering HttpClientFactory usage.

How to use Typed Clients with HttpClientFactory

So, what’s a “Typed Client”? It’s just an HttpClient that’s configured upon injection by the

DefaultHttpClientFactory.

The following diagram shows how Typed Clients are used with HttpClientFactory:

Figure 8-4. Using HttpClientFactory with Typed Client classes.

https://docs.microsoft.com/aspnet/core/fundamentals/http-requests?#consumption-patterns

292 Implement Resilient Applications

First, setup HttpClientFactory in your application, adding a reference to the

Microsoft.Extensions.Http package that includes the AddHttpClient() extension method for

IServiceCollection. This extension method registers the DefaultHttpClientFactory to be used as

a singleton for the interface IHttpClientFactory. It defines a transient configuration for the

HttpMessageHandlerBuilder. This message handler (HttpMessageHandler object), taken from a pool,

is used by the HttpClient returned from the factory.

In the next code, you can see how AddHttpClient() can be used to register Typed Clients (Service

Agents) that need to use HttpClient.

// Startup.cs
//Add http client services at ConfigureServices(IServiceCollection services)
services.AddHttpClient<ICatalogService, CatalogService>();
services.AddHttpClient<IBasketService, BasketService>();
services.AddHttpClient<IOrderingService, OrderingService>();

Registering the client services as shown in the previous code, makes the DefaultClientFactory

create an HttpClient configured specifically for each service, as we’ll explain in the next paragraph.

Just by registering your client service class with AddHttpClient(), the HttpClient object that will be

injected into your class will use the configuration and policies provided upon registration. In the next

sections, you’ll see those policies like Polly’s retries or circuit-breakers.

HttpClient lifetimes

Each time you get an HttpClient object from the IHttpClientFactory, a new instance is returned.

But each HttpClient uses an HttpMessageHandler that’s pooled and reused by the

IHttpClientFactory to reduce resource consumption, as long as the HttpMessageHandler’s lifetime

hasn’t expired.

Pooling of handlers is desirable as each handler typically manages its own underlying HTTP

connections; creating more handlers than necessary can result in connection delays. Some handlers

also keep connections open indefinitely, which can prevent the handler from reacting to DNS

changes.

The HttpMessageHandler objects in the pool have a lifetime that’s the length of time that an

HttpMessageHandler instance in the pool can be reused. The default value is two minutes, but it can

be overridden per Typed Client. To override it, call SetHandlerLifetime() on the

IHttpClientBuilder that’s returned when creating the client, as shown in the following code:

//Set 5 min as the lifetime for the HttpMessageHandler objects in the pool used for the
Catalog Typed Client
services.AddHttpClient<ICatalogService, CatalogService>()
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

Each Typed Client can have its own configured handler lifetime value. Set the lifetime to

InfiniteTimeSpan to disable handler expiry.

Implement your Typed Client classes that use the injected and configured HttpClient

As a previous step, you need to have your Typed Client classes defined, such as the classes in the

sample code, like ‘BasketService’, ‘CatalogService’, ‘OrderingService’, etc. – A Typed Client is a class

that accepts an HttpClient object (injected through its constructor) and uses it to call some remote

HTTP service. For example:

293 Implement Resilient Applications

public class CatalogService : ICatalogService
{
 private readonly HttpClient _httpClient;
 private readonly string _remoteServiceBaseUrl;

 public CatalogService(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<Catalog> GetCatalogItems(int page, int take,
 int? brand, int? type)
 {
 var uri = API.Catalog.GetAllCatalogItems(_remoteServiceBaseUrl,
 page, take, brand, type);

 var responseString = await _httpClient.GetStringAsync(uri);

 var catalog = JsonConvert.DeserializeObject<Catalog>(responseString);
 return catalog;
 }
}

The Typed Client (CatalogService in the example) is activated by DI (Dependency Injection), meaning

that it can accept any registered service in its constructor, in addition to HttpClient.

A Typed Client is, effectively, a transient object, meaning that a new instance is created each time one

is needed and it will receive a new HttpClient instance each time it’s constructed. However, the

HttpMessageHandler objects in the pool are the objects that are reused by multiple Http requests.

Use your Typed Client classes

Finally, once you have your type classes implemented and have them registered with AddHttpClient(),

you can use it anywhere you can have services injected by DI, for example in any Razor page code or

any controller of an MVC web app, like in the following code from eShopOnContainers.

namespace Microsoft.eShopOnContainers.WebMVC.Controllers
{
 public class CatalogController : Controller
 {
 private ICatalogService _catalogSvc;

 public CatalogController(ICatalogService catalogSvc) =>
 _catalogSvc = catalogSvc;

 public async Task<IActionResult> Index(int? BrandFilterApplied,
 int? TypesFilterApplied,
 int? page,
 [FromQuery]string errorMsg)
 {
 var itemsPage = 10;
 var catalog = await _catalogSvc.GetCatalogItems(page ?? 0,
 itemsPage,
 BrandFilterApplied,
 TypesFilterApplied);
 //… Additional code
 }

294 Implement Resilient Applications

 }
}

Up to this point, the code shown is just performing regular Http requests, but the ‘magic’ comes in

the following sections where, just by adding policies and delegating handlers to your registered Typed

Clients, all the HTTP requests to be done by HttpClient will behave taking into account resilient

policies such as retries with exponential backoff, circuit breakers, or any other custom delegating

handler to implement additional security features, like using auth tokens, or any other custom feature.

Additional resources

• Using HttpClientFactory in .NET Core

https://docs.microsoft.com/aspnet/core/fundamentals/http-requests?view=aspnetcore-2.1

• HttpClientFactory GitHub repo

https://github.com/aspnet/Extensions/tree/master/src/HttpClientFactory

Implement HTTP call retries with exponential backoff

with HttpClientFactory and Polly policies
The recommended approach for retries with exponential backoff is to take advantage of more

advanced .NET libraries like the open-source Polly library.

Polly is a .NET library that provides resilience and transient-fault handling capabilities. You can

implement those capabilities by applying Polly policies such as Retry, Circuit Breaker, Bulkhead

Isolation, Timeout, and Fallback. Polly targets .NET 4.x and the .NET Standard Library 1.0 (which

supports .NET Core).

However, using Polly’s library with your own custom code with HttpClient can be significantly

complex. In the original version of eShopOnContainers, there was a ResilientHttpClient building-block

based on Polly. But with the release of HttpClientFactory, resilient HTTP communication has become

much simpler to implement, so that building-block was deprecated from eShopOnContainers.

The following steps show how you can use Http retries with Polly integrated into HttpClientFactory,

which is explained in the previous section.

Reference the ASP.NET Core 2.2 packages

HttpClientFactory is available since .NET Core 2.1 however we recommend you to use the latest

ASP.NET Core 2.2 packages from NuGet in your project. You typically need the AspNetCore

metapackage, and the extension package Microsoft.Extensions.Http.Polly.

Configure a client with Polly’s Retry policy, in Startup

As shown in previous sections, you need to define a named or typed client HttpClient configuration in

your standard Startup.ConfigureServices(…) method, but now, you add incremental code specifying

the policy for the Http retries with exponential backoff, as below:

//ConfigureServices() - Startup.cs
services.AddHttpClient<IBasketService, BasketService>()

https://docs.microsoft.com/aspnet/core/fundamentals/http-requests?view=aspnetcore-2.1
https://github.com/aspnet/Extensions/tree/master/src/HttpClientFactory
https://github.com/App-vNext/Polly
https://github.com/dotnet-architecture/eShopOnContainers/commit/0c317d56f3c8937f6823cf1b45f5683397274815#diff-e6532e623eb606a0f8568663403e3a10

295 Implement Resilient Applications

 .SetHandlerLifetime(TimeSpan.FromMinutes(5)) //Set lifetime to five minutes
 .AddPolicyHandler(GetRetryPolicy());

The AddPolicyHandler() method is what adds policies to the HttpClient objects you’ll use. In this

case, it’s adding a Polly’s policy for Http Retries with exponential backoff.

To have a more modular approach, the Http Retry Policy can be defined in a separate method within

the Startup.cs file, as shown in the following code:

static IAsyncPolicy<HttpResponseMessage> GetRetryPolicy()
{
 return HttpPolicyExtensions
 .HandleTransientHttpError()
 .OrResult(msg => msg.StatusCode == System.Net.HttpStatusCode.NotFound)
 .WaitAndRetryAsync(6, retryAttempt => TimeSpan.FromSeconds(Math.Pow(2,
 retryAttempt)));
}

With Polly, you can define a Retry policy with the number of retries, the exponential backoff

configuration, and the actions to take when there’s an HTTP exception, such as logging the error. In

this case, the policy is configured to try six times with an exponential retry, starting at two seconds.

so it will try six times and the seconds between each retry will be exponential, starting on two

seconds.

Add a jitter strategy to the retry policy

A regular Retry policy can impact your system in cases of high concurrency and scalability and under

high contention. To overcome peaks of similar retries coming from many clients in case of partial

outages, a good workaround is to add a jitter strategy to the retry algorithm/policy. This can improve

the overall performance of the end-to-end system by adding randomness to the exponential backoff.

This spreads out the spikes when issues arise. When you use a plain Polly policy, code to implement

jitter could look like the following example:

Random jitterer = new Random();
Policy
 .Handle<HttpResponseException>() // etc
 .WaitAndRetry(5, // exponential back-off plus some jitter
 retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt))
 + TimeSpan.FromMilliseconds(jitterer.Next(0, 100))
);

Additional resources

• Retry pattern

https://docs.microsoft.com/azure/architecture/patterns/retry

• Polly and HttpClientFactory

https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory

• Polly (.NET resilience and transient-fault-handling library)

https://github.com/App-vNext/Polly

• Marc Brooker. Jitter: Making Things Better With Randomness

https://brooker.co.za/blog/2015/03/21/backoff.html

https://docs.microsoft.com/azure/architecture/patterns/retry
https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory
https://github.com/App-vNext/Polly
https://brooker.co.za/blog/2015/03/21/backoff.html

296 Implement Resilient Applications

Implement the Circuit Breaker pattern
As noted earlier, you should handle faults that might take a variable amount of time to recover from,

as might happen when you try to connect to a remote service or resource. Handling this type of fault

can improve the stability and resiliency of an application.

In a distributed environment, calls to remote resources and services can fail due to transient faults,

such as slow network connections and timeouts, or if resources are responding slowly or are

temporarily unavailable. These faults typically correct themselves after a short time, and a robust cloud

application should be prepared to handle them by using a strategy like the “Retry pattern”.

However, there can also be situations where faults are due to unanticipated events that might take

much longer to fix. These faults can range in severity from a partial loss of connectivity to the

complete failure of a service. In these situations, it might be pointless for an application to continually

retry an operation that’s unlikely to succeed.

Instead, the application should be coded to accept that the operation has failed and handle the failure

accordingly.

Using Http retries carelessly could result in creating a Denial of Service (DoS) attack within your own

software. As a microservice fails or performs slowly, multiple clients might repeatedly retry failed

requests. That creates a dangerous risk of exponentially increasing traffic targeted at the failing

service.

Therefore, you need some kind of defense barrier so that excessive requests stop when it isn’t worth

to keep trying. That defense barrier is precisely the circuit breaker.

The Circuit Breaker pattern has a different purpose than the “Retry pattern”. The “Retry pattern”

enables an application to retry an operation in the expectation that the operation will eventually

succeed. The Circuit Breaker pattern prevents an application from performing an operation that’s

likely to fail. An application can combine these two patterns. However, the retry logic should be

sensitive to any exception returned by the circuit breaker, and it should abandon retry attempts if the

circuit breaker indicates that a fault is not transient.

Implement Circuit Breaker pattern with HttpClientFactory and Polly

As when implementing retries, the recommended approach for circuit breakers is to take advantage of

proven .NET libraries like Polly and its native integration with HttpClientFactory.

Adding a circuit breaker policy into your HttpClientFactory outgoing middleware pipeline is as simple

as adding a single incremental piece of code to what you already have when using HttpClientFactory.

The only addition here to the code used for HTTP call retries is the code where you add the Circuit

Breaker policy to the list of policies to use, as shown in the following incremental code, part of the

ConfigureServices() method.

//ConfigureServices() - Startup.cs
services.AddHttpClient<IBasketService, BasketService>()
 .SetHandlerLifetime(TimeSpan.FromMinutes(5)) //Sample. Default lifetime is 2
minutes
 .AddHttpMessageHandler<HttpClientAuthorizationDelegatingHandler>()

https://en.wikipedia.org/wiki/Denial-of-service_attack

297 Implement Resilient Applications

 .AddPolicyHandler(GetRetryPolicy())
 .AddPolicyHandler(GetCircuitBreakerPolicy());

The AddPolicyHandler() method is what adds policies to the HttpClient objects you’ll use. In this

case, it’s adding a Polly policy for a circuit breaker.

To have a more modular approach, the Circuit Breaker Policy is defined in a separate method called

GetCircuitBreakerPolicy(), as shown in the following code:

static IAsyncPolicy<HttpResponseMessage> GetCircuitBreakerPolicy()
{
 return HttpPolicyExtensions
 .HandleTransientHttpError()
 .CircuitBreakerAsync(5, TimeSpan.FromSeconds(30));
}

In the code example above, the circuit breaker policy is configured so it breaks or opens the circuit

when there have been five consecutive faults when retrying the Http requests. When that happens,

the circuit will break for 30 seconds: in that period, calls will be failed immediately by the circuit-

breaker rather than actually be placed. The policy automatically interprets relevant exceptions and

HTTP status codes as faults.

Circuit breakers should also be used to redirect requests to a fallback infrastructure if you had issues

in a particular resource that’s deployed in a different environment than the client application or

service that’s performing the HTTP call. That way, if there’s an outage in the datacenter that impacts

only your backend microservices but not your client applications, the client applications can redirect

to the fallback services. Polly is planning a new policy to automate this failover policy scenario.

All those features are for cases where you’re managing the failover from within the .NET code, as

opposed to having it managed automatically for you by Azure, with location transparency.

From a usage point of view, when using HttpClient, there’s no need to add anything new here

because the code is the same than when using HttpClient with HttpClientFactory, as shown in

previous sections.

Test Http retries and circuit breakers in eShopOnContainers

Whenever you start the eShopOnContainers solution in a Docker host, it needs to start multiple

containers. Some of the containers are slower to start and initialize, like the SQL Server container. This

is especially true the first time you deploy the eShopOnContainers application into Docker because it

needs to set up the images and the database. The fact that some containers start slower than others

can cause the rest of the services to initially throw HTTP exceptions, even if you set dependencies

between containers at the docker-compose level, as explained in previous sections. Those docker-

compose dependencies between containers are just at the process level. The container’s entry point

process might be started, but SQL Server might not be ready for queries. The result can be a cascade

of errors, and the application can get an exception when trying to consume that particular container.

You might also see this type of error on startup when the application is deploying to the cloud. In that

case, orchestrators might be moving containers from one node or VM to another (that is, starting new

instances) when balancing the number of containers across the cluster’s nodes.

The way ‘eShopOnContainers’ solves those issues when starting all the containers is by using the Retry

pattern illustrated earlier.

https://docs.microsoft.com/aspnet/core/fundamentals/http-requests?view=aspnetcore-2.1#handle-transient-faults
https://docs.microsoft.com/aspnet/core/fundamentals/http-requests?view=aspnetcore-2.1#handle-transient-faults
https://github.com/App-vNext/Polly/wiki/Polly-Roadmap#failover-policy

298 Implement Resilient Applications

Test the circuit breaker in eShopOnContainers

There are a few ways you can break/open the circuit and test it with eShopOnContainers.

One option is to lower the allowed number of retries to 1 in the circuit breaker policy and redeploy

the whole solution into Docker. With a single retry, there’s a good chance that an HTTP request will

fail during deployment, the circuit breaker will open, and you get an error.

Another option is to use custom middleware that’s implemented in the Basket microservice. When

this middleware is enabled, it catches all HTTP requests and returns status code 500. You can enable

the middleware by making a GET request to the failing URI, like the following:

• GET http://localhost:5103/failing

This request returns the current state of the middleware. If the middleware is enabled, the

request return status code 500. If the middleware is disabled, there’s no response.

• GET http://localhost:5103/failing?enable

This request enables the middleware.

• GET http://localhost:5103/failing?disable

This request disables the middleware.

For instance, once the application is running, you can enable the middleware by making a request

using the following URI in any browser. Note that the ordering microservice uses port 5103.

http://localhost:5103/failing?enable

You can then check the status using the URI http://localhost:5103/failing, as shown in Figure 8-

5.

Figure 8-5. Checking the state of the “Failing” ASP.NET middleware – In this case, disabled.

At this point, the Basket microservice responds with status code 500 whenever you call invoke it.

Once the middleware is running, you can try making an order from the MVC web application. Because

the requests fail, the circuit will open.

In the following example, you can see that the MVC web application has a catch block in the logic for

placing an order. If the code catches an open-circuit exception, it shows the user a friendly message

telling them to wait.

public class CartController : Controller
{
 //…
 public async Task<IActionResult> Index()

299 Implement Resilient Applications

 {
 try
 {
 var user = _appUserParser.Parse(HttpContext.User);
 //Http requests using the Typed Client (Service Agent)
 var vm = await _basketSvc.GetBasket(user);
 return View(vm);
 }
 catch (BrokenCircuitException)
 {
 // Catches error when Basket.api is in circuit-opened mode
 HandleBrokenCircuitException();
 }
 return View();
 }

 private void HandleBrokenCircuitException()
 {
 TempData["BasketInoperativeMsg"] = "Basket Service is inoperative, please try later
on. (Business message due to Circuit-Breaker)";
 }
}

Here’s a summary. The Retry policy tries several times to make the HTTP request and gets HTTP errors.

When the number of retries reaches the maximum number set for the Circuit Breaker policy (in this

case, 5), the application throws a BrokenCircuitException. The result is a friendly message, as shown in

Figure 8-6.

Figure 8-6. Circuit breaker returning an error to the UI

You can implement different logic for when to open/break the circuit. Or you can try an HTTP request

against a different back-end microservice if there’s a fallback datacenter or redundant back-end

system.

Finally, another possibility for the CircuitBreakerPolicy is to use Isolate (which forces open and

holds open the circuit) and Reset (which closes it again). These could be used to build a utility HTTP

endpoint that invokes Isolate and Reset directly on the policy. Such an HTTP endpoint could also be

used, suitably secured, in production for temporarily isolating a downstream system, such as when

you want to upgrade it. Or it could trip the circuit manually to protect a downstream system you

suspect to be faulting.

Additional resources

• Circuit Breaker pattern

https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker

https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker

300 Implement Resilient Applications

Health monitoring
Health monitoring can allow near-real-time information about the state of your containers and

microservices. Health monitoring is critical to multiple aspects of operating microservices and is

especially important when orchestrators perform partial application upgrades in phases, as explained

later.

Microservices-based applications often use heartbeats or health checks to enable their performance

monitors, schedulers, and orchestrators to keep track of the multitude of services. If services cannot

send some sort of “I’m alive” signal, either on demand or on a schedule, your application might face

risks when you deploy updates, or it might just detect failures too late and not be able to stop

cascading failures that can end up in major outages.

In the typical model, services send reports about their status, and that information is aggregated to

provide an overall view of the state of health of your application. If you’re using an orchestrator, you

can provide health information to your orchestrator’s cluster, so that the cluster can act accordingly. If

you invest in high-quality health reporting that’s customized for your application, you can detect and

fix issues for your running application much more easily.

Implement health checks in ASP.NET Core services

When developing an ASP.NET Core microservice or web application, you can use the built-in health

checks feature that was released in ASP .NET Core 2.2. Like many ASP.NET Core features, health checks

come with a set of services and a middleware.

Health check services and middleware are easy to use and provide capabilities that let you validate if

any external resource needed for your application (like a SQL Server database or a remote API) is

working properly. When you use this feature, you can also decide what it means that the resource is

healthy, as we explain later.

To use this feature effectively, you need to first configure services in your microservices. Second, you

need a front-end application that queries for the health reports. That front-end application could be a

custom reporting application, or it could be an orchestrator itself that can react accordingly to the

health states.

Use the HealthChecks feature in your back-end ASP.NET microservices

In this section, you will learn how the HealthChecks feature is used in a sample ASP.NET Core 2.2 Web

API application. Implementation of this feature in a large scale microservices like the

eShopOnContainers is explained in the later section. To begin, you need to define what constitutes a

healthy status for each microservice. In the sample application, the microservices are healthy if the

microservice API is accessible via HTTP and its related SQL Server database is also available.

In .NET Core 2.2, with the built-in APIs, you can configure the services, add a Health Check for the

microservice and its dependent SQL Server database in this way:

// Startup.cs from .NET Core 2.2 Web Api sample
//
public void ConfigureServices(IServiceCollection services)
{
 //...
 // Registers required services for health checks

301 Implement Resilient Applications

 services.AddHealthChecks()
 // Add a health check for a SQL database
 .AddCheck("MyDatabase", new
SqlConnectionHealthCheck(Configuration["ConnectionStrings:DefaultConnection"]));
}

In the previous code, the services.AddHealthChecks() method configures a basic HTTP check that

returns a status code 200 with “Healthy”. Further, the AddCheck() extension method configures a

custom SqlConnectionHealthCheck that checks the related SQL Database’s health.

The AddCheck() method adds a new health check with a specified name and the implementation of

type IHealthCheck. You can add multiple Health Checks using AddCheck method, so a microservice

won’t provide a “healthy” status until all its checks are healthy.

SqlConnectionHealthCheck is a custom class that implements IHealthCheck, which takes a

connection string as a constructor parameter and executes a simple query to check if the connection

to the SQL database is successful. It returns HealthCheckResult.Healthy() if the query was executed

successfully and a FailureStatus with the actual exception when it fails.

// Sample SQL Connection Health Check
public class SqlConnectionHealthCheck : IHealthCheck
{
 private static readonly string DefaultTestQuery = "Select 1";

 public string ConnectionString { get; }

 public string TestQuery { get; }

 public SqlConnectionHealthCheck(string connectionString)
 : this(connectionString, testQuery: DefaultTestQuery)
 {
 }

 public SqlConnectionHealthCheck(string connectionString, string testQuery)
 {
 ConnectionString = connectionString ?? throw new
ArgumentNullException(nameof(connectionString));
 TestQuery = testQuery;
 }

 public async Task<HealthCheckResult> CheckHealthAsync(HealthCheckContext context,
CancellationToken cancellationToken = default(CancellationToken))
 {
 using (var connection = new SqlConnection(ConnectionString))
 {
 try
 {
 await connection.OpenAsync(cancellationToken);

 if (TestQuery != null)
 {
 var command = connection.CreateCommand();
 command.CommandText = TestQuery;

 await command.ExecuteNonQueryAsync(cancellationToken);
 }
 }
 catch (DbException ex)
 {

302 Implement Resilient Applications

 return new HealthCheckResult(status: context.Registration.FailureStatus,
exception: ex);
 }
 }

 return HealthCheckResult.Healthy();
 }
}

Note that in the previous code, Select 1 is the query used to check the Health of the database. To

monitor the availability of your microservices, orchestrators like Kubernetes and Service Fabric

periodically perform health checks by sending requests to test the microservices. It’s important to

keep your database queries efficient so that these operations are quick and don’t result in a higher

utilization of resources.

Finally, create a middleware that responds to the url path “/hc”:

// Startup.cs from .NET Core 2.2 Web Api sample
//
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 //…
 app.UseHealthChecks("/hc");
 //…
}

When the endpoint /hc is invoked, it runs all the health checks that are configured in the

AddHealthChecks() method in the Startup class and shows the result.

HealthChecks implementation in eShopOnContainers

Microservices in eShopOnContainers rely on multiple services to perform its task. For example, the

Catalog.API microservice from eShopOnContainers depends on many services, such as Azure Blob

Storage, SQL Server, and RabbitMQ. Therefore, it has several health checks added using the

AddCheck() method. For every dependent service, a custom IHealthCheck implementation that

defines its respective health status needs to be added.

The open-source project AspNetCore.Diagnostics.HealthChecks solves this problem by providing

custom health check implementations for each of these enterprise services that are built on top of

.NET Core 2.2. Each health check is available as an individual NuGet package that can be easily added

to the project. eShopOnContainers use them extensively in all its microservices.

For instance, in the Catalog.API microservice, the following NuGet packages were added:

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks

303 Implement Resilient Applications

Figure 8-7. Custom Health Checks implemented in Catalog.API using AspNetCore.Diagnostics.HealthChecks

In the following code, the health check implementations are added for each dependent service and

then the middleware is configured:

// Startup.cs from Catalog.api microservice
//
public static IServiceCollection AddCustomHealthCheck(this IServiceCollection services,
IConfiguration configuration)
{
 var accountName = configuration.GetValue<string>("AzureStorageAccountName");
 var accountKey = configuration.GetValue<string>("AzureStorageAccountKey");

 var hcBuilder = services.AddHealthChecks();

 hcBuilder
 .AddSqlServer(
 configuration["ConnectionString"],
 name: "CatalogDB-check",
 tags: new string[] { "catalogdb" });

 if (!string.IsNullOrEmpty(accountName) && !string.IsNullOrEmpty(accountKey))
 {
 hcBuilder
 .AddAzureBlobStorage(

$"DefaultEndpointsProtocol=https;AccountName={accountName};AccountKey={accountKey};Endpoint
Suffix=core.windows.net",
 name: "catalog-storage-check",
 tags: new string[] { "catalogstorage" });
 }
 if (configuration.GetValue<bool>("AzureServiceBusEnabled"))
 {
 hcBuilder
 .AddAzureServiceBusTopic(
 configuration["EventBusConnection"],
 topicName: "eshop_event_bus",
 name: "catalog-servicebus-check",
 tags: new string[] { "servicebus" });
 }
 else
 {
 hcBuilder
 .AddRabbitMQ(
 $"amqp://{configuration["EventBusConnection"]}",
 name: "catalog-rabbitmqbus-check",
 tags: new string[] { "rabbitmqbus" });
 }

 return services;
}

Finally, we add the HealthCheck middleware to listen to “/hc” endpoint:

// HealthCheck middleware
app.UseHealthChecks("/hc", new HealthCheckOptions()
{
 Predicate = _ => true,
 ResponseWriter = UIResponseWriter.WriteHealthCheckUIResponse

304 Implement Resilient Applications

});
}

Query your microservices to report about their health status

When you’ve configured health checks as described in this article and you have the microservice

running in Docker, you can directly check from a browser if it’s healthy. You have to publish the

container port in the Docker host, so you can access the container through the external Docker host IP

or through localhost, as shown in figure 8-8.

Figure 8-8. Checking health status of a single service from a browser

In that test, you can see that the Catalog.API microservice (running on port 5101) is healthy,

returning HTTP status 200 and status information in JSON. The service also checked the health of its

SQL Server database dependency and RabbitMQ, so the health check reported itself as healthy.

Use watchdogs

A watchdog is a separate service that can watch health and load across services, and report health

about the microservices by querying with the HealthChecks library introduced earlier. This can help

prevent errors that would not be detected based on the view of a single service. Watchdogs also are a

good place to host code that can perform remediation actions for known conditions without user

interaction.

The eShopOnContainers sample contains a web page that displays sample health check reports, as

shown in Figure 8-9. This is the simplest watchdog you could have since it only shows the state of the

microservices and web applications in eShopOnContainers. Usually a watchdog also takes actions

when it detects unhealthy states.

Fortunately, AspNetCore.Diagnostics.HealthChecks also provides AspNetCore.HealthChecks.UI NuGet

package that can be used to display the health check results from the configured URIs.

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/AspNetCore.HealthChecks.UI/

305 Implement Resilient Applications

Figure 8-9. Sample health check report in eShopOnContainers

In summary, this watchdog service queries each microservice’s “/hc” endpoint. This will execute all the

health checks defined within it and return an overall health state depending on all those checks. The

HealthChecksUI is easy to consume with a few configuration entries and two lines of code that needs

to be added into the Startup.cs of the watchdog service.

Sample configuration file for health check UI:

// Configuration
{
 "HealthChecks-UI": {
 "HealthChecks": [
 {
 "Name": "Ordering HTTP Check",
 "Uri": "http://localhost:5102/hc"
 },
 {
 "Name": "Ordering HTTP Background Check",
 "Uri": "http://localhost:5111/hc"

306 Implement Resilient Applications

 },
 //...
]}
}

Startup.cs file that adds HealthChecksUI:

// Startup.cs from WebStatus(Watch Dog) service
//
public void ConfigureServices(IServiceCollection services)
{
 //…
 // Registers required services for health checks
 services.AddHealthChecksUI();
}
//…
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 //…
 app.UseHealthChecksUI(config=> config.UIPath = “/hc-ui”);
 //…
}

Health checks when using orchestrators

To monitor the availability of your microservices, orchestrators like Kubernetes and Service Fabric

periodically perform health checks by sending requests to test the microservices. When an

orchestrator determines that a service/container is unhealthy, it stops routing requests to that

instance. It also usually creates a new instance of that container.

For instance, most orchestrators can use health checks to manage zero-downtime deployments. Only

when the status of a service/container changes to healthy will the orchestrator start routing traffic to

service/container instances.

Health monitoring is especially important when an orchestrator performs an application upgrade.

Some orchestrators (like Azure Service Fabric) update services in phases—for example, they might

update one-fifth of the cluster surface for each application upgrade. The set of nodes that’s upgraded

at the same time is referred to as an upgrade domain. After each upgrade domain has been upgraded

and is available to users, that upgrade domain must pass health checks before the deployment moves

to the next upgrade domain.

Another aspect of service health is reporting metrics from the service. This is an advanced capability of

the health model of some orchestrators, like Service Fabric. Metrics are important when using an

orchestrator because they are used to balance resource usage. Metrics also can be an indicator of

system health. For example, you might have an application that has many microservices, and each

instance reports a requests-per-second (RPS) metric. If one service is using more resources (memory,

processor, etc.) than another service, the orchestrator could move service instances around in the

cluster to try to maintain even resource utilization.

Note that Azure Service Fabric provides its own Health Monitoring model, which is more advanced

than simple health checks.

https://docs.microsoft.com/azure/service-fabric/service-fabric-health-introduction

307 Implement Resilient Applications

Advanced monitoring: visualization, analysis, and alerts

The final part of monitoring is visualizing the event stream, reporting on service performance, and

alerting when an issue is detected. You can use different solutions for this aspect of monitoring.

You can use simple custom applications showing the state of your services, like the custom page

shown when explaining the AspNetCore.Diagnostics.HealthChecks. Or you could use more advanced

tools like Azure Monitor to raise alerts based on the stream of events.

Finally, if you’re storing all the event streams, you can use Microsoft Power BI or other solutions like

Kibana or Splunk to visualize the data.

Additional resources

• HealthChecks and HealthChecks UI for ASP.NET Core

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks

• Introduction to Service Fabric health monitoring

https://docs.microsoft.com/azure/service-fabric/service-fabric-health-introduction

• Azure Monitor https://azure.microsoft.com/services/monitor/

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://azure.microsoft.com/services/monitor/
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/azure/service-fabric/service-fabric-health-introduction
https://azure.microsoft.com/services/monitor/

308 Make secure .NET Microservices and Web Applications

S E C T I O N 9

Make secure .NET
Microservices and Web
Applications

There are so many aspects about security in microservices and web applications that the topic could

easy take several books like this one so, in this section, we’ll focus on authentication, authorization,

and application secrets.

Implement authentication in .NET microservices and web applications

It’s often necessary for resources and APIs published by a service to be limited to certain trusted users

or clients. The first step to making these sorts of API-level trust decisions is authentication.

Authentication is the process of reliably verify a user’s identity.

In microservice scenarios, authentication is typically handled centrally. If you’re using an API Gateway,

the gateway is a good place to authenticate, as shown in Figure 9-1. If you use this approach, make

sure that the individual microservices cannot be reached directly (without the API Gateway) unless

additional security is in place to authenticate messages whether they come from the gateway or not.

Figure 9-1. Centralized authentication with an API Gateway

If services can be accessed directly, an authentication service like Azure Active Directory or a

dedicated authentication microservice acting as a security token service (STS) can be used to

authenticate users. Trust decisions are shared between services with security tokens or cookies. (These

tokens can be shared between ASP.NET Core applications, if needed, by implementing cookie

sharing.) This pattern is illustrated in Figure 9-2.

https://docs.microsoft.com/aspnet/core/security/cookie-sharing
https://docs.microsoft.com/aspnet/core/security/cookie-sharing

309 Make secure .NET Microservices and Web Applications

Figure 9-2. Authentication by identity microservice; trust is shared using an authorization token

Authenticate with ASP.NET Core Identity

The primary mechanism in ASP.NET Core for identifying an application’s users is the ASP.NET Core

Identity membership system. ASP.NET Core Identity stores user information (including sign-in

information, roles, and claims) in a data store configured by the developer. Typically, the ASP.NET

Core Identity data store is an Entity Framework store provided in the

Microsoft.AspNetCore.Identity.EntityFrameworkCore package. However, custom stores or other

third-party packages can be used to store identity information in Azure Table Storage, CosmosDB, or

other locations.

The following code is taken from the ASP.NET Core Web Application project template with individual

user account authentication selected. It shows how to configure ASP.NET Core Identity using

EntityFramework.Core in the Startup.ConfigureServices method.

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

Once ASP.NET Core Identity is configured, you enable it by calling app.UseIdentity in the service’s

Startup.Configure method.

Using ASP.NET Core Identity enables several scenarios:

• Create new user information using the UserManager type (userManager.CreateAsync).

• Authenticate users using the SignInManager type. You can use signInManager.SignInAsync to

sign in directly, or signInManager.PasswordSignInAsync to confirm the user’s password is

correct and then sign them in.

• Identify a user based on information stored in a cookie (which is read by ASP.NET Core Identity

middleware) so that subsequent requests from a browser will include a signed-in user’s identity

and claims.

https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authentication/identity

310 Make secure .NET Microservices and Web Applications

ASP.NET Core Identity also supports two-factor authentication.

For authentication scenarios that make use of a local user data store and that persist identity between

requests using cookies (as is typical for MVC web applications), ASP.NET Core Identity is a

recommended solution.

Authenticate with external providers

ASP.NET Core also supports using external authentication providers to let users sign in via OAuth 2.0

flows. This means that users can sign in using existing authentication processes from providers like

Microsoft, Google, Facebook, or Twitter and associate those identities with an ASP.NET Core identity

in your application.

To use external authentication, you include the appropriate authentication middleware in your

application’s HTTP request processing pipeline. This middleware is responsible for handling requests

to return URI routes from the authentication provider, capturing identity information, and making it

available via the SignInManager.GetExternalLoginInfo method.

Popular external authentication providers and their associated NuGet packages are shown in the

following table:

Provider Package

Microsoft Microsoft.AspNetCore.Authentication.MicrosoftAccount

Google Microsoft.AspNetCore.Authentication.Google

Facebook Microsoft.AspNetCore.Authentication.Facebook

Twitter Microsoft.AspNetCore.Authentication.Twitter

In all cases, the middleware is registered with a call to a registration method similar to

app.Use{ExternalProvider}Authentication in Startup.Configure. These registration methods

take an options object that contains an application ID and secret information (a password, for

instance), as needed by the provider. External authentication providers require the application to be

registered (as explained in ASP.NET Core documentation) so that they can inform the user what

application is requesting access to their identity.

Once the middleware is registered in Startup.Configure, you can prompt users to sign in from any

controller action. To do this, you create an AuthenticationProperties object that includes the

authentication provider’s name and a redirect URL. You then return a Challenge response that passes

the AuthenticationProperties object. The following code shows an example of this.

var properties = _signInManager.ConfigureExternalAuthenticationProperties(provider,
 redirectUrl);
return Challenge(properties, provider);

The redirectUrl parameter includes the URL that the external provider should redirect to once the user

has authenticated. The URL should represent an action that will sign the user in based on external

identity information, as in the following simplified example:

// Sign in the user with this external login provider if the user
// already has a login.
var result = await _signInManager.ExternalLoginSignInAsync(info.LoginProvider,

https://docs.microsoft.com/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/aspnet/core/security/authentication/social/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://docs.microsoft.com/aspnet/core/security/authentication/social/

311 Make secure .NET Microservices and Web Applications

info.ProviderKey, isPersistent: false);

if (result.Succeeded)
{
 return RedirectToLocal(returnUrl);
}
else
{
 ApplicationUser newUser = new ApplicationUser
 {
 // The user object can be constructed with claims from the
 // external authentication provider, combined with information
 // supplied by the user after they have authenticated with
 // the external provider.
 UserName = info.Principal.FindFirstValue(ClaimTypes.Name),
 Email = info.Principal.FindFirstValue(ClaimTypes.Email)
 };
 var identityResult = await _userManager.CreateAsync(newUser);
 if (identityResult.Succeeded)
 {
 identityResult = await _userManager.AddLoginAsync(newUser, info);
 if (identityResult.Succeeded)
 {
 await _signInManager.SignInAsync(newUser, isPersistent: false);
 }
 return RedirectToLocal(returnUrl);
 }
}

If you choose the Individual User Account authentication option when you create the ASP.NET Code

web application project in Visual Studio, all the code necessary to sign in with an external provider is

already in the project, as shown in Figure 9-3.

312 Make secure .NET Microservices and Web Applications

Figure 9-3. Selecting an option for using external authentication when creating a web application project

In addition to the external authentication providers listed previously, third-party packages are

available that provide middleware for using many more external authentication providers. For a list,

see the AspNet.Security.OAuth.Providers repo on GitHub.

You can also create your own external authentication middleware to solve some special need.

Authenticate with bearer tokens

Authenticating with ASP.NET Core Identity (or Identity plus external authentication providers) works

well for many web application scenarios in which storing user information in a cookie is appropriate.

In other scenarios, though, cookies are not a natural means of persisting and transmitting data.

For example, in an ASP.NET Core Web API that exposes RESTful endpoints that might be accessed by

Single Page Applications (SPAs), by native clients, or even by other Web APIs, you typically want to

use bearer token authentication instead. These types of applications do not work with cookies, but

can easily retrieve a bearer token and include it in the authorization header of subsequent requests.

To enable token authentication, ASP.NET Core supports several options for using OAuth 2.0 and

OpenID Connect.

Authenticate with an OpenID Connect or OAuth 2.0 Identity provider

If user information is stored in Azure Active Directory or another identity solution that supports

OpenID Connect or OAuth 2.0, you can use the

Microsoft.AspNetCore.Authentication.OpenIdConnect package to authenticate using the OpenID

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src
https://oauth.net/2/
https://openid.net/connect/

313 Make secure .NET Microservices and Web Applications

Connect workflow. For example, to authenticate to the Identity.Api microservice in

eShopOnContainers, an ASP.NET Core web application can use middleware from that package as

shown in the following simplified example in Startup.cs:

// Startup.cs

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 //…
 // Configure the pipeline to use authentication
 app.UseAuthentication();
 //…
 app.UseMvc();
}

public void ConfigureServices(IServiceCollection services)
{
 var identityUrl = Configuration.GetValue<string>("IdentityUrl");
 var callBackUrl = Configuration.GetValue<string>("CallBackUrl");

 // Add Authentication services

 services.AddAuthentication(options =>
 {
 options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme = OpenIdConnectDefaults.AuthenticationScheme;
 })
 .AddCookie()
 .AddOpenIdConnect(options =>
 {
 options.SignInScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 options.Authority = identityUrl;
 options.SignedOutRedirectUri = callBackUrl;
 options.ClientSecret = "secret";
 options.SaveTokens = true;
 options.GetClaimsFromUserInfoEndpoint = true;
 options.RequireHttpsMetadata = false;
 options.Scope.Add("openid");
 options.Scope.Add("profile");
 options.Scope.Add("orders");
 options.Scope.Add("basket");
 options.Scope.Add("marketing");
 options.Scope.Add("locations");
 options.Scope.Add("webshoppingagg");
 options.Scope.Add("orders.signalrhub");
 });
}

Note that when you use this workflow, the ASP.NET Core Identity middleware is not needed, because

all user information storage and authentication is handled by the Identity service.

Issue security tokens from an ASP.NET Core service

If you prefer to issue security tokens for local ASP.NET Core Identity users rather than using an

external identity provider, you can take advantage of some good third-party libraries.

IdentityServer4 and OpenIddict are OpenID Connect providers that integrate easily with ASP.NET Core

Identity to let you issue security tokens from an ASP.NET Core service. The IdentityServer4

https://github.com/IdentityServer/IdentityServer4
https://github.com/openiddict/openiddict-core
https://identityserver4.readthedocs.io/en/latest/

314 Make secure .NET Microservices and Web Applications

documentation has in-depth instructions for using the library. However, the basic steps to using

IdentityServer4 to issue tokens are as follows.

42. You call app.UseIdentityServer in the Startup.Configure method to add IdentityServer4 to the

application’s HTTP request processing pipeline. This lets the library serve requests to OpenID

Connect and OAuth2 endpoints like /connect/token.

43. You configure IdentityServer4 in Startup.ConfigureServices by making a call to

services.AddIdentityServer.

44. You configure identity server by setting the following data:

– The credentials to use for signing.

– The Identity and API resources that users might request access to:

• API resources represent protected data or functionality that a user can access

with an access token. An example of an API resource would be a web API (or set

of APIs) that requires authorization.

• Identity resources represent information (claims) that are given to a client to

identify a user. The claims might include the user name, email address, and so

on.

– The clients that will be connecting in order to request tokens.

– The storage mechanism for user information, such as ASP.NET Core Identity or an

alternative.

When you specify clients and resources for IdentityServer4 to use, you can pass an

System.Collections.Generic.IEnumerable%601 collection of the appropriate type to methods that take

in-memory client or resource stores. Or for more complex scenarios, you can provide client or

resource provider types via Dependency Injection.

A sample configuration for IdentityServer4 to use in-memory resources and clients provided by a

custom IClientStore type might look like the following example:

// Add IdentityServer services
services.AddSingleton<IClientStore, CustomClientStore>();
services.AddIdentityServer()
 .AddSigningCredential("CN=sts")
 .AddInMemoryApiResources(MyApiResourceProvider.GetAllResources())
 .AddAspNetIdentity<ApplicationUser>();

Consume security tokens

Authenticating against an OpenID Connect endpoint or issuing your own security tokens covers some

scenarios. But what about a service that simply needs to limit access to those users who have valid

security tokens that were provided by a different service?

For that scenario, authentication middleware that handles JWT tokens is available in the

Microsoft.AspNetCore.Authentication.JwtBearer package. JWT stands for “JSON Web Token” and

is a common security token format (defined by RFC 7519) for communicating security claims. A

https://identityserver4.readthedocs.io/en/latest/
https://identityserver4.readthedocs.io/en/latest/topics/crypto.html
https://identityserver4.readthedocs.io/en/latest/topics/resources.html
https://identityserver4.readthedocs.io/en/latest/topics/clients.html
https://identityserver4.readthedocs.io/en/latest/quickstarts/0_overview.html
https://tools.ietf.org/html/rfc7519

315 Make secure .NET Microservices and Web Applications

simplified example of how to use middleware to consume such tokens might look like this code

fragment, taken from the Ordering.Api microservice of eShopOnContainers.

// Startup.cs

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 //…
 // Configure the pipeline to use authentication
 app.UseAuthentication();
 //…
 app.UseMvc();
}

public void ConfigureServices(IServiceCollection services)
{
 var identityUrl = Configuration.GetValue<string>("IdentityUrl");

 // Add Authentication services

 services.AddAuthentication(options =>
 {
 options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

 }).AddJwtBearer(options =>
 {
 options.Authority = identityUrl;
 options.RequireHttpsMetadata = false;
 options.Audience = "orders";
 });
}

The parameters in this usage are:

• Audience represents the receiver of the incoming token or the resource that the token grants

access to. If the value specified in this parameter does not match the parameter in the token, the

token will be rejected.

• Authority is the address of the token-issuing authentication server. The JWT bearer

authentication middleware uses this URI to get the public key that can be used to validate the

token’s signature. The middleware also confirms that the iss parameter in the token matches

this URI.

Another parameter, RequireHttpsMetadata, is useful for testing purposes; you set this parameter to

false so you can test in environments where you don’t have certificates. In real-world deployments,

JWT bearer tokens should always be passed only over HTTPS.

With this middleware in place, JWT tokens are automatically extracted from authorization headers.

They are then deserialized, validated (using the values in the Audience and Authority parameters),

and stored as user information to be referenced later by MVC actions or authorization filters.

The JWT bearer authentication middleware can also support more advanced scenarios, such as using a

local certificate to validate a token if the authority is not available. For this scenario, you can specify a

TokenValidationParameters object in the JwtBearerOptions object.

316 Make secure .NET Microservices and Web Applications

Additional resources

• Sharing cookies between applications

https://docs.microsoft.com/aspnet/core/security/cookie-sharing

• Introduction to Identity

https://docs.microsoft.com/aspnet/core/security/authentication/identity

• Rick Anderson. Two-factor authentication with SMS

https://docs.microsoft.com/aspnet/core/security/authentication/2fa

• Enabling authentication using Facebook, Google and other external providers

https://docs.microsoft.com/aspnet/core/security/authentication/social/

• Michell Anicas. An Introduction to OAuth 2

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

• AspNet.Security.OAuth.Providers (GitHub repo for ASP.NET OAuth providers)

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src

• Danny Strockis. Integrating Azure AD into an ASP.NET Core web app

https://azure.microsoft.com/resources/samples/active-directory-dotnet-webapp-openidconnect-

aspnetcore/

• IdentityServer4. Official documentation

https://identityserver4.readthedocs.io/en/latest/

About authorization in .NET microservices and web

applications
After authentication, ASP.NET Core Web APIs need to authorize access. This process allows a service

to make APIs available to some authenticated users, but not to all. Authorization can be done based

on users’ roles or based on custom policy, which might include inspecting claims or other heuristics.

Restricting access to an ASP.NET Core MVC route is as easy as applying an Authorize attribute to the

action method (or to the controller’s class if all the controller’s actions require authorization), as

shown in following example:

public class AccountController : Controller
{
 public ActionResult Login()
 {
 }

 [Authorize]
 public ActionResult Logout()
 {
 }
}

https://docs.microsoft.com/aspnet/core/security/cookie-sharing
https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/aspnet/core/security/authentication/social/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers/tree/dev/src
https://azure.microsoft.com/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/resources/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://identityserver4.readthedocs.io/en/latest/
https://docs.microsoft.com/aspnet/core/security/authorization/introduction

317 Make secure .NET Microservices and Web Applications

By default, adding an Authorize attribute without parameters will limit access to authenticated users

for that controller or action. To further restrict an API to be available for only specific users, the

attribute can be expanded to specify required roles or policies that users must satisfy.

Implement role-based authorization

ASP.NET Core Identity has a built-in concept of roles. In addition to users, ASP.NET Core Identity

stores information about different roles used by the application and keeps track of which users are

assigned to which roles. These assignments can be changed programmatically with the RoleManager

type that updates roles in persisted storage, and the UserManager type that can grant or revoke roles

from users.

If you’re authenticating with JWT bearer tokens, the ASP.NET Core JWT bearer authentication

middleware will populate a user’s roles based on role claims found in the token. To limit access to an

MVC action or controller to users in specific roles, you can include a Roles parameter in the Authorize

annotation (attribute), as shown in the following code fragment:

[Authorize(Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller
{
 public ActionResult SetTime()
 {
 }

 [Authorize(Roles = "Administrator")]
 public ActionResult ShutDown()
 {
 }
}

In this example, only users in the Administrator or PowerUser roles can access APIs in the

ControlPanel controller (such as executing the SetTime action). The ShutDown API is further restricted

to allow access only to users in the Administrator role.

To require a user be in multiple roles, you use multiple Authorize attributes, as shown in the following

example:

[Authorize(Roles = "Administrator, PowerUser")]
[Authorize(Roles = "RemoteEmployee ")]
[Authorize(Policy = "CustomPolicy")]
public ActionResult API1 ()
{
}

In this example, to call API1, a user must:

• Be in the Administrator or PowerUser role, and

• Be in the RemoteEmployee role, and

• Satisfy a custom handler for CustomPolicy authorization.

318 Make secure .NET Microservices and Web Applications

Implement policy-based authorization

Custom authorization rules can also be written using authorization policies. This section provides an

overview. For more information, see the ASP.NET Authorization Workshop.

Custom authorization policies are registered in the Startup.ConfigureServices method using the

service.AddAuthorization method. This method takes a delegate that configures an

AuthorizationOptions argument.

services.AddAuthorization(options =>
{
 options.AddPolicy("AdministratorsOnly", policy =>
 policy.RequireRole("Administrator"));
 options.AddPolicy("EmployeesOnly", policy =>
 policy.RequireClaim("EmployeeNumber"));
 options.AddPolicy("Over21", policy =>
 policy.Requirements.Add(new MinimumAgeRequirement(21)));
});

As shown in the example, policies can be associated with different types of requirements. After the

policies are registered, they can be applied to an action or controller by passing the policy’s name as

the Policy argument of the Authorize attribute (for example,

[Authorize(Policy=“EmployeesOnly”)]) Policies can have multiple requirements, not just one (as

shown in these examples).

In the previous example, the first AddPolicy call is just an alternative way of authorizing by role. If

[Authorize(Policy=“AdministratorsOnly”)] is applied to an API, only users in the Administrator

role will be able to access it.

The second Microsoft.AspNetCore.Authorization.AuthorizationOptions.AddPolicy call demonstrates an

easy way to require that a particular claim should be present for the user. The

Microsoft.AspNetCore.Authorization.AuthorizationPolicyBuilder.RequireClaim method also optionally

takes expected values for the claim. If values are specified, the requirement is met only if the user has

both a claim of the correct type and one of the specified values. If you’re using the JWT bearer

authentication middleware, all JWT properties will be available as user claims.

The most interesting policy shown here is in the third AddPolicy method, because it uses a custom

authorization requirement. By using custom authorization requirements, you can have a great deal of

control over how authorization is performed. For this to work, you must implement these types:

• A Requirements type that derives from

Microsoft.AspNetCore.Authorization.IAuthorizationRequirement and that contains fields

specifying the details of the requirement. In the example, this is an age field for the sample

MinimumAgeRequirement type.

• A handler that implements Microsoft.AspNetCore.Authorization.AuthorizationHandler, where T is

the type of Microsoft.AspNetCore.Authorization.IAuthorizationRequirement that the handler can

satisfy. The handler must implement the

Microsoft.AspNetCore.Authorization.AuthorizationHandler.HandleRequirementAsync method,

which checks whether a specified context that contains information about the user satisfies the

requirement.

https://docs.asp.net/en/latest/security/authorization/policies.html
https://github.com/blowdart/AspNetAuthorizationWorkshop

319 Make secure .NET Microservices and Web Applications

If the user meets the requirement, a call to context.Succeed will indicate that the user is authorized.

If there are multiple ways that a user might satisfy an authorization requirement, multiple handlers can

be created.

In addition to registering custom policy requirements with AddPolicy calls, you also need to register

custom requirement handlers via Dependency Injection

(services.AddTransient<IAuthorizationHandler, MinimumAgeHandler>()).

An example of a custom authorization requirement and handler for checking a user’s age (based on a

DateOfBirth claim) is available in the ASP.NET Core authorization documentation.

Additional resources

• ASP.NET Core Authentication

https://docs.microsoft.com/aspnet/core/security/authentication/identity

• ASP.NET Core Authorization

https://docs.microsoft.com/aspnet/core/security/authorization/introduction

• Role-based Authorization

https://docs.microsoft.com/aspnet/core/security/authorization/roles

• Custom Policy-Based Authorization

https://docs.microsoft.com/aspnet/core/security/authorization/policies

Store application secrets safely during development
To connect with protected resources and other services, ASP.NET Core applications typically need to

use connection strings, passwords, or other credentials that contain sensitive information. These

sensitive pieces of information are called secrets. It’s a best practice to not include secrets in source

code and making sure not to store secrets in source control. Instead, you should use the ASP.NET

Core configuration model to read the secrets from more secure locations.

You must separate the secrets for accessing development and staging resources from the ones used

for accessing production resources, because different individuals will need access to those different

sets of secrets. To store secrets used during development, common approaches are to either store

secrets in environment variables or by using the ASP.NET Core Secret Manager tool. For more secure

storage in production environments, microservices can store secrets in an Azure Key Vault.

Store secrets in environment variables

One way to keep secrets out of source code is for developers to set string-based secrets as

environment variables on their development machines. When you use environment variables to store

secrets with hierarchical names, such as the ones nested in configuration sections, you must name the

variables to include the complete hierarchy of its sections, delimited with colons (:).

For example, setting an environment variable Logging:LogLevel:Default to Debug value would be

equivalent to a configuration value from the following JSON file:

{
 "Logging": {

https://docs.asp.net/en/latest/security/authorization/policies.html
https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authorization/introduction
https://docs.microsoft.com/aspnet/core/security/authorization/roles
https://docs.microsoft.com/aspnet/core/security/authorization/policies
https://docs.microsoft.com/aspnet/core/security/app-secrets#environment-variables

320 Make secure .NET Microservices and Web Applications

 "LogLevel": {
 "Default": "Debug"
 }
 }
}

To access these values from environment variables, the application just needs to call

AddEnvironmentVariables on its ConfigurationBuilder when constructing an IConfigurationRoot

object.

Note that environment variables are commonly stored as plain text, so if the machine or process with

the environment variables is compromised, the environment variable values will be visible.

Store secrets with the ASP.NET Core Secret Manager

The ASP.NET Core Secret Manager tool provides another method of keeping secrets out of source

code. To use the Secret Manager tool, install the package

Microsoft.Extensions.Configuration.SecretManager in your project file. Once that dependency is

present and has been restored, the dotnet user-secrets command can be used to set the value of

secrets from the command line. These secrets will be stored in a JSON file in the user’s profile

directory (details vary by OS), away from source code.

Secrets set by the Secret Manager tool are organized by the UserSecretsId property of the project

that’s using the secrets. Therefore, you must be sure to set the UserSecretsId property in your project

file, as shown in the snippet below. The default value is a GUID assigned by Visual Studio, but the

actual string is not important as long as it’s unique in your computer.

<PropertyGroup>
 <UserSecretsId>UniqueIdentifyingString</UserSecretsId>
</PropertyGroup>

Using secrets stored with Secret Manager in an application is accomplished by calling

AddUserSecrets on the ConfigurationBuilder instance to include secrets for the application in its

configuration. The generic parameter T should be a type from the assembly that the UserSecretId was

applied to. Usually using AddUserSecrets is fine.

The AddUserSecrets() is included in the default options for the Development environment when

using the CreateDefaultBuilder method in Program.cs.

Use Azure Key Vault to protect secrets at production

time
Secrets stored as environment variables or stored by the Secret Manager tool are still stored locally

and unencrypted on the machine. A more secure option for storing secrets is Azure Key Vault, which

provides a secure, central location for storing keys and secrets.

The Microsoft.Extensions.Configuration.AzureKeyVault package allows an ASP.NET Core

application to read configuration information from Azure Key Vault. To start using secrets from an

Azure Key Vault, you follow these steps:

https://docs.microsoft.com/aspnet/core/security/app-secrets#secret-manager
https://azure.microsoft.com/services/key-vault/

321 Make secure .NET Microservices and Web Applications

45. Register your application as an Azure AD application. (Access to key vaults is managed by Azure

AD.) This can be done through the Azure management portal.

 Alternatively, if you want your application to authenticate using a certificate instead of a

password or client secret, you can use the New-AzADApplication PowerShell cmdlet. The

certificate that you register with Azure Key Vault needs only your public key. Your application will

use the private key.

46. Give the registered application access to the key vault by creating a new service principal. You

can do this using the following PowerShell commands:

 powershell $sp = New-AzADServicePrincipal -ApplicationId "<Application ID guid>" Set-

AzKeyVaultAccessPolicy -VaultName "<VaultName>" -ServicePrincipalName

$sp.ServicePrincipalNames[0] -PermissionsToSecrets all -ResourceGroupName "<KeyVault

Resource Group>" []{custom-style=Code}

47. Include the key vault as a configuration source in your application by calling the

Microsoft.Extensions.Configuration.AzureKeyVaultConfigurationExtensions.AddAzureKeyVault

extension method when you create an Microsoft.Extensions.Configuration.IConfigurationRoot

instance. Note that calling AddAzureKeyVault requires the application ID that was registered and

given access to the key vault in the previous steps.

 You can also use an overload of AddAzureKeyVault that takes a certificate in place of the client

secret by just including a reference to the Microsoft.IdentityModel.Clients.ActiveDirectory

package.

IMPORTANT We recommend you to register Azure Key Vault as the last configuration provider, so it

can override configuration values from previous providers.

Additional resources

• Using Azure Key Vault to protect application secrets

https://docs.microsoft.com/azure/guidance/guidance-multitenant-identity-keyvault

• Safe storage of app secrets during development

https://docs.microsoft.com/aspnet/core/security/app-secrets

• Configuring data protection

https://docs.microsoft.com/aspnet/core/security/data-protection/configuration/overview

• Data Protection key management and lifetime in ASP.NET Core

https://docs.microsoft.com/aspnet/core/security/data-protection/configuration/default-settings

• Microsoft.Extensions.Configuration.KeyPerFile GitHub repository.

https://github.com/aspnet/Configuration/tree/master/src/Config.KeyPerFile

https://docs.microsoft.com/powershell/module/az.resources/new-azadapplication
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory
https://docs.microsoft.com/azure/guidance/guidance-multitenant-identity-keyvault
https://docs.microsoft.com/aspnet/core/security/app-secrets
https://docs.microsoft.com/aspnet/core/security/data-protection/configuration/overview
https://docs.microsoft.com/aspnet/core/security/data-protection/configuration/default-settings
https://github.com/aspnet/Configuration/tree/master/src/Config.KeyPerFile

322 Make secure .NET Microservices and Web Applications

323 Make secure .NET Microservices and Web Applications

S E C T I O N 10

 Key Takeaways
As a summary and key takeaways, the following are the most important conclusions from this guide.

Benefits of using containers. Container-based solutions provide important cost savings because

they help reduce deployment problems caused by failing dependencies in production environments.

Containers significantly improve DevOps and production operations.

Containers will be ubiquitous. Docker-based containers are becoming the de facto standard in the

industry, supported by key vendors in the Windows and Linux ecosystems, such as Microsoft, Amazon

AWS, Google, and IBM. Docker will probably soon be ubiquitous in both the cloud and on-premises

datacenters.

Containers as a unit of deployment. A Docker container is becoming the standard unit of

deployment for any server-based application or service.

Microservices. The microservices architecture is becoming the preferred approach for distributed and

large or complex mission-critical applications based on many independent subsystems in the form of

autonomous services. In a microservice-based architecture, the application is built as a collection of

services that are developed, tested, versioned, deployed, and scaled independently. Each service can

include any related autonomous database.

Domain-driven design and SOA. The microservices architecture patterns derive from service-

oriented architecture (SOA) and domain-driven design (DDD). When you design and develop

microservices for environments with evolving business needs and rules, it’s important to consider

DDD approaches and patterns.

Microservices challenges. Microservices offer many powerful capabilities, like independent

deployment, strong subsystem boundaries, and technology diversity. However, they also raise many

new challenges related to distributed application development, such as fragmented and independent

data models, resilient communication between microservices, eventual consistency, and operational

complexity that results from aggregating logging and monitoring information from multiple

microservices. These aspects introduce a much higher complexity level than a traditional monolithic

application. As a result, only specific scenarios are suitable for microservice-based applications. These

include large and complex applications with multiple evolving subsystems. In these cases, it’s worth

investing in a more complex software architecture, because it will provide better long-term agility and

application maintenance.

Containers for any application. Containers are convenient for microservices, but can also be useful

for monolithic applications based on the traditional .NET Framework, when using Windows

Containers. The benefits of using Docker, such as solving many deployment-to-production issues and

providing state-of-the-art Dev and Test environments, apply to many different types of applications.

CLI versus IDE. With Microsoft tools, you can develop containerized .NET applications using your

preferred approach. You can develop with a CLI and an editor-based environment by using the

Docker CLI and Visual Studio Code. Or you can use an IDE-focused approach with Visual Studio and

its unique features for Docker, such as multi-container debugging.

Resilient cloud applications. In cloud-based systems and distributed systems in general, there is

always the risk of partial failure. Since clients and services are separate processes (containers), a

324 Make secure .NET Microservices and Web Applications

service might not be able to respond in a timely way to a client’s request. For example, a service might

be down because of a partial failure or for maintenance; the service might be overloaded and

responding slowly to requests; or it might not be accessible for a short time because of network

issues. Therefore, a cloud-based application must embrace those failures and have a strategy in place

to respond to those failures. These strategies can include retry policies (resending messages or

retrying requests) and implementing circuit-breaker patterns to avoid exponential load of repeated

requests. Basically, cloud-based applications must have resilient mechanisms—either based on cloud

infrastructure or custom, as the high-level ones provided by orchestrators or service buses.

Security. Our modern world of containers and microservices can expose new vulnerabilities. There are

several ways to implement basic application security, based on authentication and authorization.

However, container security must consider additional key components that result in inherently safer

applications. A critical element of building safer apps is having a secure way of communicating with

other apps and systems, something that often requires credentials, tokens, passwords, and the like,

commonly referred to as application secrets. Any secure solution must follow security best practices,

such as encrypting secrets while in transit and at rest, and preventing secrets from leaking when

consumed by the final application. Those secrets need to be stored and kept safely, as when using

Azure Key Vault.

Orchestrators. Container-based orchestrators, such as Azure Kubernetes Service and Azure Service

Fabric are key part of any significant microservice and container-based application. These applications

carry with them high complexity, scalability needs, and go through constant evolution. This guide has

introduced orchestrators and their role in microservice-based and container-based solutions. If your

application needs are moving you toward complex containerized apps, you will find it useful to seek

out additional resources for learning more about orchestrators.

