’ NET Microservic

Architecture for
Containerized .NE
Applications

B Microsoft

EDITION v2.0

DOWNLOAD available at: https://aka.ms/microservicesebook

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams
A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the
written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book,
including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or
should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group
of companies.

Mac and macOS are trademarks of Apple Inc.
The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

Co-Authors: Editors:
Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp. Mike Pope
Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp. Steve Hoag

Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft

Participants and reviewers:

Jeffrey Ritcher, Partner Software Eng, Azure team, Microsoft

Jimmy Bogard, Chief Architect at Headspring

Udi Dahan, Founder & CEQ, Particular Software

Jimmy Nilsson, Co-founder and CEO of Factor10

Glenn Condron, Sr. Program Manager, ASP.NET team

Mark Fussell, Principal PM Lead, Azure Service Fabric team, Microsoft
Diego Vega, PM Lead, Entity Framework team, Microsoft

Barry Dorrans, Sr. Security Program Manager

Rowan Miller, Sr. Program Manager, Microsoft

Ankit Asthana, Principal PM Manager, .NET team, Microsoft

Scott Hunter, Partner Director PM, .NET team, Microsoft

Dylan Reisenberger, Architect and Dev Lead at Polly

Steve Smith, Software Craftsman & Trainer at ASPSmith Ltd.
lan Cooper, Coding Architect at Brighter

Unai Zorrilla, Architect and Dev Lead at Plain Concepts
Eduard Tomas, Dev Lead at Plain Concepts

Ramon Tomas, Developer at Plain Concepts

David Sanz, Developer at Plain Concepts

Javier Valero, Chief Operating Officer at Grupo Solutio
Pierre Millet, Sr. Consultant, Microsoft

Michael Friis, Product Manager, Docker Inc

Charles Lowell, Software Engineer, VS CAT team, Microsoft

https://aka.ms/microservicesebook

Contents

Introduction 1

About this guide

What this guide does not cover

WhO SHOUIA USE ThisS QUILE ...ttt sttt 2
HOW 1O USE thiS GUIE oottt 2
Related microservice and container-based reference application: eShopOnContainers.........cc..ccoooene. 2
SENA US YOUT FEEADACK! ...ttt st 3
Introduction to Containers and Docker 4
WL IS DOCKET?...ooeireirceiinc ittt eeses s s s kbbb 5
Comparing Docker containers with virtual Machings.........c...coovrinnrinnireeees e 6
DOCKET tEIMNINOIOGY ..veerrierrircire ittt ettt et 7
Docker containers, images, anNd FEQISIIIES ..ottt sttt 8
Choosing Between .NET Core and .NET Framework for Docker Containers 10
GENEIAI GUILANCE ..ottt e 10
When to choose .NET Core for DOCKer CONTAINEIS. ...t ssiseeesssssssssessissesssssesssssssssnseess 11
Developing and deploying Cross PlatfOrm ...t ss st senns 11
Using containers for new ("green-field”) Projects..... e sssesssssssssssesnees 12
Creating and deploying microservices 0N CONTAINEISoovwueereeneeerneeine e ssseesssessssssssssssanees 12
Deploying high density in SCalable SYSTEMS ...t 12
When to choose .NET Framework for DOcker CONTAINETS..........ovweeeereieceieeeineeesiseeesissessiseessssessssessssseees 13
Migrating existing applications directly to a Windows Server containerocooeeneenneeseenseenneenn. 13
Using third-party .NET libraries or NuGet packages not available for .NET COrecccouueurmereurnnereens 13
Using.NET technologies not available for INET COre ... sssssssessssssssssssnees 13

Using a platform or API that does not support .NET Core

Decision table: .NET frameworks to use for Docker

What OS to target with .NET containers

OFficial .INET DOCKET IMAGES ..ouvvrrrverriiriiesiiesiieesis s sssse st sttt ss s sssss sttt st ssnssen 17
.NET Core and Docker image optimizations for development versus production ... 17
Architecting Container- and Microservice-Based Applications 19
VISION ottt e e e e 19
CONAINET AESIGN PIINCIPIES .ottt erise st se sttt bbb 19
Containerizing MonNOlithiC @PPIICALIONS ... 20
Deploying a monolithic application as @ CONTAINET ... 22

B Microsoft

Publishing a single-container-based application to Azure APp SErVICecoeonreenneennreerneeeresireeeene. 22
State and data in DOCKEr @PPIICATIONS ...ttt ettt ss st 23
SErVICE-0MENTEA ArCHITECIUE.....oovee ettt 25
MICTOSEIVICES @ICHITECIUIE .ouieeiiieeee ettt bt 26

Data SOVEreigNty PEI MICIOSEIVICE ...ttt sssessse st st st 28

The relationship between microservices and the Bounded Context pattern ..., 29

Logical architecture versus physical archit@CtUIe ...t 30

Challenges and solutions for distributed data management..........coocnrnrnreinnionseseeseeeseieees 31

Identify domain-model boundaries for each MICrOSEIVICEcoovvrvreiveeinieesees e 36

Direct client-to-microservice communication versus the APl Gateway pattern ..., 39

Communication in @ MICrOSErVICE arChitECIUIE ... it siees 44

Creating, evolving, and versioning microservice APIs and CONtractscoooomrmrrenneenereneeeneeessseessesinnes 54

Microservices addressability and the SErvice registry ... 55

Creating composite Ul based on microservices, including visual Ul shape and layout generated by

MUILIPIE MICTOSEIVICES ..oooieeree sttt sttt bbbt 56

Resiliency and high availability in MICrOSEIVICES ...t 58

Health management and diagnostics iN MICTOSEIVICES ... eeseeese e 58

Orchestrating microservices and multi-container applications for high scalability and availability ... 61

Using container-based orchestrators in MiCroSOft AZUIE ... 63
USING AZUIE CONTAINET SEIVICE ..o e e e 63
USING AZUTE SEIVICE FADIIC ..o e s 65
Stateless versus Stateful MICIOSEIVICES ...ttt 68
Development Process for Docker-Based Applications 70
VESTON 1ottt 70
Development environmMent fOr DOCKET @PPS ... sssss st s st ssssssssssssssssssssssssness 70
Development tool choiCeS: IDE OF @AITON ... 70
.NET languages and frameworks for DOCKEr CONTAINETScoc.ooriemreernrrineisesiees e ssssessssees 71
Development WOrkflow for DOCKEI @PPS ...ttt ssss s 71
Workflow for developing Docker container-based applications ... 71
Simplified workflow when developing containers with Visual StUdioccoo.oevrererreeoneceneeneseis 83
Using PowerShell commands in a Dockerfile to set up Windows CoNntainers............coo.coevveeevnriernriennns 84
Deploying Single-Container-Based .NET Core Web Applications on Linux or Windows Nano
Server Hosts 85
VISTON ettt st s 85
AP PIICATION TOUT ettt R8s 86
DIOCKET SUPPOM coevvieieriirciirceist it sise st ssese sttt e e bbb 87
TrOUDIESNOOTING c.ovv ettt ittt bbb 89
STOPPING DOCKET CONTAINETS ..ottt ees 89
AddING DOCKET tO YOUT PrOJECES ...ttt ettt sttt ettt 89

B Microsoft

Migrating Legacy Monolithic .NET Framework Applications to Windows Containers 90
VISION ottt e e e e e e 90
Benefits of containerizing @ monolithiC @aPPliCAtION ... 91
POSSIDIE MIGrationN PATNS ...ttt 92
AAPPIICATION LOU oottt e e e 92
LIFEING @NA SNITEING weotitireie ittt sse et sttt 94
Getting data from the existing catalog .NET COre MiCroSEIVICe.....cooienreerneeerneeiinseesesetses s ssessssenens 96
Development and production ENVIFONMENTS ... sssessssssssss st sssssssssesssssssssssnees 96

Designing and Developing Multi-Container and Microservice-Based .NET Applications 97
VESTON 1ottt s8R 97

Designing a microservice-oriented application

Application specifications

Development team context

Choosing an architecture

Benefits of a Microservice-based SOIULION ...ttt sseeees
Downsides of a Microservice-based SOIUTION ...t ssseens 101
External versus internal architecture and design Patterns ... seeeeeens 103
The new world: multiple architectural patterns and polyglot microservices...........cnneerncennennn. 104
Creating a simple data-driven CRUD MICIrOSEIVICEo.uvuieeeeeeeneierireeieeiesisesisesisesisesssesssesssesssessssssssessanes 105
Designing @ SIMPle CRUD MICTOSEIVICE ...ttt sssisssssesssesssssssssssssssssssssssssssssssnens 105
Implementing a simple CRUD microservice With ASP.NET COre......c.oovwrueeneenneeerneeerneeineeesseeesseseseeens 107
Generating Swagger description metadata from your ASP.NET Core Web APl ... 113
Defining your multi-container application with docker-compose.yml
Using a database server running as @ CONTAINET ...
Implementing event-based communication between microservices (integration events)................... 138
Using message brokers and services buses for production SyStemsccc..coeveonmrenerennrinnrinnrenseennenns 138
INEEGIATION EVENTS ...ttt bbbttt 139
THE EUVENT DUS ..ottt et 140
Testing ASP.NET Core Services and WED @PPS ..o ssss s st ssssssssssssssssssens 156
Tackling Business Complexity in a Microservice with DDD and CQRS Patterns............c.cccecueeuee. 160
VISION ottt 8 8RRt 160
Applying simplified CQRS and DDD patterns in @ MiCrOSEIVICEcovvvrvreverisieesienssisesssssssssssssssssens 162
Applying CQRS and CQS approaches in a DDD microservice in eShopOnContainers..........ccooeceen. 163

CQRS and DDD patterns are not top-level architectures

Implementing reads/queries in @ CQRS MICIOSEIVICE ...t sssss s ssesssesens
Using ViewModels specifically made for client apps

Using Dapper as a micro ORM 10 PErfOrm QUETIES.........coovuivriveiriiniiniieseesssiss s ssss s ssssssssssssses

Dynamic versus static ViewModels

B Microsoft

Designing @ DDD-0rieNted MICTOSEIVICE. ...t ssssess s st sttt st ss s ssssssnsens 171
Keep the microservice context boundaries relatively small ... 171
LAYErs iN DDD MICTOSEIVICES ...uuverrerrereriseeieeiesteseseeiesssssssssss st sttt ssss sttt ssssess st ssssssssesssessssssssssssssnnns 171

Designing a microservice domain MOAEL. ... 176
The DOmain ENtity PAtLEIN ..t 176

Implementing a microservice domain model With .NET COreccrcrneerneriinsecniecsinecesseseseneeens 181
Domain model structure in a custom .NET Standard LiDrary ... 181
Structuring aggregates in a custom .NET Standard LibDrary ... 182
Implementing domain entities s POCO ClaSSESo.iirieeeierieeieeieeiesieseesesesssssssssssssssssesssssssssssssanes 182
Encapsulating data in the DOmain ENTITIES ..ottt sseeens 184
Seedwork (reusable base classes and interfaces for your domain model) ..., 187
Repository contracts (interfaces) in the domain Mmodel [ayer ... 190
IMPIEMENTING VAIUE ODJECES ..ottt sttt 191
Using Enumeration classes instead of C# language enum tYPescoccermrennreineresneseenssssssssssesssenens 198
Designing validations in the domain MOdel [aYer ... sseeeseeens 200
Implementing validations in the domain Model [aYer ... 200
Client-side validation (validation in the presentation 1ayers) ... 203

Domain events: design and impPlementation........cc e 205
What iS @ dOMAIN EVENTY ...t sttt ettt 205
Domain events versus iNte@gration EVENTS ...ttt ettt sessssssens 205

IMPIEMENTING OMAIN EVENTS ..ottt et 209
RAISING AOM@IN EVENTS ...ttt ettt et 209
Single transaction across aggregates versus eventual consistency across aggregates................... 211
The domain event dispatcher: mapping from events to event handlers......c..ccooooicnrrvnrronrirnninns 213
How to SUDSCribe t0 dOMAIN EVENTS.......c.ovciiicici ettt sieenen 214
How to handle dOmain @VENTS...........icceieie ittt ssos 215
CoNClUSIONS ON AOMAIN EVENTS. ..ottt sttt sttt 216

Designing the infrastructure PersiStENCE AYEN ... ettt eeens 217
THE REPOSITOIY PATLEIN c.oveeeee ettt st st 217
The SPECITICAtION PATLEIN c.coveee sttt sttt st 221

Implementing the infrastructure persistence layer with Entity Framework Core...........cocoeenrivcnnrinenen. 222
Introduction to Entity FrameWork COre..... ettt sttt snsees 222
Infrastructure in Entity Framework Core from a DDD perspective.........cooeeeenneeenneeenneeenseessesesseeeseeens 222
Implementing custom repositories with Entity Framework COre ..o 225
EF DbContext and 1UnitOfWork instance lifetime in your [0C container.........coccoevenneenneenereneceneeens 227
The repository instance lifetime in your 10C CONTAINET ...t snsssens 228
TADIE MAPPING e e e 229

Implementing the SPeCifiCation PATLEIN ...ttt ssnenen 232

B Microsoft

Using NoSQL databases as a persistence infrastructure

Introduction to Azure Cosmos DB and the native Cosmos DB APl ... 236
Implementing .NET code targeting MongoDB and Azure CoSmos DB........c.ccvninineineenneenneirnnens 238
Designing the microservice application layer and Web APl ... 244
Using SOLID principles and Dependency INJECLION ...ttt sssesssseeses 244
Implementing the microservice application layer using the Web APl ... 245
Using Dependency Injection to inject infrastructure objects into your application layer................. 245
Implementing the Command and Command Handler patterns.............coceneennrenneenneesnreneseneeens 249
The Command process pipeline: how to trigger a command handler..........coioineonrnneirncinennn. 255
Implementing the command process pipeline with a mediator pattern (MediatR)......cccccoecenevuunece. 258

Applying cross-cutting concerns when processing commands with the Behaviors in MeadiatR .263

Implementing Resilient Applications 267

Handling partial failure 267
Strategies for handling partial failure 269
Implementing retries with exponential Backoff ... s 270
Implementing the Circuit Breaker Pattern ...ttt sseeens 279
Using the ResilientHttpClient utility class from eShopONnNCoNntainerscoeneeeneeeneeeneeeneeenenens 281
Testing retries i @ShOPONCONTAINETS ... e 282
Testing the circuit breaker in @ShoOPONCONTAINETS........cciierieieeree s 282
Adding a jitter strategy t0 the retry POLICY ..o 284
HEAITN MONITOIING ettt et e 285
Implementing health checks in ASP.NET COre SEIVICESowvuemreerreerneeieeesseeesseesseessesssesssssssssssessseeens 285
USING WATCNAOGS ..ottt ettt e 289
Health checks when using orchestrators 290
Advanced monitoring: visualization, analysis, and alerts 290
Securing .NET Microservices and Web Applications 291
Implementing authentication in .NET microservices and web applications..........cecvevenreeneeeneeerneeenenens 291
Authenticating using ASP.NET COre IdENTILY ..ottt ssesssssssssessnees 292
Authenticating USING eXtErNAl PrOVIAEIS. ...ttt st st sessnees 293
Authenticating With DEAIer TOKENS. ... 295
About authorization in .NET microservices and web applications...........cocvnnrnrineineeneineineeneneeenenns 299
Implementing role-based aUuthOriZaAtION ...ttt 299
Implementing policy-based aUthOrZatION ...ttt eeeas 300
Storing application secrets safely during developmMENto 302
Storing secrets in eNVIrONMENT Variables ...ttt 302

302
303
Key Takeaways 305

Storing secrets using the ASP.NET Core Secret Manager

Using Azure Key Vault to protect secrets at production time

vii

B Microsoft

viii

SECTION

Introduction

Enterprises are increasingly realizing cost savings, solving deployment problems, and improving
DevOps and production operations by using containers. Microsoft has been releasing container
innovations for Windows and Linux by creating products like Azure Container Service and Azure
Service Fabric, and by partnering with industry leaders like Docker, Mesosphere, and Kubernetes.
These products deliver container solutions that help companies build and deploy applications at cloud
speed and scale, whatever their choice of platform or tools.

Docker is becoming the de facto standard in the container industry, supported by the most significant
vendors in the Windows and Linux ecosystems. (Microsoft is one of the main cloud vendors
supporting Docker.) In the future, Docker will probably be ubiquitous in any datacenter in the cloud or
on-premises.

In addition, the microservices architecture is emerging as an important approach for distributed
mission-critical applications. In a microservice-based architecture, the application is built on a
collection of services that can be developed, tested, deployed, and versioned independently.

About this guide

This guide is an introduction to developing microservices-based applications and managing them
using containers. It discusses architectural design and implementation approaches using .NET Core
and Docker containers. To make it easier to get started with containers and microservices, the guide
focuses on a reference containerized and microservice-based application that you can explore. The
sample application is available at the eShopOnContainers GitHub repo.

This guide provides foundational development and architectural guidance primarily at a development
environment level with a focus on two technologies: Docker and .NET Core. Our intention is that you
read this guide when thinking about your application design without focusing on the infrastructure
(cloud or on-premises) of your production environment. You will make decisions about your
infrastructure later, when you create your production-ready applications. Therefore, this guide is
intended to be infrastructure agnostic and more development-environment-centric.

After you have studied this guide, your next step would be to learn about production-ready
microservices on Microsoft Azure.

Version

This guide has been revised to cover .NET Core 2 version plus many additional updates related to the
same "wave" of technologies (that is Azure and additional 3 party technologies) coinciding in time
with .NET Core 2.

1 Introduction

https://martinfowler.com/articles/microservices.html
https://github.com/dotnet/eShopOnContainers

What this guide does not cover

This guide does not focus on the application lifecycle, DevOps, CI/CD pipelines, or team work. The
complementary guide Containerized Docker Application Lifecycle with Microsoft Platform and Tools
focuses on that subject. The current guide also does not provide implementation details on Azure
infrastructure, such as information on specific orchestrators.

Additional resources

e Containerized Docker Application Lifecycle with Microsoft Platform and Tools (eBook)
https://aka.ms/dockerlifecycleebook

Who should use this guide

We wrote this guide for developers and solution architects who are new to Docker-based application
development and to microservices-based architecture. This guide is for you if you want to learn how
to architect, design, and implement proof-of-concept applications with Microsoft development
technologies (with special focus on .NET Core) and with Docker containers.

You will also find this guide useful if you are a technical decision maker, such as an enterprise
architect, who wants an architecture and technology overview before you decide on what approach to
select for new and modern distributed applications.

How to use this guide

The first part of this guide introduces Docker containers, discusses how to choose between .NET Core
and the .NET Framework as a development framework, and provides an overview of microservices.
This content is for architects and technical decision makers who want an overview but who do not
need to focus on code implementation details.

The second part of the guide starts with the Development process for Docker based applications
section. It focuses on development and microservice patterns for implementing applications using
.NET Core and Docker. This section will be of most interest to developers and architects who want to
focus on code and on patterns and implementation details.

Related microservice and container-based reference
application: eShopOnContainers

The eShopOnContainers application is an open source reference app for .NET Core and microservices
that is designed to be deployed using Docker containers. The application consists of multiple
subsystems, including several e-store Ul front ends (a Web app and a native mobile app). It also
includes the back-end microservices and containers for all required server-side operations.

2 Introduction

https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook
http://aka.ms/MicroservicesArchitecture

Send us your feedback!

We wrote this guide to help you understand the architecture of containerized applications and
microservices in .NET. The guide and related reference application will be evolving, so we welcome
your feedback! If you have comments about how this guide can be improved, please send them to:

mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com

3 Introduction

mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback%20for%20.NET%20Container%20&%20Microservices%20Architecture%20book

SECTION

Introduction to Containers
and Docker

Containerization is an approach to software development in which an application or service, its
dependencies, and its configuration (abstracted as deployment manifest files) are packaged together
as a container image. The containerized application can be tested as a unit and deployed as a
container image instance to the host operating system (OS).

Just as shipping containers allow goods to be transported by ship, train, or truck regardless of the
cargo inside, software containers act as a standard unit of software that can contain different code
and dependencies. Containerizing software this way enables developers and IT professionals to
deploy them across environments with little or no modification.

Containers also isolate applications from each other on a shared OS. Containerized applications run
on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore have a
significantly smaller footprint than virtual machine (VM) images.

Each container can run a whole web application or a service, as shown in Figure 2-1. In this example,
Docker host is a container host, and App1, App2, Svc 1, and Svc 2 are containerized applications or
services.

Docker Host

oo RS
= e e

Figure 2-1. Multiple containers running on a container host

Another benefit of containerization is scalability. You can scale out quickly by creating new containers
for short-term tasks. From an application point of view, instantiating an image (creating a container) is
similar to instantiating a process like a service or web app. For reliability, however, when you run
multiple instances of the same image across multiple host servers, you typically want each container
(image instance) to run in a different host server or VM in different fault domains.

4 Introduction to Containers and Docker

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the
whole application lifecycle workflow. The most important benefit is the isolation provided between
Dev and Ops.

What is Docker?

Docker is an open-source project for automating the deployment of applications as portable, self-
sufficient containers that can run on the cloud or on-premises. Docker is also a company that
promotes and evolves this technology, working in collaboration with cloud, Linux, and Windows
vendors, including Microsoft.

Run anywhere

Windows Server Lintx M Service
Container Container Provider

Docker

Figure 2-2. Docker deploys containers at all layers of the hybrid cloud

Docker image containers can run natively on Linux and Windows. However, Windows images can run
only on Windows hosts and Linux images can run only on Linux hosts, meaning host a server or a VM.

Developers can use development environments on Windows, Linux, or macOS. On the development
computer, the developer runs a Docker host where Docker images are deployed, including the app
and its dependencies. Developers who work on Linux or on the Mac use a Docker host that is Linux
based, and they can create images only for Linux containers. (Developers working on the Mac can edit
code or run the Docker CLI from macOS, but as of the time of this writing, containers do not run
directly on macOS.) Developers who work on Windows can create images for either Linux or Windows
Containers.

To host containers in development environments and provide additional developer tools, Docker
ships Docker Community Edition (CE) for Windows or for macOS. These products install the necessary
VM (the Docker host) to host the containers. Docker also makes available Docker Enterprise Edition
(EE), which is designed for enterprise development and is used by IT teams who build, ship, and run
large business-critical applications in production.

To run Windows Containers, there are two types of runtimes:

e Windows Server Containers provide application isolation through process and namespace
isolation technology. A Windows Server Container shares a kernel with the container host and
with all containers running on the host.

5 Introduction to Containers and Docker

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://www.docker.com/community-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

e Hyper-V Containers expand on the isolation provided by Windows Server Containers by
running each container in a highly optimized virtual machine. In this configuration, the kernel
of the container host is not shared with the Hyper-V Containers, providing better isolation.

The images for these containers are created the same way and function the same. The difference is in
how the container is created from the image—running a Hyper-V Container requires an extra
parameter. For details, see Hyper-V Containers.

Comparing Docker containers with virtual machines

Figure 2-3 shows a comparison between VMs and Docker containers.

Virtual Machines Docker Containers

App 3

App 1 App 2

Bins/Libs Bins/Libs Bins/Libs App 1 App 2 App 3

Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Container Engine
Hypervisor

Host Operating System Operating System

Infrastructure

[l =d L1 H a

Infrastructure

Virtual machines include the application, the Containers include the application and all its

required libraries or binaries, and a full guest | dependencies. However, they share the OS kernel

operating system. Full virtualization requires with other containers, running as isolated

more resources than containerization. processes in user space on the host operating
system. (Except in Hyper-V containers, where each
container runs inside of a special virtual machine
per container.)

Figure 2-3. Comparison of traditional virtual machines to Docker containers

Because containers require far fewer resources (for example, they do not need a full OS), they are easy
to deploy and they start fast. This allows you to have higher density, meaning that it allows you to run
more services on the same hardware unit, thereby reducing costs.

As a side effect of running on the same kernel, you get less isolation than VMs.

6 Introduction to Containers and Docker

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

The main goal of an image is that it makes the environment (dependencies) the same across different
deployments. This means that you can debug it on your machine and then deploy it to another
machine with the same environment guaranteed.

A container image is a way to package an app or service and deploy it in a reliable and reproducible
way. You could say that Docker is not only a technology, but also a philosophy and a process.

When using Docker, you will not hear developers say, “It works on my machine, why not in
production?” They can simply say, “It runs on Docker,” because the packaged Docker application can
be executed on any supported Docker environment, and it will run the way it was intended to on all
deployment targets (Dev, QA, staging, production, etc.).

Docker terminology

This section lists terms and definitions you should be familiar with before getting deeper into Docker.
For further definitions, see the extensive glossary provided by Docker
(https://docs.docker.com/v1.11/engine/reference/glossary/).

Container image: A package with all the dependencies and information needed to create a container.
An image includes all the dependencies (such as frameworks) plus deployment and execution
configuration to be used by a container runtime. Usually, an image derives from multiple base images
that are layers stacked on top of each other to form the container’s filesystem. An image is immutable
once it has been created.

Container: An instance of a Docker image. A container represents the execution of a single
application, process, or service. It consists of the contents of a Docker image, an execution
environment, and a standard set of instructions. When scaling a service, you create multiple instances
of a container from the same image. Or a batch job can create multiple containers from the same
image, passing different parameters to each instance.

Tag: A mark or label you can apply to images so that different images or versions of the same image
(depending on the version number or the target environment) can be identified.

Dockerfile: A text file that contains instructions for how to build a Docker image.

Build: The action of building a container image based on the information and context provided by its
Dockerfile, plus additional files in the folder where the image is built. You can build images with the
Docker docker build command.

Repository (repo): A collection of related Docker images, labeled with a tag that indicates the image
version. Some repos contain multiple variants of a specific image, such as an image containing SDKs

(heavier), an image containing only runtimes (lighter), etc. Those variants can be marked with tags. A
single repo can contain platform variants, such as a Linux image and a Windows image.

Registry: A service that provides access to repositories. The default registry for most public images is
Docker Hub (owned by Docker as an organization). A registry usually contains repositories from
multiple teams. Companies often have private registries to store and manage images they've created.
Azure Container Registry is another example.

7 Introduction to Containers and Docker

file:///C:/Users/v-mikepo/AppData/Roaming/Microsoft/Word/Docker
https://docs.docker.com/v1.11/engine/reference/glossary/
https://hub.docker.com/

Docker Hub: A public registry to upload images and work with them. Docker Hub provides Docker
image hosting, public or private registries, build triggers and web hooks, and integration with GitHub
and Bitbucket.

Azure Container Registry: A public resource for working with Docker images and its components in
Azure. This provides a registry that is close to your deployments in Azure and that gives you control
over access, making it possible to use your Azure Active Directory groups and permissions.

Docker Trusted Registry (DTR): A Docker registry service (from Docker) that can be installed on-
premises so it lives within the organization’s datacenter and network. It is convenient for private
images that should be managed within the enterprise. Docker Trusted Registry is included as part of
the Docker Datacenter product. For more information, see Docker Trusted Registry (DTR).

Docker Community Edition (CE): Development tools for Windows and macOS for building, running,
and testing containers locally. Docker CE for Windows provides development environments for both
Linux and Windows Containers. The Linux Docker host on Windows is based on a Hyper-V virtual
machine. The host for Windows Containers is directly based on Windows. Docker CE for Mac is based
on the Apple Hypervisor framework and the xhyve hypervisor, which provides a Linux Docker host
virtual machine on Mac OS X. Docker CE for Windows and for Mac replaces Docker Toolbox, which
was based on Oracle VirtualBox.

Docker Enterprise Edition (EE): An enterprise-scale version of Docker tools for Linux and Windows
development.

Compose: A command-line tool and YAML file format with metadata for defining and running multi-
container applications. You define a single application based on multiple images with one or more
.yml files that can override values depending on the environment. After you have created the
definitions, you can deploy the whole multi-container application with a single command (docker-
compose up) that creates a container per image on the Docker host.

Cluster: A collection of Docker hosts exposed as if it were a single virtual Docker host, so that the
application can scale to multiple instances of the services spread across multiple hosts within the
cluster. Docker clusters can be created with Docker Swarm, Mesosphere DC/OS, Kubernetes, and
Azure Service Fabric. (If you use Docker Swarm for managing a cluster, you typically refer to the
cluster as a swarm instead of a cluster.)

Orchestrator: A tool that simplifies management of clusters and Docker hosts. Orchestrators enable
you to manage their images, containers, and hosts through a command line interface (CLI) or a
graphical Ul. You can manage container networking, configurations, load balancing, service discovery,
high availability, Docker host configuration, and more. An orchestrator is responsible for running,
distributing, scaling, and healing workloads across a collection of nodes. Typically, orchestrator
products are the same products that provide cluster infrastructure, like Mesosphere DC/OS,
Kubernetes, Docker Swarm, and Azure Service Fabric.

Docker containers, images, and registries

When using Docker, a developer creates an app or service and packages it and its dependencies into
a container image. An image is a static representation of the app or service and its configuration and
dependencies.

8 Introduction to Containers and Docker

https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://github.com/mist64/xhyve

To run the app or service, the app’s image is instantiated to create a container, which will be running

on the Docker host. Containers are initially tested in a development environment or PC.

Developers should store images in a registry, which acts as a library of images and is needed when
deploying to production orchestrators. Docker maintains a public registry via Docker Hub; other
vendors provide registries for different collections of images. Alternatively, enterprises can have a

private registry on-premises for their own Docker images.

Figure 2-4 shows how images and registries in Docker relate to other components. It also shows the

multiple registry offerings from vendors.

Basic taxonomy in Docker

A Registry
| Stores many
static images

Images
Static, persisted container image

“ Container
Image-instance running

Y

; an app process (service/web)

Figure 2-4. Taxonomy of Docker terms and concepts

Hosted Docker
Registry

Docker Trusted

Docker Hub
Registry

Docker Trusted

Registry on-cloud

Azure Container
Registry
AWS Container
Registry

Google
Container
Registry

Quay
Registry

Other Cloud

Registry on-prem.

— On-premises
(‘n” private organizations)

| Public Cloud

(specific vendors)

Putting images in a registry lets you store static and immutable application bits, including all their
dependencies at a framework level. Those images can then be versioned and deployed in multiple

environments and therefore provide a consistent deployment unit.

Private image registries, either hosted on-premises or in the cloud, are recommended when:

e Your images must not be shared publicly due to confidentiality.

e You want to have minimum network latency between your images and your chosen
deployment environment. For example, if your production environment is Azure cloud, you
probably want to store your images in Azure Container Registry so that network latency will
be minimal. In a similar way, if your production environment is on-premises, you might want
to have an on-premises Docker Trusted Registry available within the same local network.

Introduction to Containers and Docker

https://hub.docker.com/

SECTION 3

Choosing Between .NET
Core and .NET Framework
for Docker Containers

There are two supported frameworks for building server-side containerized Docker applications with
.NET: .NET Framework and .NET Core. They share many.NET platform components, and you can share
code across the two. However, there are fundamental differences between them, and which
framework you use will depend on what you want to accomplish. This section provides guidance on
when to choose each framework.

General guidance

This section provides a summary of when to choose .NET Core or .NET Framework. We provide more
details about these choices in the sections that follow.

You should use .NET Core, with Linux or Windows Containers, for your containerized Docker server
application when:

e You have cross-platform needs. For example, you want to use both Linux and Windows
Containers.

e Your application architecture is based on microservices.

e You need to start containers fast and want a small footprint per container to achieve better
density or more containers per hardware unit in order to lower your costs.

In short, when you create new containerized .NET applications, you should consider.NET Core as the
default choice. It has many benefits and fits best with the containers philosophy and style of working.

An additional benefit of using .NET Core is that you can run side by side .NET versions for applications
within the same machine. This benefit is more important for servers or VMs that do not use
containers, because containers isolate the versions of .NET that the app needs. (As long as they are
compatible with the underlying OS.)

You should use .NET Framework for your containerized Docker server application when:

e Your application currently uses .NET Framework and has strong dependencies on Windows.
e You need to use Windows APIs that are not supported by .NET Core.

10 Choosing Between .NET Core and .NET Framework for Docker Containers

https://www.microsoft.com/net/download/framework
https://www.microsoft.com/net/download/core

e You need to use third-party .NET libraries or NuGet packages that are not available for .NET
Core.

Using .NET Framework on Docker can improve your deployment experiences by minimizing
deployment issues. This "lift and shift” scenario is important for containerizing legacy applications that
were originally developed with the traditional .NET Framework, like ASP.NET WebForms, MVC web
apps or WCF (Windows Communication Foundation) services.

Additional resources

e eBook: Modernize existing .NET Framework applications with Azure and Windows Containers
https://aka.ms/liftandshiftwithcontainersebook

e Sample apps: Modernization of legacy ASP.NET web apps by using Windows Containers
https://aka.ms/eshopmodernizing

When to choose .NET Core for Docker containers

The modularity and lightweight nature of .NET Core makes it perfect for containers. When you deploy
and start a container, its image is far smaller with .NET Core than with .NET Framework. In contrast, to
use .NET Framework for a container, you must base your image on the Windows Server Core image,
which is a lot heavier than the Windows Nano Server or Linux images that you use for .NET Core.

Additionally, .NET Core is cross-platform, so you can deploy server apps with Linux or Windows
container images. However, if you are using the traditional .NET Framework, you can only deploy
images based on Windows Server Core.

The following is a more detailed explanation of why to choose .NET Core.

Developing and deploying cross platform

Clearly, if your goal is to have an application (web app or service) that can run on multiple platforms
supported by Docker (Linux and Windows), the right choice is .NET Core, because .NET Framework
only supports Windows.

.NET Core also supports macOS as a development platform. However, when you deploy containers to
a Docker host, that host must (currently) be based on Linux or Windows. For example, in a
development environment, you could use a Linux VM running on a Mac.

Visual Studio provides an integrated development environment (IDE) for Windows, and supports
Docker development.

Visual Studio for Mac is an IDE, evolution of Xamarin Studio, that runs on macOS and supports
Docker-based application development. This should be the preferred choice for developers working in
Mac machines who also want to use a powerful IDE.

You can also use Visual Studio Code (VS Code) on macOS, Linux, and Windows. VS Code fully
supports .NET Core, including IntelliSense and debugging. Because VS Code is a lightweight editor,
you can use it to develop containerized apps on the Mac in conjunction with the Docker CLI and the
.NET Core command-line interface (CLI). You can also target .NET Core with most third-party editors

11 Choosing Between .NET Core and .NET Framework for Docker Containers

https://aka.ms/liftandshiftwithcontainersebook
https://aka.ms/liftandshiftwithcontainersebook
https://aka.ms/eshopmodernizing
https://www.visualstudio.com/
https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/
https://docs.microsoft.com/dotnet/core/tools/?tabs=netcore2x

like Sublime, Emacs, vi, and the open-source OmniSharp project, which also provides IntelliSense
support.

In addition to the IDEs and editors, you can use the .NET Core CLI tools for all supported platforms.

Using containers for new (“green-field”) projects

Containers are commonly used in conjunction with a microservices architecture, although they can
also be used to containerize web apps or services that follow any architectural pattern. You can use
.NET Framework on Windows Containers, but the modularity and lightweight nature of .NET Core
makes it perfect for containers and microservices architectures. When you create and deploy a
container, its image is far smaller with .NET Core than with .NET Framework.

Creating and deploying microservices on containers

You could use the traditional .NET Framework for building microservices-based applications (without
containers) by using plain processes. That way, because the .NET Framework is already installed and
shared across processes, processes are light and fast to start. However, if you are using containers, the
image for the traditional .NET Framework is also based on Windows Server Core and that makes it too
heavy for a microservices-on-containers approach.

In contrast, .NET Core is the best candidate if you are embracing a microservices-oriented system that
is based on containers, because .NET Core is lightweight. In addition, its related container images,
either the Linux image or the Windows Nano image, are lean and small making containers light and
fast to start.

A microservice is meant to be as small as possible: to be light when spinning up, to have a small
footprint, to have a small Bounded Context, to represent a small area of concerns, and to be able to
start and stop fast. For those requirements, you will want to use small and fast-to-instantiate container
images like the .NET Core container image.

A microservices architecture also allows you to mix technologies across a service boundary. This
enables a gradual migration to .NET Core for new microservices that work in conjunction with other
microservices or with services developed with Node,js, Python, Java, GoLang, or other technologies.

Deploying high density in scalable systems

When your container-based system needs the best possible density, granularity, and performance,
.NET Core and ASP.NET Core are your best options. ASP.NET Core is up to ten times faster than
ASP.NET in the traditional .NET Framework, and it leads other popular industry technologies for
microservices, such as Java servlets, Go, and Node,js.

This is especially relevant for microservices architectures, where you could have hundreds of
microservices (containers) running. With ASP.NET Core images (based on the .NET Core runtime) on
Linux or Windows Nano, you can run your system with a much lower number of servers or VMs,
ultimately saving costs in infrastructure and hosting.

12 Choosing Between .NET Core and .NET Framework for Docker Containers

https://docs.microsoft.com/dotnet/core/tools/?tabs=netcore2x

When to choose .NET Framework for Docker
containers

While .NET Core offers significant benefits for new applications and application patterns, .NET
Framework will continue to be a good choice for many existing scenarios.

Migrating existing applications directly to a Windows Server container

You might want to use Docker containers just to simplify deployment, even if you are not creating
microservices. For example, perhaps you want to improve your DevOps workflow with Docker—
containers can give you better isolated test environments and can also eliminate deployment issues
caused by missing dependencies when you move to a production environment. In cases like these,
even if you are deploying a monolithic application, it makes sense to use Docker and Windows
Containers for your current .NET Framework applications.

In most cases for this scenario, you will not need to migrate your existing applications to .NET Core;
you can use Docker containers that include the traditional .NET Framework. However, a recommended
approach is to use .NET Core as you extend an existing application, such as writing a new service in
ASP.NET Core.

Using third-party .NET libraries or NuGet packages not available for
.NET Core

Third-party libraries are quickly embracing the .NET Standard, which enables code sharing across all
.NET flavors, including .NET Core. With the .NET Standard Library 2.0 and beyond the API surface
compatibility across different frameworks has become significantly larger and in .NET Core 2.0
applications can also directly reference existing .NET Framework libraries (see compat shim).

However, even with that exceptional progression since .NET Standard 2.0 and .NET Core 2.0, there
might be cases where certain NuGet packages need Windows to run and might not support .NET
Core. If those packages are critical for your application, then you will need to use .NET Framework on
Windows Containers.

Using.NET technologies not available for .NET Core

Some .NET Framework technologies are not available in the current version of .NET Core (version 2.0
as of this writing). Some of them will be available in later .NET Core releases (.NET Core 2.x), but others
do not apply to the new application patterns targeted by .NET Core and might never be available.

The following list shows most of the technologies that are not available in .NET Core 2.x:

e ASP.NET Web Forms. This technology is only available on .NET Framework. Currently there are
no plans to bring ASP.NET Web Forms to .NET Core.

e WHCF services. Even when a WCF-Client library is available to consume WCF services from .NET
Core, as of mid-2017, the WCF server implementation is only available on .NET Framework.
This scenario might be considered for future releases of .NET Core.

e Workflow-related services. Windows Workflow Foundation (WF), Workflow Services (WCF +
WF in a single service), and WCF Data Services (formerly known as ADO.NET Data Services)

13 Choosing Between .NET Core and .NET Framework for Docker Containers

https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://github.com/dotnet/standard/blob/master/docs/faq.md#how-does-net-standard-versioning-work
https://github.com/dotnet/wcf

are only available on .NET Framework. There are currently no plans to bring them to .NET
Core.

In addition to the technologies listed in the official .NET Core roadmap, other features might be
ported to .NET Core. For a full list, look at the items tagged as port-to-core on the CoreFX GitHub site.
Note that this list does not represent a commitment from Microsoft to bring those components to
.NET Core—the items simply capture requests from the community. If you care about any of the
components listed above, consider participating in the discussions on GitHub so that your voice can
be heard. And if you think something is missing, please file a new issue in the CoreFX repository.

Using a platform or API that does not support .NET Core

Some Microsoft or third-party platforms do not support .NET Core. For example, some Azure services
provide an SDK that is not yet available for consumption on .NET Core. This is temporary, because all
Azure services will eventually use .NET Core. For example, the Azure DocumentDB SDK for .NET Core
was released as a preview on November 16, 2016, but it is now generally available (GA) as a stable
version.

In the meantime, if any platform or service in Azure still doesn’t support .NET Core with its client API,
you can use the equivalent REST API from the Azure service or the client SDK on .NET Framework.

Additional resources

e _.NET Core Guide
https://docs.microsoft.com/dotnet/articles/core/index

e Porting from .NET Framework to .NET Core
https://docs.microsoft.com/dotnet/articles/core/porting/index

e _NET Framework on Docker Guide
https://docs.microsoft.com/dotnet/articles/framework/docker/

e .NET Components Overview
https://docs.microsoft.com/dotnet/articles/standard/components

14 Choosing Between .NET Core and .NET Framework for Docker Containers

https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/1.2.1
https://docs.microsoft.com/dotnet/articles/core/index
https://docs.microsoft.com/dotnet/articles/core/porting/index
https://docs.microsoft.com/dotnet/articles/framework/docker/
https://docs.microsoft.com/dotnet/articles/standard/components

Decision table: .NET frameworks to use for Docker

The following decision table summarizes whether to use .NET Framework or .NET Core. Remember
that for Linux containers, you need Linux-based Docker hosts (VMs or servers) and that for Windows
Containers you need Windows Server based Docker hosts (VMs or servers).

Linux containers

Windows Containers

Architecture / App Type

Microservices on containers .NET Core .NET Core

Monolithic app .NET Core .NET Framework
.NET Core

Best-in-class performance and .NET Core .NET Core

scalability

Windows Server legacy app -- .NET Framework

("brown-field") migration to

containers

New container-based .NET Core .NET Core

development (“green-field”)

ASP.NET Core .NET Core .NET Core (recommended)

.NET Framework

ASP.NET 4 (MVC 5, Web API 2,
and Web Forms)

.NET Framework

SignalR services

.NET Core 2.1 (when released)

or higher version

.NET Framework

.NET Core 2.1 (when released)

or higher version

WCF, WF, and other legacy
frameworks

WCF in .NET Core (only the
WCEF client library)

.NET Framework

WCF in .NET Core (only the
WOCEF client library)

Consumption of Azure services

.NET Core

(eventually all Azure services
will provide client SDKs for
.NET Core)

.NET Framework
.NET Core

(eventually all Azure services
will provide client SDKs for
.NET Core)

15

Choosing Between .NET Core and .NET Framework for Docker Containers

What OS to target with .NET containers

Given the diversity of operating systems supported by Docker and the differences between .NET
Framework and .NET Core, you should target a specific OS and specific versions depending on the
framework you are using.

For Windows, you can use Windows Server Core or Windows Nano Server. These Windows versions
provide different characteristics (IIS in Windows Server Core versus a self-hosted web server like
Kestrel in Nano Server) that might be needed by .NET Framework or .NET Core, respectively.

For Linux, multiple distros are available and supported in official .NET Docker images (like Debian).

In Figure 3-1 you can see the possible OS version depending on the .NET framework used.

What OS to target with NET containers

- C tible with
NET Framework Windows esting apps.

3.5, 4.x Server Core "

Larger Image

Cloud Optimized,

WindOWS Container OS
Kestrel
Nano Server Smaller, Faster Start
Time

Debian, Alpine, etc.
Kestrel

Smaller, Faster Start
Time

Figure 3-1. Operating systems to target depending on versions of the .NET framework

You can also create your own Docker image in cases where you want to use a different Linux distro or
where you want an image with versions not provided by Microsoft. For example, you might create an
image with ASP.NET Core running on the traditional .NET Framework and Windows Server Core, which
is a not-so-common scenario for Docker.

When you add the image name to your Dockerfile file, you can select the operating system and
version depending on the tag you use, as in the following examples:

.NET Core 2.0 runtime-only on Linux
microsoft/dotnet:2.0.0-runtime-jessie y

.NET Core 2.0 runtime-only on Windows Nano
Server (Windows Server 2016 Fall Creators
Update version 1709)

microsoft/dotnet:2.0.0-runtime-
nanoserver-1709

.NET Core 2.0 multi-architecture: Supports
Linux and Windows Nano Server depending on
the host.

The aspnetcore image has a few optimizations
for ASP.NET Core.

microsoft/aspnetcore:2.0

16 Choosing Between .NET Core and .NET Framework for Docker Containers

Official .NET Docker images

The Official NET Docker images are Docker images created and optimized by Microsoft. They are
publicly available in the Microsoft repositories on Docker Hub. Each repository can contain multiple
images, depending on .NET versions, and depending on the OS and versions (Linux Debian, Linux
Alpine, Windows Nano Server, Windows Server Core, etc.).

Microsoft's vision for .NET repositories is to have granular and focused repos, where a repo represents
a specific scenario or workload. For instance, the microsoft/aspnetcore images should be used when
using ASP.NET Core on Docker, because those ASP.NET Core images provide additional optimizations
so containers can start faster.

On the other hand, the .NET Core images (microsoft/dotnet) are intended for console apps based on
.NET Core. For example, batch processes, Azure WebJobs, and other console scenarios should use
.NET Core. Those images do not include the ASP.NET Core stack, resulting in a smaller container
image.

Most image repos provide extensive tagging to help you select not just a specific framework version,
but also to choose an OS (Linux distro or Windows version).

For further information about the official NET Docker images provided by Microsoft, see the .NET
Docker Images summary.

.NET Core and Docker image optimizations for development versus
production

When building Docker images for developers, Microsoft focused on the following main scenarios:

e Images used to develop and build .NET Core apps.
e Images used to run .NET Core apps.

Why multiple images? When developing, building, and running containerized applications, you usually
have different priorities. By providing different images for these separate tasks, Microsoft helps
optimize the separate processes of developing, building, and deploying apps.

During development and build

During development, what is important is how fast you can iterate changes, and the ability to debug
the changes. The size of the image is not as important as the ability to make changes to your code
and see the changes quickly. Some tools and "build-agent containers”, use the development ASP.NET
Core image (microsoft/aspnetcore-build) during development and build proces. When building inside
a Docker container, the important aspects are the elements that are needed in order to compile your
app. This includes the compiler and any other .NET dependencies, plus web development
dependencies like npm, Gulp, and Bower.

Why is this type of build image important? You do not deploy this image to production. Instead, it is
an image you use to build the content you place into a production image. This image would be used
in your continuous integration (Cl) environment or build environment. For instance, rather than

17 Choosing Between .NET Core and .NET Framework for Docker Containers

https://hub.docker.com/u/microsoft/
https://hub.docker.com/r/microsoft/aspnetcore/
https://hub.docker.com/r/microsoft/dotnet/
https://aka.ms/dotnetdockerimages
https://aka.ms/dotnetdockerimages
https://hub.docker.com/r/microsoft/aspnetcore-build/

manually installing all your application dependencies directly on a build agent host (a VM, for
example), the build agent would instantiate a .NET Core build image with all the dependencies
required to build the application. Your build agent only needs to know how to run this Docker image.
This simplifies your Cl environment and makes it much more predictable.

In production

What is important in production is how fast you can deploy and start your containers based on a
production .NET Core image. Therefore, the runtime-only image based on microsoft/aspnetcore is
small so that it can travel quickly across the network from your Docker registry to your Docker hosts.
The contents are ready to run, enabling the fastest time from starting the container to processing
results. In the Docker model, there is no need for compilation from C# code, as there is when you run
dotnet build or dotnet publish when using the build container.

In this optimized image you put only the binaries and other content needed to run the application.
For example, the content created by dotnet publish contains only the compiled .NET binaries,
images, .js, and .css files. Over time, you will see images that contain pre-jitted packages.

Although there are multiple versions of the .NET Core and ASP.NET Core images, they all share one or
more layers, including the base layer. Therefore, the amount of disk space needed to store an image is
small; it consists only of the delta between your custom image and its base image. The result is that it

is quick to pull the image from your registry.

When you explore the .NET image repositories at Docker Hub, you will find multiple image versions
classified or marked with tags. These tags help to decide which one to use, depending on the version
you need, like those in the following table:

ASP.NET Core, with runtime only and ASP.NET Core
optimizations, on Linux and Windows (multi-arch)
ASP.NET Core, with SDKs included, on Linux and
Windows (multi-arch)

microsoft/aspnetcore:2.0

microsoft/aspnetcore-build:2.0

18 Choosing Between .NET Core and .NET Framework for Docker Containers

https://hub.docker.com/r/microsoft/aspnetcore/

SECTION

Architecting Container-
and Microservice-Based
Applications

Vision
Microservices offer great benefits but also raise huge new challenges. Microservice architecture patterns
are fundamental pillars when creating a microservice-based application.

Earlier in this guide, you learned basic concepts about containers and Docker. That was the minimum
information you need in order to get started with containers. Although, even when containers are
enablers and a great fit for microservices, they are not mandatory for a microservice architecture and
many architectural concepts in this architecture section could be applied without containers, too.
However, this guidance focuses on the intersection of both due to the already introduced importance
of containers.

Enterprise applications can be complex and are often composed of multiple services instead of a
single service-based application. For those cases, you need to understand additional architectural
approaches, such as the microservices and certain Domain-Driven Design (DDD) patterns plus
container orchestration concepts. Note that this chapter describes not just microservices on
containers, but any containerized application, as well.

Container design principles

In the container model, a container image instance represents a single process. By defining a
container image as a process boundary, you can create primitives that can be used to scale the
process or to batch it.

When you design a container image, you will see an ENTRYPOINT definition in the Dockerfile. This
defines the process whose lifetime controls the lifetime of the container. When the process completes,
the container lifecycle ends. Containers might represent long-running processes like web servers, but
can also represent short-lived processes like batch jobs, which formerly might have been
implemented as Azure WebJobs.

If the process fails, the container ends, and the orchestrator takes over. If the orchestrator was
configured to keep five instances running and one fails, the orchestrator will create another container
instance to replace the failed process. In a batch job, the process is started with parameters. When the
process completes, the work is complete. This guidance drills-down on orchestrators, later on.

19 Architecting Container-