322 lines
9.3 KiB
JavaScript
Executable File

d3.sankey = function() {
var sankey = {},
nodeWidth = 24,
nodePadding = 8, // was 8, needs to be much bigger. these numbers are actually overwritten in the html when we instantiate the viz!
size = [1, 1],
nodes = [],
links = [];
sankey.nodeWidth = function(_) {
if (!arguments.length) return nodeWidth;
nodeWidth = +_;
return sankey;
};
sankey.nodePadding = function(_) {
if (!arguments.length) return nodePadding;
nodePadding = +_;
return sankey;
};
sankey.nodes = function(_) {
if (!arguments.length) return nodes;
nodes = _;
return sankey;
};
sankey.links = function(_) {
if (!arguments.length) return links;
links = _;
return sankey;
};
sankey.size = function(_) {
if (!arguments.length) return size;
size = _;
return sankey;
};
sankey.layout = function(iterations) {
computeNodeLinks();
computeNodeValues();
// big changes here
// change the order and depths (y pos) won't need iterations
computeNodeDepths();
computeNodeBreadths(iterations);
computeLinkDepths();
return sankey;
};
sankey.relayout = function() {
computeLinkDepths();
return sankey;
};
sankey.link = function() {
var curvature = .5;
// x0 = line start X
// y0 = line start Y
// x1 = line end X
// y1 = line end Y
// y2 = control point 1 (Y pos)
// y3 = control point 2 (Y pos)
function link(d) {
// big changes here obviously, more comments to follow
var x0 = d.source.x + d.sy + d.dy / 2,
x1 = d.target.x + d.ty + d.dy / 2,
y0 = d.source.y + nodeWidth,
y1 = d.target.y,
yi = d3.interpolateNumber(y0, y1),
y2 = yi(curvature),
y3 = yi(1 - curvature);
// ToDo - nice to have - allow flow up or down! Plenty of use cases for starting at the bottom,
// but main one is trickle down (economics, budgets etc), not up
return "M" + x0 + "," + y0 // start (of SVG path)
+ "C" + x0 + "," + y2 // CP1 (curve control point)
+ " " + x1 + "," + y3 // CP2
+ " " + x1 + "," + y1; // end
}
link.curvature = function(_) {
if (!arguments.length) return curvature;
curvature = +_;
return link;
};
return link;
};
// Populate the sourceLinks and targetLinks for each node.
// Also, if the source and target are not objects, assume they are indices.
function computeNodeLinks() {
nodes.forEach(function(node) {
node.sourceLinks = [];
node.targetLinks = [];
});
links.forEach(function(link) {
var source = link.source,
target = link.target;
if (typeof source === "number") source = link.source = nodes[link.source];
if (typeof target === "number") target = link.target = nodes[link.target];
source.sourceLinks.push(link);
target.targetLinks.push(link);
});
}
// Compute the value (size) of each node by summing the associated links.
function computeNodeValues() {
nodes.forEach(function(node) {
node.value = Math.max(
d3.sum(node.sourceLinks, value),
d3.sum(node.targetLinks, value)
);
});
}
// take a grouping of the nodes - the vertical columns
// there shouldnt be 8 - there will be more, the total number of 1st level sources
// then iterate over them and give them an incrementing x
// because the data structure is ALL nodes, just flattened, don't just apply at the top level
// then everything should have an X
// THEN, for the Y
// do the same thing, this time on the grouping of 8! i.e. 8 different Y values, not loads of different ones!
function computeNodeBreadths(iterations) {
var nodesByBreadth = d3.nest()
.key(function(d) { return d.y; })
.sortKeys(d3.ascending)
.entries(nodes)
.map(function(d) { return d.values; }); // values! we are using the values also as a way to seperate nodes (not just stroke width)?
// this bit is actually the node sizes (widths)
//var ky = (size[1] - (nodes.length - 1) * nodePadding) / d3.sum(nodes, value)
// this should be only source nodes surely (level 1)
var ky = (size[0] - (nodesByBreadth[0].length - 1) * nodePadding) / d3.sum(nodesByBreadth[0], value);
// I'd like them to be much bigger, this calc doesn't seem to fill the space!?
nodesByBreadth.forEach(function(nodes) {
nodes.forEach(function(node, i) {
node.x = i;
node.dy = node.value * ky;
});
});
links.forEach(function(link) {
link.dy = link.value * ky;
});
resolveCollisions();
for (var alpha = 1; iterations > 0; --iterations) {
relaxLeftToRight(alpha);
resolveCollisions();
relaxRightToLeft(alpha *= .99);
resolveCollisions();
}
// these relax methods should probably be operating on one level of the nodes, not all!?
function relaxLeftToRight(alpha) {
nodesByBreadth.forEach(function(nodes, breadth) {
nodes.forEach(function(node) {
if (node.targetLinks.length) {
var y = d3.sum(node.targetLinks, weightedSource) / d3.sum(node.targetLinks, value);
node.x += (y - center(node)) * alpha;
}
});
});
function weightedSource(link) {
return center(link.source) * link.value;
}
}
function relaxRightToLeft(alpha) {
nodesByBreadth.slice().reverse().forEach(function(nodes) {
nodes.forEach(function(node) {
if (node.sourceLinks.length) {
var y = d3.sum(node.sourceLinks, weightedTarget) / d3.sum(node.sourceLinks, value);
node.x += (y - center(node)) * alpha;
}
});
});
function weightedTarget(link) {
return center(link.target) * link.value;
}
}
function resolveCollisions() {
nodesByBreadth.forEach(function(nodes) {
var node,
dy,
x0 = 0,
n = nodes.length,
i;
// Push any overlapping nodes right.
nodes.sort(ascendingDepth);
for (i = 0; i < n; ++i) {
node = nodes[i];
dy = x0 - node.x;
if (dy > 0) node.x += dy;
x0 = node.x + node.dy + nodePadding;
}
// If the rightmost node goes outside the bounds, push it left.
dy = x0 - nodePadding - size[0]; // was size[1]
if (dy > 0) {
x0 = node.x -= dy;
// Push any overlapping nodes left.
for (i = n - 2; i >= 0; --i) {
node = nodes[i];
dy = node.x + node.dy + nodePadding - x0; // was y0
if (dy > 0) node.x -= dy;
x0 = node.x;
}
}
});
}
function ascendingDepth(a, b) {
//return a.y - b.y; // flows go up
return b.x - a.x; // flows go down
//return a.x - b.x;
}
}
// this moves all end points (sinks!) to the most extreme bottom
function moveSinksDown(y) {
nodes.forEach(function(node) {
if (!node.sourceLinks.length) {
node.y = y - 1;
}
});
}
// shift their locations out to occupy the screen
function scaleNodeBreadths(kx) {
nodes.forEach(function(node) {
node.y *= kx;
});
}
function computeNodeDepths() {
var remainingNodes = nodes,
nextNodes,
y = 0;
while (remainingNodes.length) {
nextNodes = [];
remainingNodes.forEach(function(node) {
node.y = y;
//node.dx = nodeWidth;
node.sourceLinks.forEach(function(link) {
if (nextNodes.indexOf(link.target) < 0) {
nextNodes.push(link.target);
}
});
});
remainingNodes = nextNodes;
++y;
}
// move end points to the very bottom
moveSinksDown(y);
scaleNodeBreadths((size[1] - nodeWidth) / (y - 1));
}
// .ty is the offset in terms of node position of the link (target)
function computeLinkDepths() {
nodes.forEach(function(node) {
node.sourceLinks.sort(ascendingTargetDepth);
node.targetLinks.sort(ascendingSourceDepth);
});
nodes.forEach(function(node) {
var sy = 0, ty = 0;
//ty = node.dy;
node.sourceLinks.forEach(function(link) {
link.sy = sy;
sy += link.dy;
});
node.targetLinks.forEach(function(link) {
// this is simply saying, for each target, keep adding the width of the link
// so what if it was the other way round. start with full width then subtract?
link.ty = ty;
ty += link.dy;
//ty -= link.dy;
});
});
function ascendingSourceDepth(a, b) {
//return a.source.y - b.source.y;
return a.source.x - b.source.x;
}
function ascendingTargetDepth(a, b) {
//return a.target.y - b.target.y;
return a.target.x - b.target.x;
}
}
function center(node) {
return node.y + node.dy / 2;
}
function value(link) {
return link.value;
}
return sankey;
};